ON CERTAIN FINITE RINGS AND RING-LOGICS

Adil Yaqub

Introduction. Boolean rings $(B, \times, +)$ and Boolean logics (=Boolean algebras) $(B, \cap, *)$ though historically and conceptionally different, are equationally interdefinable in a familiar way [6]. With this equational interdefinability as motivation, Foster introduced and studied the theory of ring-logics. In this theory, a ring (or an algebra) R is studied modulo K, where K is an arbitrary transformation group in R. The Boolean theory results from the special choice, for K, of the "Boolean group", generated by $x^* = 1 - x$ (order 2, $x^{**} = x$). More generally, in a commutative ring $(R, \times, +)$ with identity 1, the natural group N, generated by $x^{2} = 1 + x$ (with $x^{2} = x - 1$ as inverse) proved to be of particular Thus, specialized to N, a commutative ring with identity interest. $(R, \times, +)$ is called a *ring-logic*, mod N if (1) the + of the ring is equationally definable in terms of its N-logic $(R, \times, \hat{}, \check{})$, and (2) the + of the ring is *fixed* by its *N*-logic. Several classes of ring-logics (modulo suitably chosen groups) are known [1; 2; 7], and the object of this manuscript is to extend further the class of ring-logics. Indeed, we shall prove the following:

THEOREM 1. Let R be any finite commutative ring with zero radical. Then, R is a ring-logic, mod N.

1. The finite field case. Let $(R, \times, +)$ be a commutative ring with identity 1. We denote the generator of the natural group by $x^{\uparrow} = 1 + x$, with inverse $x^{\checkmark} = x - 1$. Following [1], we define $a \times b = (a^{\uparrow} \times b^{\uparrow})^{\checkmark}$. It is readily verified that $ax_b = a + b + ab$.

Let $(F_{p^k}, \times, +)$ be a finite field with exactly p^k elements (p prime). We now have the following:

THEOREM 2. $(F_{p}k, \times, +)$ is a ring logic (mod N). Indeed, the ring (field) + is given by the following N-logical formula:

(1.1)
$$x + y = \{(x(yx^{p^{k-2}})^{\hat{}})\} \times \{y((x^{p^{k-1}})^{\hat{}})^2\}.$$

Proof. It is well known that in the Galois field F_{p^k} , we have

(1.2)
$$a^{p^{k-1}} = 1, a \in F_{n^k}, a \neq 0$$
.

we now distinguish two cases:

Received August 29, 1961.

Case 1. Suppose $x \neq 0$. Then, by (1.2), the right-side of (1.1) reduces to $\{x(1 + yx^{p^{k-2}})\} \times 0 = x + yx^{p^{k-1}} = x + y$, since $((x^{p^{k-1}})^{\sim})^2 = (1^{\sim})^2 = 0$; $a \times 0 = a$. This proves (1.1).

Case 2. Suppose x = 0. Then, $x^{\hat{}} = 1 + x = 1$. Hence, the right side of (1.1) reduces to $0 \times \{y((0^{\hat{}})^2\} = y = 0 + y = x + y, \text{ since } ((x^{p^{k-1}})^{\hat{}})^2 = (0^{\hat{}})^2 = 1; 0 \times a = a$. Again, (1.1) is verified. Hence, $(F_{p^k}, \times, +)$ is equationally definable in terms of its N-logic. Next, we show that $(F_pk, \times, +)$ is fixed by its N-logic. Suppose then that there exists another ring $(F_pk, \times, +')$, with the same class of elements F_pk and the same " \times " as $(F_pk, \times, +)$ and which has the same logic as $(F_pk, \times, +)$. To prove that +' = +. Again, we distinguish two cases.

Case 1. Suppose $x \neq 0$. Then, using (1.2), we have $x + y = x(1 + yx^{y^{k-2}}) = x(yx^{y^{k-2}})^{\hat{}} = x(1 + yx^{y^{k-2}}) = x + y$, since, by hypothesis, $x^{\hat{}} = 1 + x = 1 + x$.

Case 2. Suppose x = 0. Then, x + y = 0 + y = y = 0 + y = x + y. Therefore, +' = +, and the theorem is proved.

COROLLARY. $(F_p, \times, +)$, the ring (field) of residues (mod p), p prime, is a ring-logic (mod N) the + being given by setting k = 1 in (1.1):

(1.3)
$$x + y = \{(x(yx^{p-2})^{\wedge})\} \times \{y((x^{p-1})^{\vee})^2\}.$$

2. The general case. In attempting to extend Theorem 2 to any finite commutative ring with zero radical, the following concept of independence, introduced by Foster [3], is needed.

DEFINITION. Let $\overline{A} = \{A_1, A_2, \dots, A_n\}$ be a finite set of algebras of the same species Sp. We say that the algebras A_1, A_2, \dots, A_n satisfy the *Chinese residue condition*, or are *independent*, if, corresponding to each set $\{\varphi_i\}$ of expressions of species Sp $(i = 1, \dots, n)$, there exists at least on expression Ψ such that $\Psi = \varphi_i \pmod{A_i}$ $(i = 1, \dots, n)$. By an *expression* we mean some composition of one or more indeterminatesymbols ξ, \dots , in terms of the primitive operations of A_1, A_2, \dots, A_n ; $\Psi = \varphi \pmod{A}$, also written $\Psi = \varphi(A)$, means that this is an identity of the Algebra A.

We shall now extend the concept of ring-logic to the direct sum of certain ring-logics. We shall denote the direct sum of the rings A_1 and A_2 by $A_1 \bigoplus A_2$. The direct power A^m will denote $A \bigoplus A \bigoplus \cdots \bigoplus A$ (*m* summands).

THEOREM 3. Let $(A_1, \times, +), \dots, (A_t, \times, +)$ be a finite set of ringlogics (mod N), and let the N-logics $(A_1, \times, \hat{}, \check{}), \dots, (A_t, \times, \hat{}, \check{})$ be independent. Then $A = A_1^{m_1} \bigoplus \dots \bigoplus A_t^{m_t}$ is also a ring-logic (mod N).

Proof. Since A_i is a ring-logic (mod N), there exist an N-logical expression φ_i such that, for every $x_i, y_i \in A_i$ $(i = 1, \dots, t)$,

$$x_i+y_i=arphi_i=arphi_i(x_i,y_i; imes,\hat{\ },\check{\ })$$
 ,

Since the N-logics are independent, there exists an expression X such that

$$X = egin{cases} arphi_1(\mathrm{mod}\;A_1) \ ldots \ arphi_t(\mathrm{mod}\;A_t) \ arphi_t(\mathrm{mod}\;A$$

Therefore, for every $x_i, y_i \in A_i \ (i = 1, \dots, t)$,

$$x_i+y_i=arphi_i=X=X(x_i,\,y_i;\, imes$$
 , $\hat{}$, $\check{}$, $)$.

Hence, the N-logical expression X represents the + of each A_i . Since "+" and "×" are component-wise in A, therefore, for all $x, y \in A$,

$$x + y = X(x, y; \times, \hat{,}).$$

Hence, A is equationally definable in terms of its N-logic. Next, we show that A is *fixed* by its N-logic. Suppose there exists a+' such that $(A, \times, +')$ is a ring, with the same class of elements A and the same " \times " as the ring $(A, \times, +)$, and which has the same logic $(A, \times, \uparrow, \check{})$ as the ring $(A, \times, +)$. To prove that +' = +.

Now, let $a = (a_{11}, \dots, a_{1m_1}, a_{21}, \dots, a_{2m_2}, \dots, a_{t1}, \dots, a_{tm_t}) \in A$. A new +' in A defines and is defined by new $+'_1$ in $A_1, +'_2$, in $A_2, \dots, +'_t$ in A_t , such that $(A_i, \times, +'_i)$ is a ring $(i = 1, \dots, t)$; i.e., for $a, b \in A$,

$$(2.1) a + b = (a_{11}, \dots, a_{21}, \dots, a_{t_1}, \dots) + (b_{11}, \dots, b_{21}, \dots, b_{t_1}, \dots) \\ = (a_{11} + b_{11}, \dots, a_{21} + b_{21}, \dots, a_{t_1} + b_{t_1}, \dots) .$$

Furthermore, the assumption that $(A, \times, +')$ has the same logic as $(A, \times, +)$ is equivalent to the assumption that $(A_1, \times, +'_1)$ has the same logic as $(A_1, \times, +)$, and similarly for $(A_i, \times, +'_i)$ and $(A_i, \times, +)$ $(i = 2, \dots, t)$. Since $(A_1, , \times +)$ is a ring-logic, and hence with its + fixed, it follows that $+'_1 = +$; similarly $+'_2 = +, \dots, +'_i = +$. Hence, using (2.1), +' = +, and the proof is complete.

A careful examination of the proof of Theorem 3 shows that the independence of the logics was *not* used in the "fixed" part of the proof. Hence, we have the following

COROLLARY. Let $(A_1, \times, +), \dots, (A_t, \times, +)$ be a finite set of ring-

ADIL YAQUB

logics (mod N). Then, $A_1^{m_1} \oplus \cdots \oplus A_t^{m_t}$ is fixed by its N-logic.

We now examine the independence of the logics $(F_{p_i}^{m_i}k_i, \times, +)$ $(i = 1, \dots, t)$.

THEOREM 4. Let p_1, \dots, p_t be distinct primes, and let $F_{p_i}^{m_i}k_i$ be the m_i direct power of the Galois field $F_{p_i}k_i$ $(i = 1, \dots, t)$. Then the logics $(F_{p_i}^{m_i}k_i, \times, \hat{}, \tilde{})$ $(i = 1, \dots, t)$ are independent.

Proof. Let $n_i = p_i^{k_i}$, and let $P(i) = \prod_{j=1}^{t} n_j$, $j \neq i$. Let $F_i = F_{p_i} k_i$ $(i = 1, \dots, t)$. Clearly, P(i) and n_i are relatively prime. Hence, there exist integers $r_i > 0$, $s_i > 0$ such that $r_i P(i) - s_i n_i = 1$. Define $\varepsilon(x)$ and $\delta(x)$ as follows:

$$arepsilon(x) = x^{(n_1-1)(n_2-1)\cdots(n_t-1)}; \, \delta(x) = arepsilon(x) imes ((arepsilon(x))^{\sim})^2$$

It is easily seen that $\delta(x) = 1, x \in F_i^{m_i} (i = 1, \dots, t)$. Let $x^{\uparrow k} = (\dots ((x^{\uparrow})^{\uparrow})^{\uparrow} \dots)^{\uparrow}, k$ iterations. Then one easily verifies that for $i \neq j$,

$$w_i = w_i(x) = (\delta(x))^{\hat{s}_i n_i} = egin{cases} 1 \pmod{F_i^{m_i}} \ 0 \pmod{F_j^{m_j}} \end{cases}$$

•

Now, to prove the independence of the logics $(F_i^{m_i}, \times, \hat{}, \check{})$ $(i = 1, \dots, t)$, let $\{\delta_i^i\}$ be any set of t expressions of species $\times, \hat{}, \check{}$; i.e., a primitive composition of indeterminate-symbols in terms of the operations $\times, \hat{}, \check{}$. Let $X = \delta_1' w_1 \times \delta_2' w_2 \times \dots \times \delta_i' w_i$. Then it is easily seen that $X = \delta_i'$ $(\mod F^{im_i})$ $(i = 1, \dots, t)$, since $a \times 0 = a = 0 \times a$, and the theorem is proved.

We are now in a position to prove the following theorem (see introduction).

THEOREM 5. Any finite commutative ring R with zero radical is a ring-logic (mod N).

Proof. First, if R consists of one element, then $R = \{0\}$. Clearly, R is a ring-logic (mod N) in this case, since $a + b = a \times b$, for example. Hence, assume that R has more than one element. It is well known (see [5]) that any finite commutative ring R with zero radical and with more than one element is isomorphic to the complete direct sum of a finite number of finite fields $F_{p_1}k_1, \dots, F_{p_t}k_t$: i.e., $R \cong F_{p_1}k_1 \oplus \dots \oplus F_{p_t}k_t$. Now, by Theorem 2, each $(F_{p_1}k_i, \times, +)$ is a ring-logic (mod N). Hence, by the corollary to Theorem 3, $F_{p_1}k_1 \oplus \dots \oplus F_{p_t}k_t$ is fixed by its N-logic. Therefore, by the above isomorphism, R, too, is fixed by its N-logic, and there only remains to show that the + of R is equationally definable in terms of its N-logic. To this end, we distinguish two cases.

788

Case 1. Suppose p_1, \dots, p_t are all distinct. By Theorem 2, $(F_{p_l}k_i, \times, +)$ is a ring-logic (mod N) $(i = 1, \dots, t)$. By Theorem 4 (with $m_1 = \dots = m_t = 1$), the N-logics $(F_{p_l}k_i, \times, \hat{}, \check{})$ are independent $(i = 1, \dots, t)$. Therefore, by Theorem 3 (with $m_1 = \dots = m_t = 1$), the direct sum $F_{p_l}k_1 \bigoplus \dots \bigoplus F_{p_l}k_t$ (and hence R, by the above isomorphism) is a ring-logic (mod N). Hence, in particular, the + of R is equationally definable in terms of its N-logic.

Case 2. Suppose p_1, \dots, p_t are not all distinct. Let q_1, \dots, q_r be the distinct primes in $\{p_1, \dots, p_t\}$. Since the Galois fields F_pk_i and F_pk_j are both subfields of $F_pk_ik_j$, it is easily seen that $F_{p_1}k_1 \oplus \dots \oplus$ $F_{p_t}k_t$ is a subring of a direct sum of direct powers of $F_{q_t}h_i$ $(i = 1, \dots, r)$; i.e., $F_{p_1}k_1 \oplus \dots \oplus F_{p_t}k_t$ is a subring of $F_{q_1}^{m_1}h_1 \oplus \dots \oplus F_{q_r}^{m_r}h_r$, for some positive integers $h_1, \dots, h_r, m_1, \dots, m_r$. Now, the rest of the proof is similar to that of Case 1. Thus, by Theorem 2, $(F_{q_t}h_i, \times, +)$ is a ringlogic (mod N) $(i = 1, \dots, r)$. By Theorem 4, the N-logics $(F_{q_i}h_i, \times, \uparrow, \check{})$ are idependent $(i = 1, \dots, r)$. Hence, by Theorem 3, $F_{q_1}^{m_1}h_1 \oplus \dots \oplus F_{q_r}^{m_r}h_r$ is a ring-logic (mod N). Therefore, in particular, the + of $F_{q_1}^{m_1}h_1 \oplus \dots \oplus$ $F_{q_r}^{m_r}h_r$ is equationally definable in terms of its N-logic. Hence, afortiori, the + of the subring $F_{p_1}k_1 \oplus \dots \oplus F_{p_t}k_t$ (and therefore the + of R, by the above isomorphism) is equationally definable in terms of the Nlogic of R. Therefore, R is a ring-logic (mod N), and the theorem is proved.

3. *p*-rings and p^k -rings. We shall now make an attempt to generalize Theorem 3, and apply this generalization to *p*-rings and p^k -rings. We first observe that the proof of Theorem 3 does not depend on the cardinality of the powers m_i . Furthermore, the proof still remains valid if one considers a subdirect sum of subdirect powers of A_i instead of the complete direct sum of direct powers of A_i $(i = 1, \dots, t)$. In view of this, Theorem 3 can now be cast in the following more general form.

THEOREM 3'. Let $(A_1, \times, +), \dots, (A_i, \times, +)$ be a finite set of ringlogics (mod N), and let the N-logics $(A_1, \times, \hat{}, \check{}), \dots, (A_i, \times, \hat{}, \check{})$ be independent. Let A be any subdirect sum with identity of (not necessarily finite) subdirect powers of A_i ($i = 1, \dots, t$). Then A is a ring-logic (mod N).

Now, it is well known (see [2; 4]) that every *p*-ring (*p* prime) is isomorphic to a subdirect power of F_p , and every p^k -ring (*p* prime) is isomorphic to a subdirect power of F_{p^k} . Hence, by letting t = 1 and $A_1 = F_p$ (respectively, F_{p^k}) in Theorem 3', we obtain the following corollary (compare with [1; 2]).

ADIL YAQUB

COROLLARY. Any p-ring with identity, as well as any p^k -ring with identity, is a ring-logic (mod N).

In conclusion, I wish to express my gratitude to the referee for his valuable suggestions.

References

1. A. L. Foster, p-rings and ring-logics, University California Publ., 1 (1951), 385-396.

2. ____, p^k-rings and ring-logics, Ann. Scu. Norm. Pisa, 5 (1951), 279-300.

3. _____, Unique subdirect factorization within certain classes of universal algebras, Math. Z., **62** (1955), 171-188.

4. N. H. McCoy and D. Montgomery, A representation of generalized Boolean riugs, Duke Math. J., 3 (1937), 455-459.

5. N. H. McCoy, Rings and Ideals, Carus Math Monog., 8 (1947).

6. M. H. Stone, The theory of representations of Boolean algebras, Trans. Amer. Math. Soc., **40** (1936), 37-111.

7. A. Yaqub, On the theory of ring-logics, Can. J. Math., 8 (1956), 323-328.

UNIVERSITY OF CALIFORNIA, SANTA BARBARA