ON CERTAIN FINITE RINGS AND RING-LOGICS

Adil Yaqub

Introduction. Boolean rings $(B, \times,+)$ and Boolean logics $(=$ Boolean algebras) ($B, \cap,^{*}$) though historically and conceptionally different, are equationally interdefinable in a familiar way [6]. With this equational interdefinability as motivation, Foster introduced and studied the theory of ring-logics. In this theory, a ring (or an algebra) R is studied modulo K, where K is an arbitrary transformation group in R. The Boolean theory results from the special choice, for K, of the "Boolean group", generated by $x^{*}=1-x$ (order $2, x^{* *}=x$). More generally, in a commutative ring $(R, \times,+$) with identity 1 , the natural group N, generated by $x^{\wedge}=1+x$ (with $x^{\wedge}=x-1$ as inverse) proved to be of particular interest. Thus, specialized to N, a commutative ring with identity $(R, \times,+)$ is called a ring-logic, $\bmod N$ if (1) the + of the ring is equationally definable in terms of its N-logic ($R, \times,{ }^{\wedge},{ }^{\vee}$), and (2) the + of the ring is fixed by its N-logic. Several classes of ring-logics (modulo suitably chosen groups) are known [1; 2; 7], and the object of this manuscript is to extend further the class of ring-logics. Indeed, we shall prove the following:

Theorem 1. Let R be any finite commutative ring with zero radical. Then, R is a ring-logic, mod N.

1. The finite field case. Let $(R, \times,+)$ be a commutative ring with identity 1. We denote the generator of the natural group by $x^{\wedge}=1+$ x, with inverse $x^{\wedge}=x-1$. Following [1], we define $a \times{ }_{\wedge} b=\left(a^{\wedge} \times b^{\wedge}\right)^{\wedge}$. It is readily verified that $a x_{\wedge} b=a+b+a b$.

Let $\left(F_{p^{k}}, \times,+\right.$) be a finite field with exactly p^{k} elements (p prime). We now have the following:

Theorem 2. $\left(F_{p} k, \times,+\right)$ is a ring logic $(\bmod N)$. Indeed, the ring (field) + is given by the following N-logical formula:

$$
\begin{equation*}
x+y=\left\{\left(x\left(y x^{p^{k}-2}\right)^{\wedge}\right)\right\} \times_{\wedge}\left\{y\left(\left(x^{p^{k}-1}\right)^{\vee}\right)^{2}\right\} . \tag{1.1}
\end{equation*}
$$

Proof. It is well known that in the Galois field $F_{p^{k}}$, we have

$$
\begin{equation*}
a^{p^{k}-1}=1, a \in F_{p k}, a \neq 0 . \tag{1.2}
\end{equation*}
$$

we now distinguish two cases:
Received August 29, 1961.

Case 1. Suppose $x \neq 0$. Then, by (1.2), the right-side of (1.1) reduces to $\left\{x\left(1+y x^{p^{k}-2}\right)\right\} \times{ }_{\wedge} 0=x+y x^{p^{k-1}}=x+y$, since $\left(\left(x^{p^{k-1}}\right)^{\vee}\right)^{2}=$ $\left(1^{\vee}\right)^{2}=0 ; a \times{ }_{\wedge} 0=a$. This proves (1.1).

Case 2. Suppose $x=0$. Then, $x^{\wedge}=1+x=1$. 'Hence, the right side of (1.1) reduces to $0 \times, ~\left\{y\left(\left(0^{`}\right)^{2}\right\}=y=0+y=x+y\right.$, since $\left(\left(x^{p^{k-1}}\right)^{\vee}\right)^{2}=$ $\left(0^{\vee}\right)^{2}=1 ; ~ 0 \times{ }_{\wedge} a=a$. Again, (1.1) is verified. Hence, $\left(F_{p^{k}}, \times,+\right)$ is equationally definable in terms of its N-logic. Next, we show that $\left(F_{p} k, \times,+\right)$ is fixed by its N-logic. Suppose then that there exists another ring ($F_{p} k, \times,+^{\prime}$), with the same class of elements $F_{p} k$ and the same " \times " as $\left(F_{p} k, \times,+\right)$ and which has the same logic as $\left(F_{p} k, \times,+\right)$. To prove that $+^{\prime}=+$. Again, we distinguish two cases.

Case 1. Suppose $x \neq 0$. Then, using (1.2), we have $x+^{\prime} y=x\left(1+^{\prime}\right.$ $\left.y x^{p^{k-2}}\right)=x\left(y x^{p^{k-2}}\right)^{\wedge}=x\left(1+y x^{p^{k}-2}\right)=x+y$, since, by hypothesis, $x^{\wedge}=$ $1+x=1+^{\prime} x$.

Case 2. Suppose $x=0$. Then, $x+^{\prime} y=0+^{\prime} y=y=0+y=x+y$. Therefore, $+^{\prime}=+$, and the theorem is proved.

Corollary. $\left(F_{p}, \times,+\right)$, the ring $($ field $)$ of residues $(\bmod p), p$ prime, is a ring-logic $(\bmod N)$ the + being given by setting $k=1$ in (1.1):

$$
\begin{equation*}
x+y=\left\{\left(x\left(y x^{p-2}\right)^{\wedge}\right)\right\} \times \wedge_{\wedge}\left\{y\left(\left(x^{p-1}\right)^{\vee}\right)^{2}\right\} . \tag{1.3}
\end{equation*}
$$

2. The general case. In attempting to extend Theorem 2 to any finite commutative ring with zero radical, the following concept of independence, introduced by Foster [3], is needed.

Definition. Let $\bar{A}=\left\{A_{1}, A_{2}, \cdots, A_{n}\right\}$ be a finite set of algebras of the same species $S p$. We say that the algebras $A_{1}, A_{2}, \cdots, A_{n}$ satisfy the Chinese residue condition, or are independent, if, corresponding to each set $\left\{\varphi_{i}\right\}$ of expressions of species $S p(i=1, \cdots, n)$, there exists at least on expression Ψ such that $\Psi=\varphi_{i}\left(\bmod A_{i}\right)(i=1, \cdots, n)$. By an expression we mean some composition of one or more indeterminatesymbols ξ, \cdots, in terms of the primitive operations of $A_{1}, A_{2}, \cdots, A_{n}$; $\Psi=\varphi(\bmod A)$, also written $\Psi=\varphi(A)$, means that this is an identity of the Algebra A.

We shall now extend the concept of ring-logic to the direct sum of certain ring-logics. We shall denote the direct sum of the rings A_{1} and A_{2} by $A_{1} \oplus A_{2}$. The direct power A^{m} will denote $A \oplus A \oplus \cdots \oplus A(m$ summands).

Theorem 3. Let $\left(A_{1}, \times,+\right), \cdots,\left(A_{t}, \times,+\right)$ be a finite set of ringlogics $(\bmod N)$, and let the N-logics $\left(A_{1}, \times,^{\wedge}, `\right), \cdots,\left(A_{t}, \times,^{\wedge}, `\right)$ be independent. Then $A=A_{1}^{m_{1}} \oplus \cdots \oplus A_{t}^{m_{t}}$ is also a ring-logic $(\bmod N)$.

Proof. Since A_{i} is a ring-logic $(\bmod N)$, there exist an N-logical expression φ_{i} such that, for every $x_{i}, y_{i} \in A_{i}(i=1, \cdots, t)$,

$$
x_{i}+y_{i}=\varphi_{i}=\varphi_{i}\left(x_{i}, y_{i} ; \times,^{\wedge}, `\right)
$$

Since the N-logics are independent, there exists an expression X such that

$$
X=\left\{\begin{array}{l}
\varphi_{1}\left(\bmod A_{1}\right) \\
\dot{\varphi_{t}}\left(\bmod A_{t}\right) .
\end{array}\right.
$$

Therefore, for every $x_{i}, y_{i} \in A_{i}(i=1, \cdots, t)$,

$$
x_{i}+y_{i}=\varphi_{i}=X=X\left(x_{i}, y_{i} ; \times,^{\wedge},{ }^{\imath},\right) .
$$

Hence, the N-logical expression X represents the + of each A_{i}. Since "+" and " \times " are component-wise in A, therefore, for all $x, y \in A$,

$$
x+y=X\left(x, y ; \times,^{\wedge}, `\right)
$$

Hence, A is equationally definable in terms of its N-logic. Next, we show that A is fixed by its N-logic. Suppose there exists $a+{ }^{\prime}$ such that $\left(A, \times,+^{\prime}\right)$ is a ring, with the same class of elements A and the same " \times " as the ring $(A, \times,+)$, and which has the same logic $\left(A, \times,^{\wedge},{ }^{`}\right)$ as the ring $(A, \times,+)$. To prove that $+^{\prime}=+$.

Now, let $a=\left(a_{11}, \cdots, a_{1 m_{1}}, a_{21}, \cdots, a_{2 m_{2}}, \cdots, a_{t 1}, \cdots, a_{t m_{t}}\right) \in A$. A new $+^{\prime}$ in A defines and is defined by new $+_{1}^{\prime}$ in $A_{1},{ }_{2}{ }_{2}$, in $A_{2}, \cdots,{ }_{t}^{\prime}$ in A_{t}, such that $\left(A_{i}, \times,+_{i}^{\prime}\right)$ is a ring $(i=1, \cdots, t)$; i.e., for $a, b \in A$,

$$
\begin{align*}
a+^{\prime} b & =\left(a_{11}, \cdots, a_{21}, \cdots, a_{t 1}, \cdots\right)+^{\prime}\left(b_{11}, \cdots, b_{21}, \cdots, b_{t 1}, \cdots\right) \tag{2.1}\\
& =\left(a_{11}+{ }_{1}^{\prime} b_{11}, \cdots, a_{21}+{ }_{2}^{\prime} b_{21}, \cdots, a_{t 1}+{ }_{t}^{\prime} b_{t 1}, \cdots\right)
\end{align*}
$$

Furthermore, the assumption that $\left(A, \times,+^{\prime}\right)$ has the same logic as $(A, \times,+)$ is equivalent to the assumption that $\left(A_{1}, \times,+_{1}^{\prime}\right)$ has the same logic as $\left(A_{1}, \times,+\right)$, and similarly for $\left(A_{i}, \times,+_{i}^{\prime}\right)$ and $\left(A_{i}, \times,+\right)(i=2$, $\cdots, t)$. Since $\left(A_{1},, \times+\right.$) is a ring-logic, and hence with its + fixed, it follows that $+_{1}^{\prime}=+$; similarly $+_{2}^{\prime}=+, \cdots,{ }^{\prime}=+$. Hence, using (2.1), $+^{\prime}=+$, and the proof is complete.

A careful examination of the proof of Theorem 3 shows that the independence of the logics was not used in the "fixed" part of the proof. Hence, we have the following

Corollary. Let $\left(A_{1}, \times,+\right), \cdots,\left(A_{t}, \times,+\right)$ be a finite set of ring-
logics $(\bmod N) . \quad$ Then, $A_{1}^{m_{1}} \oplus \cdots \oplus A_{t}^{m_{t}}$ is fixed by its N-logic.
We now examine the independence of the logics $\left(F_{p_{i}}^{m_{i}} k_{i}, \times,+\right)(i=$ $1, \cdots, t)$.

Theorem 4. Let p_{1}, \cdots, p_{t} be distinct primes, and let $F_{p_{i}}^{m_{i}} k_{i}$ be the m_{i} direct power of the Galois field $F_{p_{i}} k_{i}(i=1, \cdots, t)$. Then the logics $\left(F_{p_{i}}^{m_{i}} k_{i}, \times, \wedge, `\right)(i=1, \cdots, t)$ are independent.

Proof. Let $n_{i}=p_{i}^{k_{i}}$, and let $P(i)=\prod_{j=1}^{t} n_{j}, j \neq i$. Let $F_{i}=F_{p_{i}} k_{i}$ ($i=1, \cdots, t$). Clearly, $P(i)$ and n_{i} are relatively prime. Hence, there exist integers $r_{i}>0, s_{i}>0$ such that $r_{i} P(i)-s_{i} n_{i}=1$. Define $\varepsilon(x)$ and $\delta(x)$ as follows:

$$
\varepsilon(x)=x^{\left(n_{1}-1\right)\left(n_{2}-1\right) \cdots\left(n_{t}-1\right)} ; \delta(x)=\varepsilon(x) \times_{\wedge}\left((\varepsilon(x))^{\vee}\right)^{2} .
$$

It is easily seen that $\delta(x)=1, x \in F_{i}^{m_{i}}(i=1, \cdots, t)$. Let $x^{\wedge k}=$ $\left(\cdots\left(\left(x^{\wedge}\right)^{\wedge}\right)^{\wedge} \cdots\right)^{\wedge}, k$ iterations. Then one easily verifies that for $i \neq j$,

$$
w_{i}=w_{i}(x)=(\delta(x))^{\wedge_{s_{i} n_{i}}}=\left\{\begin{array}{l}
1\left(\bmod F_{i}^{m_{i}}\right) \\
0\left(\bmod F_{j}^{m_{j}}\right)
\end{array} .\right.
$$

Now, to prove the independence of the logics $\left(F_{i}^{m_{i}}, \times, \wedge, `\right)(i=1, \cdots, t)$, let $\left\{\delta_{i}^{\prime}\right\}$ be any set of t expressions of species $\times, \wedge, `$; i.e., a primitive composition of indeterminate-symbols in terms of the operations \times, \wedge,. Let $X=\delta_{1}^{\prime} w_{1} \times{ }_{\wedge} \delta_{2}^{\prime} w_{2} \times{ }_{\wedge} \cdots \times{ }_{\wedge} \delta_{t}^{\prime} w_{t}$. Then it is easily seen that $X=\delta_{i}^{\prime}$ $\left(\bmod F^{i^{m}}\right)(i=1, \cdots, t)$, since $a \times{ }_{\wedge} 0=a=0 \times{ }_{\wedge} a$, and the theorem is proved.

We are now in a position to prove the following theorem (see introduction).

Theorem 5. Any finite commutative ring R with zero radical is a ring-logic $(\bmod N)$.

Proof. First, if R consists of one element, then $R=\{0\}$. Clearly, R is a ring-logic $(\bmod N)$ in this case, since $a+b=a \times b$, for example. Hence, assume that R has more than one element. It is well known (see [5]) that any finite commutative ring R with zero radical and with more than one element is isomorphic to the complete direct sum of a finite number of finite fields $F_{p_{1}} k_{1}, \cdots, F_{p_{t}} k_{t}$: i.e., $R \cong F_{p_{1}} k_{1} \oplus \cdots \oplus$ $F_{p_{t}} k_{t}$. Now, by Theorem 2, each $\left(F_{p_{i}} k_{i}, \times,+\right)$ is a ring-logic $(\bmod N)$. Hence, by the corollary to Theorem 3, $F_{p_{1}} k_{1} \oplus \cdots \oplus F_{p_{t}} k_{t}$ is fixed by its N-logic. Therefore, by the above isomorphism, R, too, is fixed by its N-logic, and there only remains to show that the + of R is equationally definable in terms of its N-logic. To this end, we distinguish two cases.

Case 1. Suppose p_{1}, \cdots, p_{t} are all distinct. By Theorem $2,\left(F_{p_{i}} k_{i}, \times,+\right)$ is a ring-logic $(\bmod N)(i=1, \cdots, t)$. By Theorem $4\left(\right.$ with $m_{1}=\cdots=$ $m_{t}=1$), the N-logics ($\left.F_{p_{i}} k_{i}, \times, \wedge, `\right)$ are independent $(i=1, \cdots, t)$. Therefore, by Theorem 3 (with $m_{1}=\cdots=m_{t}=1$), the direct sum $F_{p_{1}} k_{1} \oplus$ $\cdots \oplus F_{p_{t}} k_{t}$ (and hence R, by the above isomorphism) is a ring-logic $(\bmod N)$. Hence, in particular, the + of R is equationally definable in terms of its N-logic.

Case 2. Suppose p_{1}, \cdots, p_{t} are not all distinct. Let q_{1}, \cdots, q_{r} be the distinct primes in $\left\{p_{1}, \cdots, p_{t}\right\}$. Since the Galois fields $F_{p} k_{i}$ and $F_{p} k_{j}$ are both subfields of $F_{p} k_{i} k_{j}$, it is easily seen that $F_{p_{1}} k_{1} \oplus \cdots \oplus$ $F_{p_{t}} k_{t}$ is a subring of a direct sum of direct powers of $F_{q_{i}} h_{i}(i=1, \cdots, r)$; i.e., $F_{p_{1}} k_{1} \oplus \cdots \oplus F_{p_{t}} k_{t}$ is a subring of $F_{q_{1}}^{m_{1}} h_{1} \oplus \cdots \oplus F_{q_{r}}^{m_{r}} h_{r}$, for some positive integers $h_{1}, \cdots, h_{r}, m_{1}, \cdots, m_{r}$. Now, the rest of the proof is similar to that of Case 1. Thus, by Theorem 2, $\left(F_{q_{i}} h_{i}, \times,+\right)$ is a ring$\operatorname{logic}(\bmod N)(i=1, \cdots, r)$. By Theorem 4, the N-logics $\left(F_{q_{i}} h_{i}, \times,{ }^{\wedge},{ }^{`}\right)$ are idependent $(i=1, \cdots, r)$. Hence, by Theorem $3, F_{q_{1}}^{m_{1}} h_{1} \oplus \cdots \oplus F_{q_{r}}^{m_{r}} h_{r}$ is a ring-logic $(\bmod N)$. Therefore, in particular, the + of $F_{q_{1}}^{m_{1}} h_{1} \oplus \cdots \oplus$ $F_{q_{r}}^{m_{r}} h_{r}$ is equationally definable in terms of its N-logic. Hence, afortiori, the + of the subring $F_{p_{1}} k_{1} \oplus \cdots \oplus F_{p_{t}} k_{t}$ (and therefore the + of R, by the above isomorphism) is equationally definable in terms of the N logic of R. Therefore, R is a ring-logic $(\bmod N)$, and the theorem is proved.
3. p-rings and p^{k}-rings. We shall now make an attempt to generalize Theorem 3, and apply this generalization to p-rings and p^{k}-rings. We first observe that the proof of Theorem 3 does not depend on the cardinality of the powers m_{i}. Furthermore, the proof still remains valid if one considers a subdirect sum of subdirect powers of A_{i} instead of the complete direct sum of direct powers of $A_{i}(i=1, \cdots, t)$. In view of this, Theorem 3 can now be cast in the following more general form.

Theorem 3^{\prime}. Let $\left(A_{1}, \times,+\right), \cdots,\left(A_{t}, \times,+\right)$ be a finite set of ringlogics $(\bmod N)$, and let the N-logics $\left(A_{1}, \times,^{\wedge},{ }^{`}\right), \cdots,\left(A_{t}, \times,^{\wedge},{ }^{`}\right)$ be independent. Let A be any subdirect sum with identity of (not necessarily finite) subdirect powers of $A_{i}(i=1, \cdots, t)$. Then A is a ring-logic $(\bmod N)$.

Now, it is well known (see $[2 ; 4]$) that every p-ring (p prime) is isomorphic to a subdirect power of F_{p}, and every p^{k}-ring (p prime) is isomorphic to a subdirect power of $F_{p^{k}}$. Hence, by letting $t=1$ and $A_{1}=F_{p}$ (respectively, $F_{p^{k}}$) in Theorem 3^{\prime}, we obtain the following corollary (compare with $[1 ; 2]$).

Corollary. Any p-ring with identity, as well as any p^{k}-ring with identity, is a ring-logic $(\bmod N)$.

In conclusion, I wish to express my gratitude to the referee for his valuable suggestions.

References

1. A. L. Foster, p-rings and ring-logics, University California Publ., 1 (1951), 385-396.
2. -, p^{k}-rings and ring-logics, Ann. Scu. Norm. Pisa, 5 (1951), 279-300.
3. -, Unique subdirect factorization within certain classes of universal algebras, Math. Z., 62 (1955), 171-188.
4. N. H. McCoy and D. Montgomery, A representation of generalized Boolean riugs, Duke Math. J., 3 (1937), 455-459.
5. N. H. McCoy, Rings and Ideals, Carus Math Monog., 8 (1947).
6. M. H. Stone, The theory of representations of Boolean algebras, Trans. Amer. Math. Soc., 40 (1936), 37-111.
7. A. Yaqub, On the theory of ring-logics, Can. J. Math., 8 (1956), 323-328.

University of California, Santa Barbara

