A NOTE ON AUTOMORPHISMS OF LIE ALGEBRAS

N. JACOBSON

In a beautiful paper which appeared in 1939 ([4]), F. Gantmacher
made a thorough study of automorphisms of semi-simple Lie algebras
over the field of complex numbers. Among other things, he defined the
index %(G;) of a connected component G; of the automorphism group
G = G(¥) as the minimum multiplicity of the characteristic root 1 for
elements of G;. The main purpose of this note is the determination of
these indices. It is somewhat surprising that this does not appear in
Gantmacher’s paper since all the methods for deriving the formula for
index G, are available in his paper. The secondary purpose of this note
is to extend Gantmacher’s theory to the case of Lie algebras over
arbitrary algebraically closed base fields of characteristic 0. This can
be done by using algebraic group concepts and techiques which are by
now well known. Nevertheless, it seems worthwhile to carry out the
program in detail since Gantmacher’s results give a real insight into
the action of an automorphism in a semi-simple Lie algebra. For ex-
ample, as we indicate, they can be used to give a new derivation and
sharpening of theorems on fixed points which are due to Borel and

Mostow ([1]).

1. Generalities on automorphisms. Let ¥ be a finite dimensional
Lie algebra over an algebraically closed field @ of characteristic 0, G
the group of automorphisms of €. G is an algebraic group and it has
a decomposition G =G, UG, U --+ U G,_, where G; are the algebraic
components and G, is the component of the identity element 1. This
is an invariant subgroup of finite index # in G and is irreducible, which
means that the intersection of any two nonvacuous open subsets in G,
is nonvacuous. The topology referred to here is the Zariski topology in
which open sets are the complements of algebraic subsets of G.

If 7 is a nonsingular linear transformation in £, 7» has a unique
decomposition as 7 = 7,9, = 1,7, where 7, and 7, are polynomials in 7,
7, is semi-simple and 7, is unipotent, that is, 7, — 1 is nilpotent. If %
is an automorphism then 7, and 7, are automorphisms. If % is a unipotent
automorphism then

og7=(— 1=~ =1 + 30 =1 = -
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is a nilpotent derivation. Conversely, if D is a nilpotent derivation then
7 = exp D is a unipotent automorphism. Any unipotent automorphism
is contained in the algebraic component of 1. Hence an automorphism
7 and its semi-simple part 7, are contained in the same component.

If 7 is a linear transformation in € we can decompose € = &, P
@D -+ P where &, is the characteristic space of 7 corresponding to
the characteristic root a:®, = {x,| 2., () — al)®* =0 for some k}. The
semi-simple part 7, is the linear transformation which leaves each 2,
invariant and coincideds with the scalar multiplication a1 in 2,. If 7is
an automorphism then [¥,%] = 0 if a3 is not a characteristic root and
[8.%6] & ¥, if @B is a characteristic root. Here [2,%;] is the subspace
spanned by the Lie products [£.%s], X, € £a, 25 € L. In particular, &, the
space of the characteristic root 1 is a subalgebra and [2,%] S 8.. In
most considerations the refined decomposition £ = 2%, will be replaced
by a coarser Fitting type decomposition: & = £, @ N where N = >, &,.
These two spaces are invariant under %, 7 is unipotent in £, and 7 —1
is nonsingular in . We have [N¢] S N. If 7 is semi-simple then &,
is the set of fixed points under 7 and N ="' = {&” — x| x e .

As before, let G=G, U G, U +--- U G,_, be the decomposition of G
into its algebraic irreducible components. We define the index n(G,;) of
G; as the minimum multiplicity of the characteristic root 1 for the
7€ G;. The multiplicity of the root is the same as the dimensionality
of the corresponding characteristic space. An element 7€ G; is called
regular if dim2,() = index G;. Let(u,, ---,u,) be a basis for € and
let (@) be a matrix of 7 relative to this basis. Write the characteristic
polynomial of (@) — 1 as

(1) L) =N = 0N A e+ (=1)"0.(7)

The mappings 7 — p;(?) are polynomial functions. If the index of G; =
l;, then 0,(7) = +++ = 0,-,1a(7) = 0 for all ye G; but 0, () # 0 on G..
The regular elements of G; are those such that o, (1) # 0. Hence
they form an open set in G,.

2. Lie Algebras of algebraic groups. We need to recall some notions
on linear algebraic groups. The results we shall quote can be found in two
books by Chevalley ([3]). We recall first that if V and W are finite
dimensional vector spaces, a rational mapping R of V into W is a map-
ping of the form & = 3&e;, — y = 27),f; where 9; = Ei(§) = Ry(&, -++, &)
are rational functions of the &’s. Here (e, ++-,¢,) is a basis for V and
(fyy *++, fn) is a basis for W. The rational mapping is defined on an
open subset of V. An important special case is that in which W= 0.
Then R is a rational function on V. In the general case, if @ is a point
at which R is defined, the differential D, of R at a is the linear map-
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ping x — (D,R)(x) where

DR =5 (S () gy,

1 T \ON, / Ap=my,
for @ = Yae,. Here 0R;/0n, is the formal partial derivative of the
rational expression R;(\,, --+,\,) in indeterminates A\ with respect to
the indeterminate )\,. Let E be an irreducible set in V, that is, the
ideal A of polynomials P(\,, ---, \,) which are 0 at every point of F is
prime. Let a be a point of E. We define the tangent space to E at
@ to be the subspace of vectors « in V such that (D,P)(z) = 0 for every
P in the ideal A corresponding to E. The condition on x = 3&.e, are:
>k (OP|ON)r -0, & = O for all PeA. It suffices to have these conditions
satisfied for a set of generators (P, ---, P,) of 2. If R is a rational
mapping defined on E then R(FE) is irreducible and D,R maps the tangent
space to K at ac E into a subspace of the tangent space at R(a) of
R(E).

If G is an irreducible algebraic linear group the tangent space €
at 1 for G can be made a Lie algebra by identifying its elements with
derivations in the algebra of polynomial functions on G. The dimension-
ality of Q is the same as that of G. If ¥ is any Lie algebra and G, is
the component of 1 of the group of automorphisms then the Lie algebra
of G, is the Lie algebra of derivations of . If ¥ is semi-simple then
all the derivations are inner and the Lie algebra of G, is ad € the set
of adjoint mappings ad a: x — [xa] in L.

3. Regular automorphisms of semi-simple Lie algebras. We shall
now derive the purely algebraic form of Gantmacher’s results on auto-
morphisms of semi-simple Lie algebras.

Let & be semi-simple and let » be an automorphism of 2,8 =2 &P
N the Fitting decomposition of £ relative to 7 Thus £, is the space of
the characteristic root 1, 9 the sum of the other characteristic spaces,
¢, is a subalgebra and [N¢] & N. We note first

THEOREM 1. ¥, is a reductive subalgebra of L.

Proof. The assertion is that the subalgebra adg?, of the Lie algebra
ady® =ad® is completely reducible. This property holds for ad® since
€ is semi-simple. If 7, is the semi-simple part of 7 then ¥, = {l,|I]s = [ }}.
This is equivalent to [7,, ad [,] = 0 and this implies that ad.?, is a split-
table Lie algebra of linear transformations in the sense of Malcev. Also
we have ad¢® = ad®, P ad N and [ad R, ad ] S ad®.  These two
properties imply that adg¥, is completely reducible ([6] p. 109).

Since g, is reductive we have €, = 2/ € where ¢! is the derived
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algebra of ¢, and is semi-simple; € is the center of £, and adc is semi-
simple for every ¢ in € ([6] p. 106).

THEOREM 2. If 7 is regular 2, is abelian and 7 is semi-simple.

Proof. Suppose 2, is not abelian so that 2] is a nonzero semi-simple
Lie algebra. There exist elements z and w in £, such that adgiz and
adgw are nilpotent derivations and (exp adyz)(exp adyw) is an automor-
phism of £; which is not unipotent.” Since adg;z and adg{w are nilpotent
it is known that adz = adgz and adw are nilpotent. If @, B¢ @ we can
form the automorphism (exp « ad z)(exp B ad w) which is in the com-
ponent G, of 1 of the automorphism group of 2. Since [%,] S & and
[NRE,] S M it follows that the automorphism

¢(a, B) = n,(exp a ad z)(exp B ad w)

satisfies QP = @, Jé@P RN, Since 7, =1 in £ the restriction of
£(1,1) to &, is not unipotent. Also the restriction of £(0,0) — 1 =17, —
1 to N is nonsingular. It follows by a standard argument that «, 8 can
be chosen so that the multiplicity of the characteristic root 1 for ¢(«, B)
is less than dim . Since¢(a,S) is in the same component as 7 this
means that 7 is not regular contrary to assumption. Hence £, is abelian.
Then every adgl, I, € ¢, is semi-simple. On the other hand, log7, is a
nilpotent derivation in . Since the derivations of £ are all inner,
log 7, = adz,z€ 2. Since [7,log7n,] =0,2€2,. Hence adz is nilpotent
and semi-simple. Then adz = 0 which implies that 7, =1 and » = 7, is
semi-simple.

We wish to prove the converse of Theorem 2. For this we shall
need the following

LEMMA. Let 7 be an automorphism of a semi-simple Lie algebra
L such that the subalgebra L, is abelian. Let H be the subgroup of the
automorphisms group G of ¥ of elements commuting with 7, H, the
algebraic component of 1 of H, G, the algebraic component of 1 of G.
Then

(2) K= {tn¢t |t e G, ¢ € Hy}
contains a monvacuous open subset of 1G,.
Proof. We note first that the proof of Theorem 2 shows that every

¢ e H, is semi-simple; hence every 7' = n¢ = {7 is semi-simple. The Lie
algebra of G, is ad £ and the Lie algebra of H, is adg¥, since ¢, is the

t For example, we can take z, w to satisfy [zw] =h # 0, [2h] = 2z, [wh] = —2w. See the
proof of the lemma to Th. 5.
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set of fixed points under 7. If & & e H, then the mapping &— ¢7'&¢ is
the identity; hence the induced mapping x — ¢ x ¢ is the identity in
adg?,. Since ¢(adl)¢ = adlf it follows that If = l,. This implies that
the space of fixed points (') 2 ¥,(n) for any 7 = ;. We note next
that K is the orbit of »H, under the group of mappings & —» tét7, 7€ G,.
This implies that K is épais in the sense of Chevalley: K is irreducible
and K contains a nonvacuous open subset of its closure (see Chevalley
[3] tome III, p. 198). The result we wish to prove will now follow by
showing that K is dense in 7G,. (This is all which will be needed for
the proof of Theorem 3.) Let 7/ = 7¢ be any element of nH,. Then
the tangent space Z(K;7') of K at 7 contains the tangent space
I(nHy; 1) of nH, at 7' as well as the image of 7’ under the Lie algebra
of mappings x — [X, adl], [ € L (Chevalley, loc. cit. p. 192). This is
the set of mappings [7/,adl], le 8. Now Z(H,; 1) is the Lie algebra
adg¥, so I(H,, 7)) = T(Y' Hy; ') = 7'ade¥,. We wish to show that T(K;7') =
TGy ') =1 ad¥. Since (K, 7') contains 7 ady¥, and [7, adl] =
{[7, adl], L € ¥}, it is enough to show that ad ¥ = ad,¥, + (7')7'[7', ad ¥].
Since (7)1, adl] = adl — adl” = ad(l — "), it suffices to show that
€ =8 + ¥, But this is clear since 7’ is semi-simple. We have there-
fore proved that the tangent spaces to K and to 7,G, at any point 7' = n¢
coincide. Since K is the orbit of 7H, under the set of mappings
& — t&r7* it follows that the tangent space to K and to G, at any point
of K coincide. This implies that K is dense in %G,.

THEOREM 3. If ¥, is abelian then 7 is regular.

Proof. Let K be the set defined by (2). Then the lemma implies
that K contains a regular element tn¢c™, (e H, t€ G, Then 7¢ is a
regular element contained in the component G, = 7,G, containing 7. The
foregoing proof shows also that 2,(7¢) =2 ¥,(%). Since 7¢ is regular we
have ¥,(9¢) = ¥(79) so 7 is regular also.

Let 7 be a regular element and, as before, let Hy(%) be the algebraic
component of 1 in the subgroup H(%) of G of elements commuting with
7. Then H(n)) = nH,(») is the component of 7 in H(y). As we have
seen in the preceding proof, the Lie algebra Hy(7) is ad&(7) where
.(n) is the set of fixed points under 7. Moreover, ¥,(») and Hy(y) are
abelian. The fact that H,(9) is abelian implies that H,(%) & H,(7¢) for
any ¢ e Hy(%). If 7¢ is regular also then we have Hy(¢) = H(%). In a
similar manner, we see that the elements of ¥,(») are fixed under 7¢.
If ¢ is regular also then ¥,(7) = ¥,(7¢), ¢e H(y). We note also that
the argument used in the proof of Theorem 2 shows that every element
of Hy%) and hence of H,(%)7 is semi-simple.

We now use the full force of the lemma to prove the following
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THEOREM 4. Let 7, and 7, be two regular automorphisms contained
in the same component of the automorphism group. Let 2,(n;) be the
subalgebra of L of fixed elements under v;,7 = 1,2, and let Hy(n;) be
the algebraic component of 1 in the subgroup H(n;) of automorphisms
commuting with n;. Then there exists a e G, such that 2,(n)" = L(79,)

and N,H\(n,) = v (. Hy(1)T.

Proof. Let K, and K, be the sets (2) defined by 7, and 7, respectively.
Then K, and K, contain open subsets of the component G, containing
», and 7,. It follows that there exists a regular element in K, N K..
Hence there exist z; € G,, &; € Hy(»;) such that

n= 71(771;1)2.;1 = 72(7]2&)7;1

is regular. Then 7,¢, and 7,¢, are regular elements of G, and 7, =
()T where © = 77't,. Then £,(7,) = 4L(08) = L&) = &), In
a similar manner we see that t7'(0,.H, (7))t = 0.H\(7,).

We have noted that if % is regular every element of 7Hy (%) is semi-
simple. We wish to prove that conversely any semi-simple automorphism
belongs to an nH(n) where 7 is regular. The proof of this result in the
complex case given by Gantmacher is based on the use of exponentials of
elements adl,, [,€®,. These are not available in the algebraic case.
However, a suitable substitute for these has been found by Seligman and
we shall use these.

Let ® be a semi-simple subalgebra of a Lie algebra &, 9 a Cartan
subalgebra of & Let a,,7=1,2,---,1 be a simple system of roots for
R relative to O, &,, the corresponding one dimensional root spaces. Then
there exists a canonical set of generators e, fi, h;,, t =1,2,-++,1, for &
such that the %; form a basis for 9, e;€ &,,, fi€ -, and the following
relations hold:

(hih;] =0

le:f5] = Bishs
leh;] = Ajies
Lfili] = — Asfi

(3)

where (4;;) is the Cartan matrix of the simple system «;. We have
A;; =2 and A,; is a nonpositive integer if ¢ #+ 5. It is known that the
mappings ade; and adf; are nilpotent (in ¥). Following Seligman we
introduce the automorphism in £:

(4) 0,(€) = (expadfe;)(exp ads™ f;)(exp adée;)

where £ is any nonzero element of @ and ¢ =1,2, --+,1. Also we set
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(5) (&) = gi(£)oi(—1)

and we let H be the group of automorphisms of ¥ generated by the w;(§),
E+0in @,1=1,2,..+,1. Clearly the w;,(£) map ® into itself. It has
been shown by Seligman that the restriction H of H to & coincides
with the group of automorphism in & such that

(6) e; = e, fi— ti'fi, hi— h;

where the y; are arbitrary nonzero elements.? Then H is an irreducible
abelian algebraic group of automorphisms in & (an l-dimensional torus).
We shall now prove the

LEMMA. H is an abelian group.

Proof. 1If we recall the form of the irreducible ®-modules we see
that £ is generated by the f and a set X of elements « such that [xe;] =
0,1=1,2,.-+,1 and [zh] = A(h)x, A(h)e @ ([5] p. 44). We fix ¢ and
write F'=ad f;,, E = ad e;. Thenif z,=2x¢€ X and we define z; = z,F"”,
it is known that » = «,, «,, -+, x,, are linearly independent and satisfy:
(7) x:iF:xj%»lr j:0’°”7m——17 meZO

2 =0, 2= —g(m — 7 + 1z, , Jj=1-,m.
Hence w,exp EE = x,,
J

T, exp EF = Z %;'—wj
oexp £E) = 5 (=1 [Lom = § + ) )Ewses

Hence z(exp £E)(exp £ 'F)(exp EE) = Sm,a.E"x, where

It follows that a, = 0 if » # m and a, = 1/m! Hence
x,(exp EE)(exp £ F)(exp EE) = (1/m)E™ .
A similar calculation shows that
z,(exp EF)(exp E'F)(exp EE) = (—1)"mlE™x, .
Hence

2 [8] p. 446. A simpler proof will be given in a forthcoming book on Lie algebras by
the author.
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(8) rw,(£) = &

where m is a nonnegative integer. This implies that zw;,(&)w; (&) =
2@, (ENw,(§) if xe X, In view of (6), ®;(§) and w,(¢') commute also in
their action on the f;. It follows that the group H generated by the
w,(€) is abelian,

Now let p be a semi-simple automorphism of the semi-simple Lie
algebra £ and let ¥,(p) be the set of p-fixed elements. We have 2,(0) =
K@ € where R is the derived algebra and € is the center. Then & is
semi-simple and we can apply the above considerations. Then let  be
a Cartan subalgebra of &, e, f:, h; canonical generators of the type
indicated such that the %; form a basis for . Let H be the abelian
group of automorphisms of ¢ generated by the w.(&), H its restriction
to & Then if g, ,, <+, 1, are arbitrary nonzero elements of @, the
automorphism (g, <++, 1) of ® such that e, — e, fi > ¢i*f; belongs
to H. It is known that & has a basis consisting of the h;, certain
products [ --- [e; ;] « -+ ¢; ] and certain products [ -+« [f; fi,] -+ /i ]. The
first of these is a characteristic vector of (g, -+, £t,) belonging to
P, + t;, and the second belongs to the root (u;p;, -+ ;)7 It
follows that the #’s can be chosen so that $ is the characteristic
space of the root 1 of &(zty, -+, tt)). It is clear that any £ € H commutes
with 0 and so it respects the decomposition: L = (o) D &°, ¢ =
{v — xr}. It follows by the standard specialization argument that there
exists an automorphism 7 = p¢, ¢ € H, such that () =SB E. Since
2,(n) is abelian we see that 7 is regular.

Let H(7) be the algebraic component of 1 in the group of automor-
phisms of € commuting with 7. Since H is abelian, w;(§) commutes
with 7. It follows from (8) that for fixed ¢, £ = 0 in @, the w,(&) form
an irreducible algebraic group. Hence w,(&) € Hy(») and H & H,(7). Then
¢e Hn) and p = 7" |

We have therefore proved

THEOREM 5. If p is a semi-simple automorphism of a semi-simple
Lie algebra them p has the form ¢ where 7 is regular and &€ Hy(n)
the component of 1 of the group of automorphisms commuting with 7.

4. Determination of the indices. Let £ be semisimple, $ a Cartan
subalgebra, e;, fi, h;, 1 =1,2, -++, 1 canonical generators such that the
h; form a basis for $ and (3) hold. We define the group of automor-
phisms of the Cartan matrixz (A;;) to be the subgroup of the symmetric
group S, on 1,2, ... [ of the permutations s such that A, .; = 4;,,
t,7=1,2,++--,1. If s is in this group there is a unique automorphism
o of € such that e7 = e,,, /¥ = fuwy. The set of these automorphisms
is a finite group F isomorphic to the group of automorphisms of the
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Cartan matrix. It is known that G = G,F = FG,.*
Let o€ F, s the corresponding automorphism of the Cartan matrix.

It p,,2=1,2,...,1, are arbitrary nonzero elements of @ then there
exists an automorphism ¢ of € such that

(9) eg:fuiei’ ff:y;‘lfi,

The argument used in proving Theorem 5 shows that £ € G,, We choose
#; so that

(10) ooy = i

for every %, and for every positive root & = Yk,x;, £; nonnegative integral,
(11) (tfrpge e oo i)™ # 1,

m the order of s. Clearly such a choice of the £, can be made. Also
it is evident that ¢ is semi-simple and 2(¢t™) = . We have d¢ = ¢o
and o™ =1 so that ¢ is semi-simple. Hence 7 = o¢ is semi-simple and
() is the set of »-fixed points. If ze (), ™ = 2" =2 so xe .
Since 26 = 2 for x€ D we have x° = 26" = g7 = x. Conversely, if x€
and 2° = x then ¢ %,(). Hence ¥Y.(7) is the subspace of $ of o-fixed
elements. We have h{ = h,, for the basis (h, h,, +++, b)) of H. Let

(12) = (o er i )G o ee ) oo (g vee )

be the decomposition of the permutation s into disjoint cycles of length
=1(m, +my+ -+ +m, =1). Then it is clear that the elements

(13) 0=l e hy e 0y = R s Ry,

constitute a basis for the subspace of © of o-fixed points. Hence
dim €,(n) = p, the number of cycles in the decomposition of s. Since
teG,n and o are in the same component of the automorphism group.
Since &,(7) S 9, &(n) is abelian and so 7 is a regular element in the
same component as ¢. We can therefore state

THEOREM 6. Let G, = 0,G, be a component of the group of auto-
morphisms where o;€ F and corresponds to the automorphism s; of the
Cartan matrix. Then the index of G; is the number of cycles in the
decomposition of s; into disjoint cycles of lengths =1.

For G, we may take g, = 1 and we obtain that the index of G, is
l, the dimensionality of the Cartan subalgebra ©. On the other hand.
it is clear that if ¢, # 1 then the index of ¢.G, is positive but is less
than I. Hence ¢,G, # G, and the decomposition G = F'G, is semidirect.

3 The arguments of [S] can be used to prove this. A detailed discussion will be given
in Chapter IX of the author’s forthcoming book.
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COROLLARY. The index of G, is | and the index of any G; + G, 18
positive and less than l. The decomposition G = F'G, is semi-direct.

Our analysis shows also that any Cartan subalgebra is the space
2,(m) for a regular automorphism belonging to G,. Hence Theorem 4
proves again the conjugacy theorem for Cartain subalgebras by means
of an element of G,. Theorem 4 can be considered as a natural gener-
lization of the classical conjugacy theorem.

Let 7 = ¢¢ be the automorphism which we constructed for the proof
of Theorem 6. If v,v,, --., vy, are nonzero elements of @ such that v, =
vi,t=1,2,+++,1, then it is clear that the automorphism ¢(v,, v,, +++, V)
such that

(14) e = ye, fiorem = Y,

commutes with 7. The set of these automorphisms is an irreducible
algebraic group of p dimensions where p is the index of 7G,. It follows
that this group coincides with Hy(») the component of 1 in the group
of automorphisms commuting with 7. Theorem 4 therefore implies that
if p is any semi-simple automorphism then p has the form t(¢;&)r™
where 7€ G, g;€ F and & is of the form ¢(v, +--,v,) as in (14). This
is Gantmacher’s “canonical form” for the semi-simple automorphism p.
It is clear from the definition of ¢, that 7t = . In fact, if we choose
the basis for $ as before, then hjt = h,,; where s; is the permutation
of 1,2, .+, associated with o;. It is clear that the restriction of o;
to O is periodic and the subspace of ¢,-fixed points of $ has l;-dimensions
where [; is the index of the component Gj¢. Since h* =h for every
he $ these results hold also for ¢, Since p = 7(c;£)r™* we have the
following

THEOREM 7. If p is a semi-stmple automorphism of a semi-simple
Lie algebra, then there exists a Cartan subalgebra © such that $° = 9,
the restriction of p to O is periodic and the subspace of p-fixed points
of © has dimensionality equal to the index of the component pG,.

We look next at the indices of the components G; # G, and for the
sake of simplicity we confine our attention to the simple algebras. Outer
automorphisms (that is, automorphisms not in G,) exist in the following
cases: A,l>1, D,l =4 and E, and only in these cases, The group
of automorphisms of the Cartan matrix can be identified with the group
of automorphisms of the associated Dynkin diagram. For A, the auto-
morphism =1 of the Dynkin diagram (suitably labelled) is ¢ —>1 + 1 — 4.
If 1 is even the cycle decomposition is (11)(2,7 — 1) --- (1/2,1/2 + 1) and
for odd ! itis (12,1 —1)--- (I —1)/2,(I —1)/2 +2)(l —1)/2 +1). In
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both cases, if G, # G, then index G, = [(l + 1)/2]. For D, l >4,G =
G, U Gy, G, # G, and the permutation associated with G, is 71— if
1=21—-2,1-1—1,1 —1—1. The cycle decomposition is (1) -+ (I — 2)
(I —1,7). Hence index G, =1 — 1. For D, the group of automorphisms
of the Dynkin diagram is the symmetric group on 1, 3, 4 if «,, «,, &, are
the end points of the diagram. If the permutation associated with G;
is of order two then index G, = 3. If the permutation is of order three
then index G, = 2. For a suitable ordering of the vertices the auto-
morphism #1 of the Dynkin diagram of E; is (15) (24) (3) (6). Hence
index G, = 4.

THEOREM 8. For A,,l>1,G =G, U G, and index G, = [(l + 1)/2].
For D,,1 >4,G=G,U G, and index G,=1—1. For D, G|G, is the
symmetric group S, and index G, = 2 if the coset of G; is of order 3
and index G; = 8 if the coset of G, is of order 2. For E;,G =G, U G,
and index G, = 4.

5. Application to fixed points. In the applications to fixed points
we can for the most part relax the assumption on the base field @ and
suppose only that @ is of characteristic 0. If » is an automorphism in
€ over @ and P is an extension field of @ then % has a unique extension
to an automorphism 7 of £, and the space of 7-fixed points of £, has
the form F(%), where F(») is the space of 7-fixed points of 2. This
remark reduces most considerations of fixed points to the algebraically
closed case.

The following result is due to Borel and Mostow ([1] p 398) for
semi-simple automorphisms.

THEOREM 9. If & is a monsolvable Lie algebra over a field of
characteristic 0 then any automorphism 79 of & has a fixed point.

Proof. It suffices to assume the base field is algebraically closed.
Let R be the radical of €. Then 7 induces an automorphism 7 in the
semi-simple Lie algebra € = £/R. By the Corollary to Th. 6, dim ¥,(7) = 1.
This means that 1 is a characteristic root of 7. Hence 1 is a charac-
teristic root of » and there exists a nonzero fixed point.

It is convenient at this point to introduce another type of index
m(G;) of a component G, of the automorphism group in the algebraically
closed case. We set m(G;) =minimum of dim (%) for » e G; where §(7)
is the space of 7-fixed points. If () is a matrix of 7 then dim F(n) =
n -rank (o) — 1), n = dim ¥. Hence m(G;) = k; means that for every
7€ G, every minor of order » — k; +1 of (a) — 1 vanishes but there
exists an 7€ G, such that (@) — 1 has a nonvanishing minor of order
n —k,. If is clear from this that the elements 7 of G, such that
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dim () = k; = m(G;) form an open set in G;,. Hence this set contains
a regular element 7. If ¥ is semisimple it follows that such an 7 is
semi-simple. Then F(7) = YLU(®) and consequently m(G,;) = w(G;). We
can state this result in the following way.

THEOREM 10. Let & be a semi-simple Lie algebra over an algebraically
closed field of characteristic 0 and let 1; be the index of the component
G, of the group of automorphisms of 8. Let neG; and let F(7) be the
space of fixed points under 7. Then dim F() = 1; and there exists
ne G, such that dim F(n) = I,.

This result can also be applied to the case of an arbitrafy base field
of charactetistic 0. A given automorphism 7 has its extension to an
automorphism 7 of £,, 2 the algebraic closure of @. Also 2, is semi-
simple if £, is semi-simple. The result just proved gives a lower bound
for dim F(») once the component of 7 in the group of automorphisms
of 2, 1is known. Even without this information we can say that dim F()=m
where m is the minimum of the indices of the components G; of the
group of automorphisms of %,.

Again let  be semi-simple over any field of characteristic 0 and let
7 be semi-simple in the sense that its minimum polymonial is a product
of distinet prime factors. Since the base field is perfect this property
is preserved under field extension. It follows from this that 2,(n) = J(%)
is reductive. This implies that any Cartan subalgebra 9, of 2,(7) is
abelian and reductive in €. Moreover, any reductive abelian subalgebra
of £,(7) can be imbedded in a Cartan subalgebra and any two Cartan
subalgebras of £,(») have the same dimensionality. It follows by a field
extension argument and Th. 7 that the dimensionality of ©, is not less
than the index of the component of 7 in the group of automorphisms of
R, 2 the algebraic closure of the base field.

The result just indicated holds also for arbitrary £ and semi-simple
7 by virtue of a result of Mostow’s that there exists a Levi-decomposition
=8 + RN where N is the radical and & is a semi-simple subalgebra
invariant under 7 ([7]). It is known that if a € & and adg a is semi-
simple then ad.a is semi-simple. We can therefore state the following
extension of a theorem of de Siebenthal-Borel-Mostow ([1] p. 498).

THEOREM 11. Let 7 be a semi-simple automorphism of a Lie algebra
Q over a field of characteristic 0. Let R be the radical, T = /R and
let m be the minimal index of the components of the group of auto-
morphism of ¥,, 2 the algebraic closure of the base field. Then m =1
and there exists an abelian reductive subalgebra of m dimensions whose
elements are fixed under 7).
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