ITERATIONS OF GENERALIZED EULER FUNCTIONS
G. K. WHITE

1. Introduction. In this paper p and ¢ will denote primes. We
recall that a function f(n) of an integral variable n = 1 is said to be
multiplicative, if

(1) f(mn) = f(m)f(n)
whenever (m,n) = 1, and additive, if
(2) f(mn) = f(m) + f(n)

whenever (m,n) = 1. If however f(n) satisfies (2) for all integers m =1,
n =1 we shall say that f(n) is completely additive. Consider a multi-
plicative integral-valued function +(n) > 0 and put

(3) Yo(n) = 0, Pn(n) = P(n), « -+, P (n) = Yy, -+ .

We shall say that «(n) is of finite index if, to each » > 1, there is an
integer C = C(n) such that

>1forr<C
4 W, -
(4) ‘l/(n)[:lforr>c,
in which case we put C(1) = 0.
The familiar Euler function
(5) p)= $ 1=nTl(1- 1)
(mﬁfb)il pln p

is an example of such a function, since @(n) < n. For this case (y = @),
properties of the corresponding function C(n) were investigated by Pillai
[1], who attributes the problem to Vaidyanathaswami. Later, Shapiro
[2, 3, 4] observed that this particular C(n) satisfied the condition

1 for m,n both even
(6) Cimn) = C(m) + C(n) + .
0 otherwise ,

and went on to obtain, inter alia, a certain class (S) of multiplicative
functions +(n) of finite index satisfying (6). In a restricted sense, (S)
consists of functions similar in form to @(n); for example they satisfy

Y@y (@) = [y ()]
for all positive integers z, n.
Received June 15, 1961.
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Our first purpose is to impose mild conditions on (%) to ensure that it
has a finite index, the characterization of all such functions being an
unsolved problem.

THEOREM 1. Let y(n) be any multiplicative integral-valued function
satisfying

(7) (1) av@®)=>a=p for all p,q
and all t =1,
(8) (i) p*fA(p) for any p or any t = 1.

Then +r(n) is of finite indezx.

We shall refer to the class of functions +(n) admitted by (7) and
(8) by the letter (W) if, by analogy with the Euler function, they also
satisfy*

(9) Jr(n) = 0 (mod 2) for n>2.
It is evident that not all members of (W) satisfy (6); for example
(10) () = 28

where d(n) is the number of different odd prime factors of », and C(3) =
C(5) = C(15) = 1. Our main purpose is to isolate the members of (W)
which do satisfy (6), thereby enlarging the class (S) obtained by Shapiro
(loc. c¢it. 8). Theorem 2 does, in fact, prescribe necessary and sufficient
conditions, but before stating it we need some further notation. Our
calculations are a little simpler if we introduce the function ¢(n), where

_[C(m) +1 if »n is even

(1) ™ = cw it m is odd

for then, by (6), c(n) is completely additive.? By (7) and the multiplica-
tive property of «, we have

(12) Y(n) = II p**™

P=EN

for some A\(p, ») = 0 defined for all » = 2 and all p < n. Then, (7), (8)
and (9) may be expressed alternatively as

(13) Mg, p) =0 for all ¢ > p,
(14) Mp, p) <,
(15) M2,m) >0 for » > 2.

Assigning arbitrary values to +(p), subject only to conditions (7), (8)

1 We remark that condition (9) may be generalized, if (6) and (11) are reformulated.
2 Note that C(n) is additive, but not completely. Note also that ¢(1) = C(1) =0, while
(9) and (11) imply that ¢(n) >0 for n > 1.
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and (9), the \(q, p) are then determined uniquely by (12), for all ¢ < p
and p. We define inductively a new function I'(p) over the primes, by

lifp=2,

(16) I'®) =15 :Mg, p(e) if p>2.

For » =1 and odd p, we introduce the linear relations
(17) M2, p*) + mzspl“(q)k(q, p") = nl'(p)

which represents, for each n > 1, a restriction on the values of A(2, p"),
A3, p"), « o+, Mp, p*). Note that (17) is an identity for » = 1, while for
n > 1 it possesses at least one solution, namely

nl'(p) if ¢ =2,
18 A n) =
(18) (g, P") 0 ifg>2.
For »p = 2, we set
(19) @) =2""1 forn=1

We are now in a position to state our main theorem:

THEOREM 2. Then let 4r(n) be any multiplicative function satisfying
(M), (8) and (9).

(i) If c¢(n) is completely additive, c(p) = ['(p).

(i) c¢(n) s completely additive if, and only if, y(n) satisfies (17)
and (19).

I should like to thank Dr. J. H. H. Chalk for his help in the prepa-
ration of this paper, and to thank also Dr. A. H. Stone for valuable
comments on an earlier draft.

2. Proof of Theorem 1. Suppose n > 1. If we express n = [][; p*
then yr(n) = II; [v(p¥)], by the multiplicative property. Let p,, denote
the greatest prime factor of ». Then no prime p > p, can divide y(n)
and pym f +r(n). Hence no prime p > p, can divide any v (n)[r =0,1, -]
and the greatest power of p, dividing +(n), if not zero, exceeds by at
least one the greatest power of p, dividing +,.(n). Hence there is an
integer 7, such that p, f+.(n). Then either v, (n)=1 or the greatest
prime factor of v, (n) is p, < p,. If ¥, (n) #1, we can repeat the
process and determine an integer 7, such that p, f+,(n). Hence either
W, (n) =1 or the greatest prime factor of v, (n) is p,,<p,. In this
way, we obtain a decreasing sequence of primes p, > p, > D,, > -+
which clearly terminates at, say »,, when 4, (n) =1. Since ¥(1) =1,
C = r, — 1 has the desired property.
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3. The main lemma. We use the following property of the function
c(n):

_(e(m) — 1 if n is even,
(20) POT=100 it nis odd,

which follows immediately from (4), (9) and (11). For any p, let
(21) S(p) ={n:gn=>q9<p}, (n>0).

Then S(p), being the set of all positive integers whose prime factors
are < p, is closed under multiplication. Moreover, if c¢(mn) = c(m) +
¢(n) for all m, n in S(p), then

(22) (1) =0
and
(23) c[q[[p ] = q;p ve(p) .

The lemma which follows will provide an important step in the induction
proof of Theorem 2.

LEMMA 1. Suppose that +(n) satisfies (17) for all odd p and all
n=1, Let p, < p, < +++ denote the odd primes. Suppose also that,
for some k=1,

(24) c(p) = I'(p) for all peS(p) .
and
(25) c(mn) = c¢(m) + c(n) for all m,n in S(p,)
Then
(26) (1) op)=I(p) for all peS(Dp+)
(27) (i) c(p'n) = c(p) + c(n) if
p = pkvt g Oynes(p)
(28) (iii) o(p) =te(p) if P=p,t =0
(29) @iv) c(mn) = c(m) + ¢(n) for all m,n in S(piy.)

Proof. (i) By (24), it suffices to prove that c¢(p,) = I'(p;). But,
with p = p,, we have

o(p) = cly(p)] = C[qlélp ] = q% Ma, p)e(q)

by (20), (12), (14), (23) and noting that v(p) € S(p). By (24), ¢(q9) = I'(9)
for all ¢ < p and so ¢(p) = I'(p), by (16).
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(ii) The case t = 0 is obvious. Proceeding by induction on ¢, assume
that
c(p°n) = ¢(p®) + e(n) for all s <t
and all ne S(p) .

Since (p*) = mp”~ for some m e S(p) and some r < ¢, by (13) and (14),
we have

[y (p'n)] = e[y (") (n)]

= c[mp"y(n)]

= ¢(p") + ¢[my(n)] , by our induction
hypothesis

= o(p) + ¢(m) + c[y(m)], by (25)

= ¢(p™m) + c[¥(n)], (on using the
hypothesis again!)

= c[y ()] + e[y (n)] .

Hence, by (20), c(p'n) = c(p’) + ¢(n), and (ii) follows directly.

(iii) The cases t = 0,1 are obvious. By induction on ¢, we assume
that

c(p’) = se(p) for all s< ¢,
Then, by (20) and (ii),

o(p) = e[y (p")]
— c[pup,pt) I qm.pt)]

q<p

— C[pup,pt)] + C[H quq,ph] .
a<p

Since Mp, p*) < t by (14), we can apply our inductive hypothesis to the
first term. Hence

e(p) = Mo, p’)e(p) + 2 Ma, P)e(a)
on using (25) on the second term. By (i), ¢(¢) = I'(¢) for ¢ < p, so that

c(p) = gzp Ma, p)I7(q) ,

= tI'(p)
= te(p)

by (17), and (iii) is immediate.

(iv) Let m = p“m,, n = p'n,, where p = p, and m,, n, are in S(p).
Then
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c(mn) = c[p*mmn,] = c(p**) + e(mm;) , by (ii)
= (¢ + v)e(p) + e(m,) + e(ny) , by (iii)
and (25)

= {ue(p) + e(my)} + {ve(p) + c(ny)},
= {e(p*) + e(m)} + {e(p”) + e(n)}, by (iii)
= ¢(m) + ¢(n) , by (ii) .

This completes the proof of (iv), and so of Lemma 1.

4, Proof of Theorem 2. Suppose that +(n) satisfies (7), (8), (9),
(17) and (19); we will deduce that ¢(n) is completely additive (and inci-
dentally that ¢(p) = I'(p)). Consider the hypotheses of Lemma 1 in the
case k =1, when S(3) consists of all powers of 2. Since (2% = 2!
for t = 1, we have

(30) c2)=1+C2)=t,
whence
(31) c2)=1=1(?),

by (16). By definition ¢(1) = 0, so that for any integers s =0,t =0,
we have

(32) 020+ 2) = o(2°%) = 5 + t = o(2°) + o(2Y) .

Thus the hypotheses (24) and (25) of Lemma 1 are valid for the par-
ticular case £ = 1 and we conclude that

(33) o(p) = I'(p), e(mn) = c(m) + c(n)

hold for all p, m, n in S(5); which permits up to repeat the argument.
Proceeding by induction on k& we deduce, finally, that (33) holds for all
primes p and all positive integers m, n.

Conversely, we suppose now that c¢(n) is completely additive, and
Jr(n) satisfies (7), (8) and (9). We prove now that «(n) satisfies (17)
and (19) and that ¢(p) = I'(p). By (20) and the completely additive
property of ¢(n) we have

(34) c(p) = c[v(p)] = q% Mg, p)e(q) = I'(p) ,
(35) c[y(p)] = c(»’) = te(p) = tI'(p),
(36) [y (p)] = .,Zs,, Mg, pY)e(q)

for all odd » and all ¢ =1. By (7) and (8), ¥(2) =1, and so from (11)
and (16),
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¢2 =1=TI().
We may combine this result with (84) to replace c(q) by 7°(q) in (36).
Then (85) and (36) together imply (17). By (7), with »p = 2,
J(2) = 2*, for some integer u =0 .
Hence, using ¢(2) =1 and (20), we have
u=c2) =cly@)]=c2)—1=¢t—-1,
which implies (19). Thus, Theorem 2 is established.

5. Remarks. (1) We remark that our subclass of W (whose c(n)
is completely additive) admits functions +(%) of the type

21 if p =2,
(o) if p>2,

where ¢ = 1 and [ = l(p) is any integer between 1 and ¢. Note, in
particular, that the special case I(p’) = 1 includes the Euler function.
(2) In passing, it is worthy of notice that a converse problem,
(where given any completely additive ¢(n) with ¢(n) >0 for n >1 we
seek the set of all multiplicative functions «(n) satisfying (7), (8) and
(9) and having this ¢(n) as their counting function), is a direct conse-
quence of Theorem 2. The solution may be expressed in the form

Yy(p) =

21 if p =2
9te(m) H [qz—c(m]x(q,pt) if > 2 ,

3=g=p

¥ (p*) =

provided that +(p’) = 0 (mod 2) for p > 2. Inspection of relations (17)
and (18) shows that our set is never empty.

(8) Given any multiplicative ++(n) satisfying (7), (8) and (9) and
having a completely additive ¢(n), it is evident that the relation c(p) =
I"(p) provides an alternative method for evaluating c¢(n), for each n.
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