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Introduction^ A basic feature of most of the methods used for the
numerical calculation of a variational problem is the reduction of the
infinite dimensional problem to a finite dimensional problem by some
kind of approximation. One of the most natural approximations is that
of replacing a curve or a surface by a finite number of points lying on
or near the curve or surface. The points are then connected by simple
arcs or surfaces, and the resulting approximation will, if the number of
points is sufficiently large, presumably be close to the original curve or
surface. The difficulties inherent in this approach to surface problems
are well illustrated in the works of Rado [8], [9] on surface area.

The replacement of a curve by an approximating polygon, however,
does lead to a usable finite dimensional approximation scheme. Lewy
[3] (Chapter IV) gives a proof of the existence of an absolute minimum
to the positive regular nonparametric problem by using such an approxi-
mation scheme, and his proof could be used to design a numerical process
for approximating this minimum.

The methods of algebraic topology which M. Morse ([4] to [7]) applied
to the calculus of variations have led to a greater understanding of the
relationships between all the extremals to a variational problem. The
extremals are classified according to their index types, in analogy with
quadratic forms of a finite number of variables. While the extremals
with nonzero index are not minimizing, they are of importance in many
physical applications.

In this paper we shall treat the problem of computing the non-
minimizing extremals as well as those of minimizing type, using the
theory developed by Morse, together with a general theory of approxi-
mation. In part 1, a brief restatement of some of the principal defini-
tions and theorems of Morse [6] will be given, in the current language
of algebraic topology. In part 2, a general theory of approximation to
an abstract metric space will be developed, and the convergence of the
approximations to the critical levels of the problem defined on this space
will be demonstrated. Part 3 will show that the polygonal approxima-
tions to curves leads, in the parametric problem, to approximations
satisfying the theory of part 2.

The structure of part 2 is given with sufficient abstraction so that
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it may be applied to any reasonable method of approximation to a varia-
tional problem; thus we are not necessarily restricted to the polygonal
approximations described in part 3.

1. Outline of the Morse theory • Given a metric space M, and a
real valued function F defined on M, we define the sets Fa as the set
of all points x of M such that F(x)^a. We make the basic assumption
of bounded compactness; that is, the sets Fa are compact for all a.

We now assign a homology theory to M and its compact subsets.
The most generally useful homology for the calculus of variations has
been the Cech theory, in the form given by Vietoris (see Vietoris [11]
and Morse [6]). In this paper we shall use Cech homology, as defined
in Eilenberg and Steenrod [1], Chapter IX, with coefficient group the
field of integers modulo 2. We shall largely follow the notation of
Eilenberg and Steenrod [1].

For a ^ β > 0, we define the inclusion map

iί (Fay Fa-ct) > (Fa, Fa_β)

of the compact pairs. Then for a ^ β > 0 and for each q we have the
homomorphisms

τr£: Hq(Fa, Fa-Λ) > Hq(Fa, Fa_β)

induced by ig, with π;=identity, and π\πi—πl for a Ξ> /3:> 7.
This set of groups and homomophisms defines a direct system (Eilen-

berg and Steenrod [1] p. 212). We may then take the direct limit

dir lim Hq(Fa9 Fa^) = Hq(Fa, FaJ)

and define this as the cap group of index q at the level F = a. Morse
[6] defines an equivalent group of cap classes in a different way, using
the Vietoris homology theory.

If Hq(FO9 FaJ) Φ 0, we will say that F — a is a critical level of F
on M, with index q. Now we derive three lemmas about the cap groups
which will prove useful.

LEMMA 1.1, Given any nonzero element V of Ha{Fa, FaJ)y for every
sufficiently small a > 0, there exists a nonzero element V* in Hq(Fa, Fa-a)
such that the projection

πa: HQ(Fa, Fa^a) > Hq(Fa, FaJ)

maps VΛ into V.

Proof: By Lemma 4.3, p. 221 of Eilenberg and Steenrod [1], there
exists a positive number 7 and an element Vy in Hq{Fa, Fa-y) such that
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πy Vy = V. Now choose a arbitrarily between 0 and 7, and set VΛ = πl Vy.
Clearly Va satisfies the lemma, since πΛVa = πΛπlVy — πyVy — V.

LEMMA 1.2. Suppose there is no critical level F — c of index q in
the half-open interval b < c <£ α. Then Hq(Fa> Fb) = 0.

Proof. We shall prove this lemma by contradiction. Suppose
Hq{Fa, Fh) Φ 0, and let U be a nonzero element of this group. We de-
note the homomorphisms of Hq(Fa, Fa) into Hq(Fa, Fβ) induced by inclu-
sion, for a < β < α, by jg. These are the projections of the direct system
defining the cap group at the level F — a. This cap group is zero, since
F = a is not a critical level of index q.

Next we define s as the supremum of all numbers β in the interval
[6, α] such that U is woέ in the kernel of jξ. By Lemma 4.4 of Eilen-
berg and Steenrod [1], p. 221, there is a 7 < a such that jy

bU = 0, since
the direct limit is zero. Hence for all β with 7 ^ β ^ a, jξU = jξjy

bU =
0. Therefore by definition, s ^ 7 < α.

Now suppose /5 < s and jζU = 0. Then for every 7 with β < 7,
3lU = ijϋj£Ϊ7 = 0, and /S is an upper bound, contrary to the definition
of s. Hence for all β < s,jβ

bUφ 0.
Since, by definition of s, if U — 0 for all β > s, the map j'J satisfies

the equation

j Z7 = inverse limit jζU — 0
β>s

by Lemma 3.11, p. 218 of Eilenberg and Steenrod [1]. Now consider the
following portion of the exact sequence of the triple (Fb, Fs, Fa)

Hq{Fs, Fb) > Hq(Fa, Fb) > Hq{Fa, Fs) .

Since U is in the kernel of j'bf it is in the image of i. Hence there is
a nonzero element V in Hq{Fs,Fb) such that iV= U.

But F = s is not a critical level of index q; hence the direct limit

as β~< s of Hq{Fs, Fβ) = 0. Then by Lemma 4.4 of Eilenberg and Steen-

rod [1], p. 221, there is a 7 < s such that V is in the kernel of

j:Hq(Fs,Fb) >Hq(Fs,Fy).

Consider now the following portion of the homomorphism of the exact
sequences of the triples (Fa, Fs, Fb) and {Fa, Fsy Fy) induced by inclusion:

Hq(F$, Fb) > Hq(Fa, Fb)
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The element V in Hq(F8fFb) satisfies iV = U, and so jbiV — iyjV =
iy0 = 0. Hence U is in the kernel of j \ and Ύ < s. This contradiction
proves there is no nonzero element U in Hq(Fa, Fb), thus proving the
lemma.

LEMMA 1.3. Suppose there are no critical levels F = c of index q
or q + 1 on the half-open interval b < c ^ a. T/̂ ew ί/̂ β inclusion map
of Fh into Fa induces an isomorphism of Hq{Fh) onto Hq(Fa).

Proof. By Lemma 1.2, Hq(Fa, Fb) = Hq+1(Fa, Fb) = 0. Hence in the
exact sequence of the pair (Fa, Fb) we have

0 - ? - Hq(Fb) - U Hq(Fa) -U 0 .

Therefore i is an isomorphism, and the lemma follows.

2. Approximations to a metric space* The following problem is
now defined: we are given a metric space M of points x and a real valued
function F defined on M; we wish to find the critical values of F on M.
To do this we define a sequence of approximations to the space M. Using
the methods of algebraic topology which M. Morse ([4] to [7]) applied
to the calculus of variations, we are able to measure how close to the
critical levels of the original problem those of the approximated problem
will lie.

Following Morse [6], pp. 29-36, we repeat here some definitions for
the convenience of the reader. An admissible deformation of a subset
E of M is defined as a homotopy q(p, t): E x I —> M, where / is the inter-
val 0 ^ t ^ T, and q(p, 0) = p for all p in E. The curve q(p, t) obtained
by holding p constant is called the trajectory defined by p. If the points
ri — Q(P> *I) and r2 = q{p, t7) are on the trajectory defined by p with
0 ^ tx ^ t2 ^ T, then rx is said to be an antecedent of r2.

The admissible deformation is said to admit a displacement function
d(e) on E if, whenever rx is an antecedent of r2 with the distance from
n to r2 greater than ε > 0, then F(r^) — F(r2) > δ(ε), where d(ε) is a
positive single valued function of ε. If an admissible deformation of E
admits a displacement function on each compact subset of E, the defor-
mation is called an F-deformation.

The function F is called upper-reducible at p if for each constant
c > F(p), there exists a neighborhood of p relative to Fc which posesses
an JP-deformation carrying the neighborhood into a set lying in Fc-e for
some positive e.

Following Morse, we make the assumptions that the sets Fa are
compact for all α, and that F is upper-reducible at all points of M.
Under these assumptions Morse ([6], p. 38) proves that each critical
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level ("cap limit") contains at least one homotopic critical point.
Next we give a set of formal requirements defining a set of approxi-

mations to the space M which are admissible with respect to F. To do
this we define a sequence {pn} of functions, called approximations, with
the following properties:

(1) For each n, pn is a continuous function of M into M. The image
of M under pn will be called Mn.

(2) Mn is a closed subset of M for each n.
(3) F is a continuous function on M* for each n.
(4) For any real number α, and any e > 0, there is an integer N

such that

(2.1) F(pnx) g F(x) + e

for all n > N, and for all x in Fa.

(5) For any α, β > 0, n > N of property 4, the composite map

(2.2) ip n : Fa > Fa+e Π Mn > Fa+e

is homotopic to the inclusion map

(2.3) j : Fa > Fa+e .

The map pn in (2.2) is regarded as taking points of M into points
of Mn, where Mn is regarded as a separate space, with topology induced
by the topology of Λf. The inclusion map i of (2.2) is the map taking
points of Mn into themselves, considering Mn as a subset of M in the
image. We shall abbreviate by setting

(2.4) Fh

n = Fbf]Mn .

For the applications of this theory to computing variational problems,
we shall demand one further restriction on the subspaces Mn; they are
to be finite dimensional of dimension rny in the sense that they are locally
homeomorphic to euclidean space of rn dimensions. In this manner the
problem of finding the critical points and levels of the infinite dimensional
space M is reduced to the simpler problem of finding the corresponding
objects in the finite dimensional subspace Mn. However, as this restric-
tion is not used in the topological arguments to follow, it is not placed
in the set of requirements above.

First, the properties of bounded compactness and upper reducibility
must be verified for the subspace Mn.

LEMMA 2.1. Under the conditions (2) and (3) of 2.1, the subsets Fb

n

are compact, and F is upper reducible on Mn.

Proof. Mn is closed by requirement (2), hence Fb

n is compact. F
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is upper reducible on Mn because any continuous function on a space is
upper reducible (Morse [6] p. 37).

Lemma 2.1 allows us now to use the Cech homology theory with
the compact subsets F* and the theory developed by Morse to indicate
the relationship between the critical value of F on M and those of F
on Mn. The theorem below gives this relationship in one case of interest,
and show convergence of the critical levels on Mn to those on M, as
n—> co.

THEOREM 2.1. Suppose F — c is a critical level of index q of F on
M, and there are no other critical levels of F on M of index q or q + 1
on the interval [c, c + h] for some h>0. Suppose futher that there are
only a finite number of critical levels of F on Mn, for each n.

Then for every sufficiently small e > 0, there is an integer N such
that for n > N, the approximating space Mn possesses a critical level
cn of index q, with c ̂  cn fg c + e.

Proof. Since F = c is a critical level, the cap group Hq(Fc, FCJ) is
nontrivial. Let V be a nonzero element of this group. Then by Lemma
1.1, for every sufficiently small a > 0, there is a nonzero element Va in
HQ(FC, Fc-V) such that the projection of this group into the cap group
maps VΛ into V. Now choose such a number a < h, and call it a0. Next
pick arbitrarily a positive number e < a0. Finally choose a positive number
a < e. Then by property (4) of the approximations we may choose N
so that for n > N we have

pn(Fc) c F β + i c Fc+e

and
pn(Fc-a) c Fc

n^+e c Fc,

The composite map ipn as defined in equation (2.2) then defines a map
of the pairs (FC1 Fc-a) into (Fc-e, Fc-a+e), which is homotopic to the
inclusion map of these pairs, by property (5) of the approximations.
Therefore the homomorphism

i*p*: Hq(FCf Fc-Λ) > Hg(Fc+e, Fe^+e)

induced by this pair map is the same as the inclusion homomorphism for
the pairs, by the homotopy axiom of homology theory.

Now consider the following portion of the map of the exact sequences
of the pairs (Fc, Fc-a) and (Fc+e, Fc_Λ+e) induced by inclusion:

ά > Hq(Fc) > Hq(Fc, F

Hq(Fc-a+e) > Hq(Fc+e) > Hq(Fcbey
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Since there are no critical levels on M of index q or q + 1 in the
intervals (c — a, c — a + e] and (c, c + e], Lemma 1.3 allows us to con-
clude that the inclusion homomorphisms if and i} are isomorphisms.
Then the "five" lemma shows that i3* is also an isomorphism. But it =
i*£>*. Therefore the kernel of p* must be zero.

This means that Hg(F?+9, F?_ω+e) contains the nonzero element pt VΛ.
Therefore by Lemma 1.2, there is at least one critical level cn of F on
Mn of index q, in the interval (c ~ a + e, c + e]. Now suppose there
are no critical levels of index q of F on M* in the interval [c, c + e].
Then there must be a critical level cn below c, in the interval (c — a + e,
c). But a may be chosen so that c — a + e is arbitrarily close to c.
This is clearly contradictory since there are only a finite number of
critical levels on jfcf , by hypothesis. Therefore there is at least one
critical level cn in the interval [c, c + e], and the theorem is proved.

Next we show convergence of the critical points on Mn to those on
M in a simple case.

THEOREM 2.2. Given the conditions of Theorem 2.1 for q = 09 sup-
pose the function F attains its absolute minimum on M at the point
x, and this minimum point is unique.

Then the approximating spaces Mn contain homotopic critical points
of index zero, and a subsequence of these points converges to the point
x.

Proof. Let F(z) — c. This level is clearly a critical level of index
zero. Then by Theorem 2.1, the approximating spaces Mn contain critical
levels cn of index zero, which approach the level c from above. But
Morse [6] p. 38 proves that each critical level cn contains at least one
homotopic critical point of index zero. Choosing one such point for each
n, we denote it xn. Since the infinite set {xn} is contained in the compact
set Fc+e for some e > 0, it has at least one accumulation point, which
we may call y, and a subsequence converges to y. But the lower semi-
continuity of F implies F{y) ^ \\mnF(xn) = c, for any convergent sub-
sequence. Clearly the inequality is impossible, since c is the absolute
minimum of F on M. Hence we have F(y) = c, and therefore y ~ x,
since this minimum is unique.

3Φ The approximation of the parametric problem with fixed end
points. In this part the requirements of § 2 will be applied to approxi-
mations to a general class of fixed end point problems in parametric
form. The definition of the parametric problem will follow closely that
given in Morse [6].

3.1. The curve space. The space M of § 2 will in this application
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be replaced by the space Ω of all continuous curves (parametrized curve
classes) between two fixed points a and b on a compact subset of euclidean
w-space, which we shall denote by Σ.

A parametrized curve, or p-curve, on Σ is defined as any continuous
function from a real interval into the space Σ.

Suppose two p-curves ηx and % are given in the form

Vϊ Q =

%: Q = ?2(ί) 0 £ t £ d .

Let w be any sense-preserving homeomorphism between [0, c] and [0, d]9

and let d(w) be the maximum distance between the points qλ{t) and q2(wt)
for έ in [0, c]. The Frechet distance between rj1 and % is defined as

taken over all possible homeomorphisms w. (Cf. Frechet [2].) The set
of all p-curves at zero distance from a given p-curve will be called a
curve class, or simply a curve. A p-curve belonging to a curve class
will be called a representation or parametrization of that curve.

A p-curve joining a to b on Σ is defined as a p-curve

ψ q = gr(ί) 0 ^ ί ^ C

with the property that

#(0) = a and q{c) = b .

Clearly every p-curve in the curve class of η has this property. The
curves representable by p-curves with this property are the points of
the space Ω. The Frechet distance between two curves a and β of Ω
is defined as the Frechet distance between any parametrization of a and
any parametrization of β. This distance is clearly independent of the
choice of the parametrizations.

3*2. μ-lengtbu A special parametrization of curves given the name
/i-length by Morse has been used in many connections in the calculus
of variations. A summary of some of its important properties will be
made here.

To define the μ-length of a curve η, we take any parametrization
q = q(t), 0 2g t ^ c, of 7j, and pick a set {ί,-} of k values of t with 0 <Ξ
ίx < *2 < it ^ c- This set defines a partition P = {g,j of the curve
37, where #,• = q(tj). We denote the minimum of the fc — 1 distances
(?i, Q3+1) on 21 for i = 1, 2, •••, fc — 1, by m(P). Then the sup ra(P)
taken over all such partitions with k points will be called μk. We then
set
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(3.2) μv = £ - | ^ .

μv is the /^-length of η, and is independent of the particular choice of
the parametrization q(t) of η. Thus the /^-length μ{τ) of the part of q(t)
from t <Z 0 to t g τ may be used as a parametrization for η. This para-
metrization has the following properties, proved in Morse [5], and listed
also in Morse [6] p. 34-35.

(1) If q = q(t) is any parametrization of a curve ?], then the μ-
parametrization of rj has the form

(3.3) η:q = q(μ) = q(t(μ)) 0 ^ u ^ u,

where t(μ) is a continuous nondecreasing function of μ on the closed
interval [0, μη],

(2) The value of μ at any point q on the curve η satisfies the ine-
quality

(3.4) <L ^ μ <ς d

where d is the diameter of the set of points preceding q on η.
(3) The μ-length μη of a curve η is a continous function of η on

the curve space Ω.
(4) For a given η, the /^-parametrization of

is constant with respect to μ on no subinterval of [0, μv].
(5) The parametrization q(μ; η) of a curve η of Ω is a continuous

function of μ and ^ for μ in [0, μ j and η in β.
Suppose η is a straight line of length s joining two points p, q in

euclidean space. For any partition Pk with k values {qj} on η, m(Pk) is
clearly g s/k — 1. But the equidistant partition gives m = s/k — 1.
Hence μk = s/k — 1, and the ^-length /je, of 07 is

If Ύ] is any rectifiable curve joining p to q with are length s, m(Pk)
is still S s/k — 1 for any partition Pfc of A; points. Hence μk ^ s/fc — 1,
and therefore

(3.6) / ^ s l o g 2 .

3*3 The functional î 7. Having defined the curve space Ω, we now
construct the functional F on Ω, We are given a function /(αsj, , %n,
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Pi rn) = f(%, r) of 2n variables with the following properties (n is the
dimension of 2*):

(A) f(x, r) is of class C4 in (x, r) for x in Σ, and any set of numbers
(r) Φ (0).

(B) / is an invariant under the transformations of local coordinates
(cf. Morse [6] p. 64-65).

(C) f(x, r) > 0 at every point of Σ and for all r.
(D) / is positive homogeneous of degree 1 in r.
(E) The rank of the determinant

is n — 1, and all its characteristic roots except the zero root are positive.
Assuming that Σ is arc wise connected, we define a secondary metric

[<Zi?a] on points of Σ as follows. For any two points q19 q2 of Σ we con-
sider the class of all rectifiable curves on Σ joining qx to q2; the integral

(3.7) F= [Q2f(x,x')ds

is computed over this class, and the inf F over this class of curves is

[<M2].
To define F on an arbitrary curve η of Ω we form the sum

(3.8) Σ

where the points qt are partition points on rj. The sup of s over all
partitions of η is defined as F{η). F(ή) is equal to the integral of / along
the curve TJ if η is rectifiable, and is infinite if rj is not. Morse [6] shows
that under these conditions, we have bounded compactness of M9 and
upper reducibility of F.

3A. Compactness and rectifiabUity Before showing properties 1 — 5
of § 2 are satisfied in the parametric problem, we need the following
compactness lemma:

LEMMA 3.1. If Γ is a compact subset of the curve space Ω, the
set A of all the points of Σ which lie on curves of Γ is a compact
subset of Σ.

Proof. (Cf. Morse [6] p. 59.) Let {qj} be an infinite set of points
of A. Each point qs lies on at least one curve j3- of Γ. Pick one such
7y corresponding to each qd and consider the sequence {jj} of curves. We
parametrize each curve of Γ with the μ-length defined in 3.2, and there-
fore we have a unique number μά defined as the μ-value of the point
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q3 on the curve y3. Since Γ is compact, the curves {7,-} possess a limit
curve To and the //-length μΊ of the curves of Γ is bounded above; hence
the sequence {μ3} possesses a limit point μ0.

Consider the point q0 = 70(/Ό) Qo is clearly a limit point of the
sequence {q3}. Hence the lemma follows.

Now let Σa be the set of all points of Σ which lie on curves of Fa;
the compactness of Fa then implies the compactness of Σa by the previous
lemma. Therefore the set Ta of (x, r) space

(3.9) Ta:xinΣa, Σr\ = l

is also compact.

Therefore the function f(x, r) is bounded above and below by M and

m > 0 respectively for x, re Ta. Thus we have for any p, qe Σ

fds ^ M(pq)

V

for any rectifiable curve joining p to q on Σ. Therefore

m(pq) ^ [pq] ^ M(pq) .

Therefore on any partition {q3} of a curve r] on Ja we have

mΣ(q3qj+1) ^ Σ[q3qj+1] ^ MΣ(q3q3+1) .

Taking the limit for norm of partitions —> 0, we find

(3.10) mh(rj) g F(η) ^ ML{η) .

Thus L(^) ^ j(v)lm ^ φ , where L()7) is the arc length of η.
Therefore we have shown

LEMMA 3.2. The curves of Fa are rectifiable and of arc length
g α/m, where m > 0 is the minimum of f{x, r) on Ta.

3 5. Definition of the approximations. Given any curve of Ω, we
may parametrize it in terms of the μ-length described in 3.2. If this
is done we denote the curve rj by

(3.11) y:q = q(β; η) 0 ^ μ ^ μv .

Making the linear substitution

(3.12) t = μ/μv

we have a new parametrization of η:

(3.13) y:q = q(t) - q(tμv; η) .
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This parametrization of the curves of Ω will be called the uniform
ί-parametrization.

Now to define the approximations pn, we take a sequence of parti-
tions Pn of the unit interval as follows: Pn will be a set of n + 2 points
{£;} j — 0, 1, , n + 1, with t0 = 0 and ίΛ+1 = 1, and ΐ i + 1 > t3 . The
norm of the partition Pn will be denoted δn. We require further that
δn —» 0 (as n—• oo).

We now take a curve r] oί Ω, parametrized as in equation (3.13)
and define the points

(3.14) qs = q(td) = q(tau^ η) .

The points qό all lie on the curve η, and q0 = α, qn+1 = 6, the end points
o f Ύj.

Lemma 3.1 shows that the set of ^-lengths of the curves in Fa is
bounded. Suppose μv < M for all η in Fa. Then

(3.15) Δμ5 - (tj+1 - ί , K < δnM

for all curves of Fa. Therefore the diameter dό of the subarc of η from
qj to qj+1 satifies

(3.16) di SL 24μj < 2δnM .

Under the conditions described in 3.3, there is a fundamental distance
p in the compact set Σa (described in § 3.4) with the property that if
p, q have distance (pq) < p, there exists a unique extremal arc joining
p to q which gives to F a proper minimum value over the class of all
arcs joining p to q, and this extremal arc is a member of a field of
extremals covering the ^-neighborhood of the point p simply (except at
p). Hereafter, when dealing with a set Fa9 we shall assume that n is
large enough so that the diameters dj of the subarcs of η are all less
than p.

We then construct the polygon through the points qOf qly , qn+1.
The arc of the polygon from q3- to qί+1 is defined as the euclidean straight
line from q3- to q3 +1. This polygon obtained from the curve Ύ] is denoted
by Pn(V)> a n d is a continuous parametrized curve class, which may also
be denoted by pn(y), is in Ω. The space pn(Ω) of all polygons obtained
from the partition Pn will be called Ωn.

3.6* Verification of the approximation requirements* Having de-
fined the sequence {pn} of approximations to the parametric problem, we
now seek to show that they satisfy the topological requirements 1-5
of § 2. The following lemmas dispose of properties 1-3.

LEMMA 3.3. For each n, the approximation pn is a continuous
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function of the curve space Ω into itself.

Proof. The /^-length μv of η is a continuous function of η in Ω;
and the points q3- = q{t3), where q(t) is the uniform t parametrization of
f] are therefore continuous functions of Ύ) in Ω. This means, given any
e > 0, there is a δ > 0 such that d(^, £) < δ in β implies the distance
(flit ro) < β in I7 for all j , where q3, r3 are the points on η, ζ respectively
with ί-value t3. But if the distance between the corners q3 and r3 of
the two polygons is less than e, the Frechet distance in Ω between the
polygons is also < e. Hence the lemma follows.

LEMMA 3.4. Ωk is a closed subset of Ω.

Proof. The limit of any sequence of polygons with k corners can
be only a polygon with k or fewer corners, hence contained in Ωk. Thus
Ωk is evidently closed.

LEMMA 3.5. F is a continuous function on Ωk.

Proof. By property 3.2, given any curve a in Ωk and any δ > 0,
there is a p > 0 such that β in Ωk, d(a, β) < p implies \μΛ — μβ\ < δ.
Then equation 3.5 of § 2 implies that the arc lengths of a and β differ
by less than δ log 2, since they consists of straight line segments. But
Tonelli ([10] vol. 1, p. 304) proves the following theorem:

Given any curve η, and any ε > 0, there exist two numbers δ > C
and p > 0 such that if

d(V, ξ)> P

and

\L{η) - L(ξ)\ < δ (L(η) - arc length of η)

then

\F(V)~F(ζ)\<ε.

Hence Lemma 3.5 follows immediately.

In order to prove requirements 4 and 5 of §1.1 we shall use the
following lemmas.

LEMMA 3.6. \impnη = η as n—• oo, uniformly for η in Fa.

Proof. Equation (3.16) of § 3.5 states:

dj ^ 2δηM

whenever η is in Fa. Hence the distance from a point on the straight
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line from q3- to qj+1 to any point of r] between the same points is closer
than 2dj, so the Frechet distance between rj and pj] is less than &dnM.
But the dn approach zero, hence the lemma follows.

Now we show the uniform convergence of the arc length of pj] to
that of the broken extremal associated with pj] for η in Fa.

Consider the set of all extremal arcs for the problem, parametrized
by arc length s, joining the points p and q on Σ, and satisfying (pq) < p,
the elementary length defined in 3.5. These extremals satisfy the Euler
differential equations

(3.17) £t[Fri(gfg')] = Fmι(g,g')

which may be written in the form

(3.18) g'/ = φfa, g')

where φ is the function obtained by the solution of the implicit equations:

F σ' 4- F a" — F = 0

(3.19) * ' j j (summed on i) .
g\g\ - 1 = 0

Under the assumptions made on F, the equations (3.19) can be solved
uniquely for φi9 and φ{ is a continuous function of g and gf. Since (#, gf)
lies in the compact set Ta, \ φ{ \ is bounded. Thus for all the geodesies
considered,

(3.20) \gl'(s)\<M.

A broken extremal consisting of the unique elementary extremal
arcs joining the points q3t qί+1 of an approximation pn{η) will be called
the broken extremal associated with pjy])-

Under these conditions, we can prove the following lemma.

LEMMA 3.7. The arc length of the polygon pn(η) approaches the
arc length of the broken extremal associated with PJjf) as n—+ oo uni-
formly for Ύ) in Fa.

Proof. Consider the pair of points qjf qj+1 of Σ. We shall compare
the arc length of the extremal

®% = 0i(s) 0 ^ s ^ Si

(parametrized by arc length) with the length of the straight line from
q3- to qj+1. Consider the family of straight lines drawn form the initial
point q3- to the point q — g(s) on the geodesic. We denote the length
of the straight line to g(s) by L(s). L is clearly a continuous function
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of s, with L(0) = 0.
In the parametrization by arc length, the extremal g is a function

of class C2. We let 0 (O) = r<. The law of the mean gives

(3.21) g'£s) = r< + βflrftσ) 0 ^ σ ^ s

and application of equation (3.20) gives the inequality

(3.22) Ti - Ms ^ g&s) ^ r* + Ms .

Integrating (S.19) from 0 to an arbitrary point s between 0 and su

we obtain

(3.23) riS - ^ - ^ fir4(β) - flr4(0) ^ r j S
2

Now suppose | r< | > Ms/2. In this case we have

(3.24) (ft(8) - ^(0))2 ^ s2(rl - Λfβ|r4| + ^ - ^ ) .

Therefore the length L(s) of the line from </(0) to g(s) satisfies the
inequality

(3.25) ^ψ ^ Σ'{r\ - Ms | r, |}

the sum being taken over all r< with |r<| > Ms/2.

But

i * lrjKJfβ/2 * ~ " 4

and Σi^? = 1 implies ^ | ^ | ^ τ/7Γ
Hence

(3.26) 1 ^ i M . ^ 1 - M i/^Γβ - ^ ^ s 2 .
s 4

Also, since the geodesic and the family of straight lines lies in a
point set N on Σ of diameter less than Δn, we have

£(s) < Δn 0 g s ^ sτ .

Now if 4n is taken to be smaller than the maximum value of the
curve L — s[l — M\/~ns — (Λf2w/4)s2]1/2 the curve L = L(s) giving the
length of the line from #(0) to g(s) must lie in a disconnected region
of the (L, s) plane. Since L is continuous and L(0) = 0, it must lie
entirely in the left hand region, which shows
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(a) s < s for all geodesies in the set N.
(3.27) -

(b) ί&U

Thus Lemma 3.7 follows.
Now we can demonstrate that requirement 4 of 1.1 is fulfilled.

LEMMA 3.8. For any real number a, and any e > 0, there is an
integer N such that for n > N, and for all rj in Fa, we have

(3.28) F(pny) £ F{η) + e .

Proof. Let us denote the broken extremal associated with pjη by
gjj. Lemmas 3.6 and 3.7 state that given any p > 0, δ > 0, there is
an integer N such that if n > N, we have

f M) < P

and

\L(pnη)-L(gn7])\<δ

for all η in Fa.
But Tonelli ([10] vol. 1, p. 304) proves that given any e > 0, if δ

and p are chosen sufficiently small, we will then have

(3.29) \F(pn7})-F(guη)\<e.

But from the definition of F and the remark of § 3.5 about the
fundamental distance in Σa we have

(3.30) F{gnη) g F{η) .

Addition of inequalities (3.29) and (3.30) give the conclusion of the lemma.
Now the homotopy described in property 5 of 1.1 will be set up.
First we describe the standard deformation Θ(Ύ], U) of Morse. Let

η be any curve in Fa. Let q — q(μ) be the parametrization of η in terms
of μ-length. Taking the points qo — q(t3-fa) of the approximation pn of
η as corner points, we deform η onto a broken extremal g consisting of
the unique extremals from q, to qί+19 j = 0,1, , n.

This deformation is defined as follows: let μ3- = t^, the value of μ
corresponding to the point qά. Let Δμά = μj+1 — μjm Then at time u,
0 g u ^ 1/2, we take μ^u) — μ5 + 2uJμjf and construct the unique ex-
tremals from μ, to μf(u). The curve g(η, u) is then defined as the curve
formed by these extremals from μ5 to μj(u) and the original curve q(μ)
from μά{u) to μj+1.

We now apply this deformation to the polygonal curve pjj]), defor-
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ming it onto the same broken extremal g. If we set u = 1 — u in this
latter deformation, and follow the first deformation by the second, we
have a deformation θ(η, u) which carries rj to g and then to pn(if) for
0 <Lu ̂ ,1. During the first half of this deformation F is not increased,
and during the second half F is not decreased; thus the deformation
takes place in the set Fb, where 6 = max {F(rj), F(pn)}. But in Lemma
3.8 it was shown that for n sufficiently large, b ^ a + ε for any ε > 0,
η$Fa.

The deformation θ(η, u) is a homotopy, since it is easily seen to be
continuous in both η and u. Thus we have shown that the parametric
problem with the approximations described above satisfies the properties
of §1.1.
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