NORMAL MATRICES AND THE NORMAL BASIS
IN ABELIAN NUMBER FIELDS

R. C. THOMPSON

1. Introduction. Throughout this note F' denotes a normal field of
algebraic numbers of finite degree n over the rational number field.
Let G,,G,, «--, G, denote the elements of the Galois group G of F. It
is known [2] that F may possess a ‘‘normal’”’ basis for the integers
consisting of the conjugates a®,a, ... a® of an integer a. In [4]
the question of the uniqueness of the normal basis was answered when
G is cyclic. (See also [1, 6].) If B, B, «++, B, is any integral basis of
F then the matrix (8%Y), 1 <14, j < n, is called a discriminant matrix.
It was shown in [4] that if G is abelian then the discriminant matrix
of the normal basis 8, = a%, +-., 8, = @ is a normal matrix and, if G
is cyclic and F' has a normal basis, then any integral basis B, +--, 8.
for which the discriminant matrix is normal is of the form B,, =
+af, eeo B, = +a for a suitable choice of the + signs, where ¢
is a permutation of 1,2, ..., n.

It is the purpose of this note to use the methods of [4] to extend
these results for cyclic fields to abelian fields. In particular, in Theorem
1, we shall give a new proof of a result obtained by G. Higman in
T1]. The author wishes to thank Dr. O. Taussky-Todd for drawing the
problems considered here to his attention.

2. DPreliminary material. We suppose throughout that
G = (S) X (Sy) x =+« x(Sy)

is the direct product of %k cyclic groups (S;) of order n;. Of course,
each n; >1 and n =nm,---n,. If X and ¥ = (y,;) are two matrices
with elements in a group or a ring then we define X x Y = (Xy, ;).
X x Y is the Kronecker product [3] of X and Y. Henceforth, in this
paper, the symbol x will always be used to denote the Kronecker
product of vectors or matrices. A matrix A is said to be a circulant

of type (n,) if
P A A R

Gy Ay Gy oo By
1 1
A=a,a, -+, a,l, =

Ay Gy Oy v O

Here a,, a,, +++, @, may lie in a group or a ring. For 7+ >1 we define
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by induction [A, A4,, ---, A,,l., to be a circulant of type (n,, n,, -, n;)
if each of A, A4,, ---, A,, is a circulant of type (n,, n,, +++, n;-;). For
1si=zklet H,=(1,S,,S+--,Su) and D, = [1, Sy, Spi?, «ee, Sila;
Henceforth we shall always let G,, G,, -+-, G, denote the elements of G-
in the order implied by the vector equality

(1) (G17G2y.”9Gn):H1><H2X"'XHk.

Let y(GY), ¥(G,), -+, y(G,) be commuting indeterminants and define:
the matrix Y by Y = (%(G:G7Y)),1 <4,7 <n. Then it can be proved
by induction on %k that D, x D,x +++ x D, = (G.G;Y),1 =14, <n, and
hence that Y is a circulant of type (n, n,, ++-, n,). Since any circulant
of type (ny, n,, +++,m,) is determined by its first row, it follows that.
any circulant of type (n, 7%, +++,n,) may be obtained by assigning
particular values to the indeterminants y(G,), -+, ¥(G,) in Y.

LEMMA 1. Circulants of type (n,, n, «-+, n,) with coefficients i a
Jield K form a commutative matrixz algebra containing the inverse of
each of its invertible elements. For fixed m, all matrices X = (X;,;),
1=<74,7=<m, in which each X, ; is a circulant of type (M, Ny, *++, W)
with coeffictents in K, form a matrix algebra containing the inverse
of each of its invertible elements.

Proof. Let W= (w(GG;Y)), 1<4,5=m. Then W+ Y and a W
for a € K are clearly circulants of type (n, n, <<+, n,). The (7, 7) ele-

ment of WY is
Sw@GUGET) = Zw(G(GIGE) (GGE)G)
= éy(GiG;‘)w(GtG;‘) .
But this is the (4, 7) element of YW. Hence WY = YW. Define
AG.G7) = SwGGHGET) -

Then a straightforward calculation shows that 2(G.G;") = 2(G,G;") if
GG;' = G,G;*. Hence the variables 2(G,G;"), 1 = 1,5 < n, are unambi-
guously defined, so that WY is a circulant of type (n,, n, +++, n,). This
proves the first half of the first assertion of the lemma. The rest of
the first assertion follows from the fact that the inverse of a matrix
is a polynomial in the matrix. The other assertion of the lemma is
now clear,

We let B’ and B* denote, respectively, the transpose and the
complex conjugate transpose of the matrix B. The diagonal matrix
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whose diagonal entries are A\, Ay, *++, A, is denoted by diag (\;, Ay *--,
M.). The zero and identity matrices with s rows and columns are
denoted by 0, and I,, respectively, and for ¢ =1, 2, ---, k, the compan-
ion matrix of the polynomial z" — 1 is denoted by F; =10,1,0, «+-, 0],,.

Let &, be a primitive root of unity of order n, for 1 =u =< k. Set
Q,= (P, 1<4,j<m, and set 2 =0, x2,x +++ x 2,. Define
T,=n;""0, and T =n*?Q. It can be shown by direct computation
that T, is a unitary matrix. Hence, using the basic properties (X x Y)
ZxW)y=XZx YW and (X x Y)* = X* x Y* of the Kronecker prod-
uct, it follows immediately that T is a unitary matrix.

LEMMA 2. If A is a circulant of type (n,, My, «-+, n) with first
row @ = (a, ay, +--,a,) and complex coefficients, then T*AT = diag
(&1 & **+, 8,) where the vector € = (&, &, +++, €,) 18 linked to the vector
a by & = Qa’.

Proof. The proof is by induction on k. For k =1 it is well known
(and straightforward to check) that AT, = T,diag (&, &, ++,€,). Sup-
pose the result known for &k — 1. If

7
A = [Aly AZ’ M) Ank]nk = Z‘A’ X Fi.-l

and if we set d = nm, -+« n,_, and define (Vi_pars, Yi-vars **°, Yia) OY

’
Q1% oo X Q2 (@i—nyasrs Bi—natay ***y Fia)

_ , .
= (Vi—va+, Yienats *** Yid) 115 n,

()

then, by the induction assumption,
(Tyx ooe X T, )*A(T, X « oo x Ty y)
= diag (Vi-ypat1y Yi-varer ** s Via) l=sism.
Then

2
T*AT = Z(T1 X ooo X Tooy X TY¥(A; X FEYTyx o0o x Ty x T))
7 .
= ;({(Tl X eee X Tk—l)*Az( Tl X eee X Tk—l)} X {T]’:Fka}l_l)
g
= igl({diag (YVei—na+1y Yi-vass *** Yid)}

X {diag (1, E}é_l, ;‘;(i_l), LN é’k’:"k—l) (i_l))}) *

Thus T*AT is diagonal. If »=(b—1)d + ¢ where 1 <c¢=d and
1 =<b < n,, then the (7, r) diagonal element of T*AT is

i
® & = JV-narelk 0, l=r=mn.
=
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Setting ¢ = (e, €5, +++,¢,) and v = (v, Vs, +++, V,), equations (3) are the
same as the matrix equation ¢ = (I[; x 2,)7" and equations (2) are the
same as ((£, X +++ x 2, ;) x I, )a’ = v'. Combining these two facts, we
obtain & = Qa’, as required.

3. The uniqueness of the normal basis. If B9, ..., 8% is another
normal basis of F then (8%, .-, %) = (a; ;) (@%, «+-, a%)" so that (8%
= (a; ;) (@%%"), 1 < 1,7 < n, where (8%%") and (a%“") are both circulants
of type (n, m,, ++-,n,) and (a;;) is a unimodular matrix of rational in-
tegers. By Lemma 1, (a;;) = (8%% ) (@%¢ ")~ is also a circulant of type
(my, Ny, +++, m,). Conversely, if B, -+, 8, is an integral basis such that
By +++, B = (a; )@, «++, a’) where (a;;) is a unimodular circulant
of rational integers of type (n, n,, -+, n;), then (8%77) = (a; ) (@%%") so
that, by Lemma 1, (8% ") is also a circulant. Then, in (8%"), the ele-
ments in the first column are a permutation on those in the first row-
Hence 3y, « -+, 8, is a permutation of a normal basis. Following [4], we
call a circulant trivial if it has but a single nonzero entry in each row.
Thus B, *+-, B, is necessarily a permutation of a%, ..., a® or of —a®,
<+, —a% precisely when all unimodular circulants of rational integers
of type (n,, n,, -+-,n,) are trivial.

If G has a cyclic direct factor of order other than 2, 3, 4, or 6,
we may choose the notation so that (S)) is this cyelic direct factor. By
[4] there exists a nontrivial unimodular circulant B of rational integers
of type (n,). Then B x I,,...,, is a nontrivial unimodular integral cir-
culant of type (%, %, +++,n,) and so the normal basis is not unique.
Hence only the following two cases remain to be considered:

(i) each n; =4 or 2;

(ii) eachn;,=3o0r 2; 1<+ k.

In either case (i) or case (ii) let A be a unimodular circulant of
rational integers of type (n, m, -+, m,). Then, by Lemma 2, the de-
terminant of A is ¢g, --- ¢, where each ¢, is an integer and hence a
unit in the field K generated by ¢, ---,&,.. K is generated by the
root of unity whose order is the least common multiple of n,, 7, «--,
N, Since this least common multiple is 2, 3, 4, or 6, by the funda-
mental theorem on units K contains no units of infinite order and hence
each ¢; is a root of unity. By Lemma 2,

4) Ta' = n~12%"

Since the first row T consists of ones only, ¢ is rational. In (4) we
replace, if necessary, each a;, with —a; and each ¢; with —e¢; to ensure
that ¢, = 1. Since T is unitary,

%) a' = nPT*e = n1Q*e
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Let 2 = (r;;),1 < 1,7 <n. Then, using (5), the triangle inequality,
and the fact that each |7;;| and each |¢;| is one, we find that

6) las| = 03 | Py | = 1, l<i<n.

If we have a, = 0 for some ¢, then |a,| =1, so that in (6) for ¢ = ¢
we have equality. Since r,, = ¢, = 1, the condition for equality in the
triangle inequality forces 7;,; = 1 for each j so that ¢; = r;, for j =
1,2, ---,n. Then, for ¢+ q,

n

na; = 27575, =0
1=1
since the columns of £ are pairwise orthogonal. Thus, in A, there is
but a single nonzero entry in each row.

THEOREM 1. The normal basis for the imtegers of F is unique (up
to permutation and change of sign) precisely when either (1) or (ii)
below s satisfied:

(i) G 1is the direct product of cyclic groups of order 4 and/or
order 2;

(i) G s the direct product of cyclic groups of order 3 and/or
order 2.

Another form of this theorem is given in [1, Theorem 6].

4. Normal discriminant matrices. Let a®, ... a% be a normal
integral basis of F' and let 4 be any normal discriminant matrix.
Permuting the row and columns of 4 in the same way (this preserves
normality) we may assume 4 = (85 )1 <14,5 <n, where Gy, +-+, G, are
given by (1). Now 4 = (a;;)D where D = (a%%),1<14,5<mn, and
where (a;;) is a unimodular matrix of rational integers. From 44* =
4*4 we get (a;;)DD*(a;;) = D*(a; ;) (a;;)D. As in [4], DD* is rational
so that D*(a, ;) (a;;)D is left fixed by every element of G. Let

P, =1, .., ¥ F, X1, 1<e<k,

s+1ms+2° " PE+1 ?

where, here and henceforth, n, = n,., = 1. The effect of replacing «
with % in D may be determined by noting that

S(D,x +++x D)= D, X +++ x(S,D,) x «++ x D,
=D, X+ X(F,D)x +++ x D,
XFyx I, X« XL, DX+eexD,

s+l

=In1>< cee XI

Ts—1

= P(D,x +++ x D) .

Hence, replacing @ with «% in D changes D into P,D. Therefore
D*(a:,;)'(@;,;)D = (P,D)*(a; j)'(a; ;)(P.D) so that Py(a;,)(a; )P = (a: ;) (a:;),
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for s=1,2, .-+, k. Following [4] we define a generalized permutation
matrix to be a permutation matrix in which the nonzero entries are
permitted to be = 1. Then Lemma 3 below shows that (a; ;) = QC where
@ is a generalized permutation matrix and C is a circulant of type
(1, Mgy ==+, M), Since (By, +++, B.) = (a; )@, <+, @)’ this implies (by
remarks made in §2) that B, ---,8, is a generalized permutation
of a normal basis.

THEOREM 2. Let F be a field with a normal integral basis. Then
only generalized permutations of a mormal basis can give rise to nor-
mal disecriminant matrices.

THEOREM 3. If A is a unimodular matrix of rational integers
such that AA’' is a circulant of type (n, Ny, +-+,m,), then A= CQ
where C is a unimodular circulant of rational integers of type (1., .,
eve, ) and Q is a gemeralized permutation matriz.

Proof. Since each P; is a circulant of type (n,n, ---,n,), it
follows from Lemma 1 that P,AA'P, = AA’' for 1 =1,2, ---, k, so that
Theorem 3 follows from Lemma 3.

LEMMA 3. If A is a unimodular matrixz of rational integers such
that P,AA'P, = AA’ for 1=1,2,.-+,k, then A =CQ where C and
Q are as in Theorem 3.

Proof. Let A, = A and Q,= I,. We shall prove by induction on
¢ that, for 1 <1<k, A= A,Q; where Q; is a generalized permutation
matrix and A; may be so partitioned that 4, = (X,,),1 < s,t < 1,0 M4
<o NNy, Where each X, is a circulant of type (n,, %y, -+, n;). The
case © = k is the statement of the lemma. To avoid having to give a
special discussion of the case ¢ =1 we make the following definitions
and changes in notation. Reecall that n, = n,,, = 1.

A one row, one column matrix is said to be a circulant of type
(n,). A circulant of type (n, ---, n;) will now be called a circulant of
type (n,, 1y, +++,n;). We then know that A = A, where A, is com-
posed of one row, one column blocks which are circulants of type (n)
and where @, is a generalized permutation matrix. Our induction
assumption is that for a fixed value of ¢ with 1 <7<k we have 4 =
A, .Q,_, where we may partition A, = (A;,), 1 s, t E NNy =+ * Ny
so that each A,, is a circulant of type (n,, n,, «++, n;,_,), and where Q;_,
is a generalized permutation matrix. We shall then deduce that 4 =
A,Q;. For notational simplicity we set f=nm, ++ Ny, § = BNy oo~
Ty b= Ny Mg oo s Ny, M= NNy + =+ Ny
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Now AA' = A, ,A]_, so that from P,AA'P;= AA’ we deduce that
MM; =1, where M, = A2, P;A;, .. Since M, is a matrix of rational
integers it follows that M, is a generalized permutation matrix. Since
P, and A,_, may, after partitioning, be viewed as matrices with g rows
and columns in elements which are circulants of type (1, 1, -+, n;_),
it follows from Lemma 1 that M, is also a matrix with ¢ rows and
columns in elements which are circulants of type (%, %y, +-+, 7;,_). From
this point of view M; must be a ‘‘generalized permutation matrix’’ in
that it has but a single nonzero entry in each of its ¢ rows and columns.
Each of these nonzero entries is of course both a circulant of type
(1, My, +++, m;—,) and a generalized permutation matrix.

We now digress for a moment to note that if M is a permutation
matrix whose coefficients lie in a ring with identity then a permutation
matrix R exists with coefficients in the same ring such that R'MR is
a direct sum of one row identity matrices and/or matrices like [0, 1, 0,
<+, 0], for ¢ > 1. This assertion is a consequence of the fact that a
permutation may be decomposed into disjoint cycles.

Applying this fact to the ‘‘generalized permutation matrix’’ M;, we
find that a permutation matrix R; exists with ¢ rows and columns in
elements which are either 0; or I, such that R}M;R; = N, is a direct sum
of r matrices of the following type:

0 E, 0 0 --- 0
0 0 E, 0 -- 0
E, =
0 0 0 . . E,,
Ei,, 0 0 0 «+ 0

€3

if ;> 1, and E; = (E;,) if ¢; = 1. Here each 0 =0, and each E;, is
both a circulant of type (n,, 7., ---, #;_,) (since R, has circulants of this
type as ‘“‘elements’’) and a generalized permutation matrix. Moreover,
e,+ e + -+« +e.=g. Since N, is similar to P; and P? = I,, then N7
= I,. This implies that each ¢; < n,., We shall prove that each e¢; =
n;. The proof is by contradiction. Suppose for at least one j that
e; <n;. We know that f(e, +e,+ «--¢,) =g =mn. Hence fur >n
and so r > h. Now

P, =041, 04 -, Or]ni x I,

and PA, , = A, M, Let H,= (A, A;,, +++,A,,)for1 <s <g. Then
from P,A; , = A;,M; it follows that: H, = HM;, H, = H,M;, ---, H,, =
H'ni—lju-i; Hni-l-‘z = Hni+1My Hni+3 = Hn,ﬁﬂMr tt ey Hzni = Hzni—dwi; s H(h—l)ni+2
= H(h—l)ni+1Mi’ H(h-—l)ni-}-a = H(h—l)ni+2Miy ER) thi = thi—lMi- Hence, if
B; = Hjj yy,,4, for 1 <j=<h, then H; ,, ., = B;Mi™ for 2= q = n,.
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Consequently,

(B 1 1 —BlRi h (B.R; 7
BlMi BIMiR,; BlRiNi
B,M: B.M:R, B.R.N
B M~ B,M"'R, R, N

Ai—lRi = lM Ri = lMl R = B R N

B h BhRi BhRi
Bth BhM,bR¢ BhR,sz

LB, M7 LB, MR, ) | BiRN™

Here each B,R; 1 <j =< h, may also be regarded as a row vector with
¢ coordinates in elements which are circulants of type (n,, ny, +--, n;_).
This is so because both B; and R; have circulants of this type as
‘‘elements’’.

Let X=(X, X,, -++, X,) be a row vector in which the X, are
square matrices with f rows and columns. Then

XN; = (XelELely XE, ., X,E,,, + -, Xel—lEl,el—ly
Xe1+e2Ez.e2, Xe1+1E2.1, X51+2E2,27 ey X61+92—1E2.62—1
°t % XOE'I',87J ety Xg—lEr,e,.—l) .

Since each E;, is a generalized permutation matrix, it follows that the
first fe, columns of XN, are, apart from order and possible change of
sign, just the first fe, columns of X; the next fe, columns of XN, are,
up to order and sign, just the next fe, columns of X; and, in general,
columns

(7) f(60+el+ et +63_1)+1,f(60+6'“ ‘|‘es—1)+2y )
fleo+e+ -+ +e)

of XN, are, apart from order and sign, just these same columns in X.
Here ¢, = 0. This holds for s =1,2, --., r.

Hence, in B,R,N? for 1 <v =n; — 1 and fixed j, columns (7) (for
a fixed value of s) are just a generalized permutation of columns (7)
in B,R;. Moreover, the elements appearing in columns (7) and row ¢
of B;R; for 2 < q < f are just a permutation of the elements in columns
(7) and the first row of B,R;, since B;R; is composed of blocks which
are circulants of type (1o, My, =+, ;). All this means that the ele-
ments in columns (7) (for a fixed value of s) and row q (for 2 < q¢ = m)
of the matrix
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B;R;
B;R.N,
® B;R.N;

B;R, N7
are generalized permutations of the elements in columns (7) and the
first row of this matrix. Hence the integers in row ¢ (for 2 < g < m)
and columns (7) of the matrix (8) are congruent (modulo 2) to a per-
mutation of the integers in column (7) and the first row of (8).

In the matrix A, ,R; add columns f(e, + e, + +++ + e,_)) + 1, f(e, +
e+ vo0Fey)+ 2, 000, f(eg+ €+ -+ +e)—1 to column f(e, + e, +
«ee+¢) for s=1,2, .--,r. The integers appearing in rows mp + 2,
mp + 3, +++, m(p + 1) of column f(e, + e, + +++ + €) are now congruent
(modulo 2) to the integer in row mp + 1 and column f(e, + e, + -+ +
e¢,). This holds for p =0,1, «+-,h—1, and s=1,2, .-, . Now add
row mp +1 to rows mp + 2, mp + 3, +++,m(p +1) for p=0,1, «--,
h — 1. The integer in row mp + ¢ and column f(e, + e, + <+« + ¢,) is
now congruent to zero (modulo 2), for 2<¢=m;0=p=h—1,1=s
< r. Hence columns f(e; + €, + +++ + ¢,) for 1 < s < r may be regarded
as lying in the same vector space of dimension % over the field of two
elements. Since r» > h, these vectors are dependent. Consequently the
determinant of A, ,R; is congruent to zero (modulo 2). This is a con-
tradiction as the determinant of A,  R; is + 1.

Hence each e; =mn,. Let Z; be the block diagonal matrix diag
Iy, Ej o EjiEj, + v, B Ejy -+ E; ). Since E;.E;,-++ E;, is a di-
agonal block in E}i and since E7ji = I,, it follows that E;.E;,--- E;,,
= I,. From this fact and the fact that the E;, are generalized per-
mutation matrices we find that Z,E,Z} = [0,, I,, O, --+,0,],,. Hence,
if Z=diag(Z,, Z,, +++,Z,), then ZN,Z' = P,. Morever, Z is a matrix
with ¢ rows and columns in elements which are circulants of type
(Mg, My, ++ ¢, Mi—y). We now have M, = U,;P,U; where U= RZ' is a
generalized permutation matrix and a matrix with ¢ rows and columns
in elements which are circulants of type (n,, 7y, -+, #;_). Then

(B,U.U; i (B,U:

B,.UP,U; B,UP;
B, U; Py U; B U; Py

Ai——l = = U; = Az U,L ,
B,U:U; B,U;

LB U{P}U, LB Uipy]
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say. Here each B;U! is a vector with g coordinates in elements which
are circulants of type (n,, %, +++, 7;;). From the form of A, it follows
that A; may be partitioned into blocks which are circulants of type
(nO’ Mgy *2 ey ni)‘

The proof is now complete.
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