FOURIER SERIES WITH LINEARLY DEPENDENT
COEFFICIENTS

HARRY HOCHSTADT

I. Introduction. The following problem is posed and solved in this
article. A function H(6) is defined over the interval (0, 7), but is as
yvet unknown over the interval (—=, 0). Furthermore it is supposed
that the function can be expressed as a Fourier series, with certain
constraints on the coefficients. In particular

H(6) = % + i;l(an cos nf + b, sin n)

where
aa, + Bb, =c, , n=0,1,2 - .

a and B are prescribed constants and the ¢, a prescribed sequence.
The question which can now be raised is whether these constraints
automatically continue the function into the interval (—=, 0). It will
be shown that under certain conditions the continuation of H(f) is unique
almost everywhere.

There are two trivial special case namely if either a or B are
allowed to become infinite. In these cases the proper continuation is
as an odd or even function respectively.

A different, but equivalent, formulation is the following. Does the
definition of H(#) and the constraints on the Fourier coefficients a, and
b, allow one to evaluate these coefficients? In order to be able to use
the standard integral formulas for the coefficients H(6) would have to
be defined over an interval of length 27. Over the interval (0,7) the
trigonometric functions are not orthogonal so that such integral formulas
do not exist. One can show then that an equivalent statement is that
the nonorthogonal set of functions {sin (nx — tan~*a/B)} is complete in
L0, 7), for |a|+|B|. The case |a| =R | requires some additional
stipulations.

One can also formulate a similar problem involving a function
defined over the interval (0, =), and constraints on the Fourier cosine
and sine transforms.

In both of these case one can show that a unique continuation
exists in the space of square-integrable functions for |a| = |B|. In
the case of the problem of the infinite interval one can explicitly demon-
strate nonunique continuations in the space of nonintegrable functions.
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The proof in both cases is accomplished by reducing the problem to
the solution of a singular Fredholm integral equation of the second
kind. An analysis of the spectrum of the resulting linear operator
shows that the lowest eigenvalue is outside the region of interest.

II. Statement of the theorems.

THEOREM A. Suppose the periodic function H(0) possesses the
Fourier series

H) = %"— + i(an cos né + b, sin nb)
1

where the Fourier coefficients are linearly dependent. They satisfy
the relationship

aa, + Bb, =c, , n = 0.

where o and B are prescribed real constants and the sequence {c,} s
square-summable. If H(6) ts defined as a square-integrable function
over the interval (0, ), there exists a unmique (a.e.) square-integrable
continuation of H(O) into the interval (—m, 0), provided |a |+ |B].

When o« = B, one also requires that the function
K(6) = H(0) — a[e,/2 + icn cos nd]
be such that
$k1< o, and ::V‘_,]k,,[lnn< ©
where
ky = SZ(cot 0/2)K(6) cos nd df .
When a = —pB the cot 0|2 is to be replaced by tan 6|2 in the above

antegral.
Theorem B is a companion theorem to A.

THEOREM B. Suppose the function H(0) can be represented by the
Fourier Integral

H(0) = S:(a(a}) cos @0 + b(w) sin w0)dw

where the F ourtier cosine and sine transforms are linearly dependent.
They satisfy the relationship
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aa(w) + Bb(w) = c¢(w) , 0w=0

where a and B are prescribed real comstants and the fumction c(w) s

square integrable. If H(O) is defined as a square imtegrable function

over the interval (0, =) there exists a unique (a.e.) square integrable

continuation of H(O) into the interval (— o, 0), provided |a |+ |B]|.
When a = B one also requires that the function

K(6) = H(6) — % S:c(w) cos @0 do
be such that
S:kﬂ(w)dw < o, and S: | (@) | In @ do < oo .
where
F(w) = S:e-mK(a) cos 0 do .

When o« = —p, 072 4s to be replaced by 6** in the above integral.
Equivalent formulations of these theorems are the following.

THEOREM A’. A function H(0) in L 0,7) can be represented in
the form

H(6) = 3k, sin (nd + ¢)

where ¢ is a fixed phase angle. For ¢ = +m[4 one must tmpose ad-
ditional restrictions on H(0) as im Theorem A.

THEOREM B'. A function H(0) in Ly0, =) can be represented in
the form

H(O) = S:k(w) sin (08 + $)dw

where ¢ is a fived phase angle. For ¢ = *r/4 one must impose ad-
ditional restrictions on H(0) as in Theorem B.

However the former formulation is preferable because that is the
direct form in which the theorems are proved.

III. Reduction of the proofs to the analysis of integral equations.
One can in the ensuing analysis replace the ¢, by zero without loss of
generality since the general expansion can be rewritten in the following
form after a, is eliminated.
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H(9) — l/a[iz"- + f:, ¢, COS n()]
1
= —i b.(Bla cos mO — sin nd) .
1

Let 7(—6) denote the continuation of H(#) in the interval (—r=, 0),
and a,, b, denote the Fourier coefficients of the resultant function. Then

0 r
S_xh(—e) {gfﬁ} 7 do + SOH(ﬂ) {gfrf} n0do =z {g}
and let d, and e, be defined by
= cos _ - [d,
SOH(o) {Si n} n0db = { en} .
Thus one can solve for the corresponding integrals for h(0) and
" cos _ Ja.—d,
Soh(ﬁ) {sin} ne dx = n{ e, —b, } .

From these two equations the unknown coefficients a, and b, can be
eliminated by use of the relationship

aa, + B8b, =0.
It follows that

1) S:h(ﬁ)(a cosnd — Bsinnf)dr = n(—ad, — Be,),n =0,1, +-+

One can now multiply the above equation first by «a cos ny and then
by B8 sin ny and take the difference of the resultant equations, to obtain

e [ 146) cos m(o — 9o + 5" [ 10) eos (0 + a0

—aB S:h(ﬂ) sin n(@ + ¢)dd = (n(—ad, — Be,)(« cos np — B sin ne) .

One can now apply the summation formulas

1 . sin (N— %)x
— + >l cosnx =
2 ! 2sin2
2
» 1 o cos (N— %)x
Sysinne = —cot = — —— = °
! 2 2 2sin L

2
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to the above equation and then pass to the limit as N tends to infinity.
One then obtains the integral equation

A" 0+¢ 40—
@ W) = 2| moycot L2 — rig)
where
_ _2ap
aﬁ + BZ
— 2 —a’d, & . r
f(p) = e { 5+ > (—ad, — Be,)(a cos g — Bsin 'ngb)} .

To convert the Fourier integral case to an integral equation one
defines d(w) and e(w) by

S:H(ﬁ){cos}wﬁ do = T {d(a))}

sin 9 le(w)

and proceeds in a similar fashion as in the previous case. There is an
alternative procedure. The period is changed from @ to T by a formal
change of variable and by a passage to the limit as T tends to infinity
one obtains

' _A(m_MO) 44 -
@ W) — 2|00 = 19)
where
=208
a + G
-1 “(— _ B«
F@) = mgo( ad(w) — Be(w))(a cos wg — B sin wg)dw .

IV. Analysis of the integral equations. The integral equations
corresponding to both problems are singular integral equation of the
Fredholm type of the second kind. It will be shown that both equa-
tions have unique solutions in the space of square-integrable functions
provided that the eigenvalue parameter M\ satisfies

IV <1.
But since

_ 208
a’ + g

and the latter function is bounded by unity it is evident that the in-
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tegral equations alway have unique solutions in the space of square-
integral functions. The case |\| =1 will be treated separately.
Equation (4) is discussed in detail in [3], and the same method can
be adopted for equation (2).
We now consider equation (2) and expand the kernel in terms of
an orthonormal system of functions over the interval (0, 7). We find
that with the kernel we can associate the quadratic form

Zl an.kxnxk
n, k=1

where the a,, are given by

Gy = EHN cotm sin né sin k¢ d6 d¢
T Jodo 2
_ 2= (=] =0, n-+keven
n+k
=4 Wik odd,
n+k

if the selected orthonormal system is {(2/7)"*sin nd}.
We now consider the analytic function

F(z) = i 2,2t
1

and suppose {z,} to be a square-summable sequence. A direct calculation
shows that

oo

S @ R, 0=r<i1.

r . _ _l
S_rzF (2)dz = R

One can also show that the quadratic form is bounded over the
space of square summable sequences.

| S:rze(z)dz l =

S"Wezievpz(rew)dgv |
0

= rzsﬂl F(re”) *dp = rzs”[(zmw—l cos (n — 1)p)
0 0

+ (Zz,r" ' sin (n — 1)p)ldp = nlair™
=nlz, .

By letting 7 tend to unity one finds

> Gy 1,0 | S 21305
n, k=1 1

In order for equation (2) to have a unique solution in the space of
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square-integrable functions it is necessary and sufficient that the quad-
ratic form

Q(x) an - = % n, kX Lr
be positive definite. We see that this form can be written as
: 1(7 . 10y [2 M7 g
Qx) = lim [—S r*| F(ré®) *dp — —g zF (z)dz] .
r=1 L7 Jo TJ)—r

This expression must be real, and writing
F(:) = R(r, p)e'*

we obtain
10" ops 2 P2 :
Qx) = llm[ S R*(r, p)dp — —S r*R*(r, @) sin {20(r, ) + 2<,z>}d90] .

Evidently this is positive definite if || < 1.

The preceding type of argument was first used by Fejer & F. Riesz
[1], to discuss the bounds of such operators. But one can show still
more, namely that the bound of the operator is not attained for any
vector x. If it were Q(x) would vanish, in which case

sin {20(1, @) + 29} =1, a.e.

In this case the real part of the function 2’F™(z), is a harmonic function,
which vanishes a.e. on |2z| = 1. Such a harmonic function can be re-
presented by a Poisson Integral [2]. In follows therefore that since it
vanishes a.e. on |z| = 1 it must vanish identically and it follows that
the function zF'(z) must also vanish identically. Therefore Q(x) does
not vanish for any z. One can infer from this that the homogeneous
integral equation has only the trivial solution, so that the inhomogemeous
equation will have a unique solution provided a solution exists even in
the case |A|=1. But the existence of a solution depends on the
nature of the inhomogeneous term. This case will be discussed in the
next section.

It follows that for |A| < 1 the integral operator is a contraction
operator so that the solution can be obtained by successive iterations of
the operator.

A similar analysis can be carried out for equation (4) using as an
orthonormal set over (0, o) Laguerre polynomials. The rest of the
analysis is similar and details may be found in [3]. However one can
approach this problem also by the use of Fourier integrals. This ana-
lysis can be found in Titchmarsh [4]. The substitutions
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=0, 0 =&, e"h(e7) = O()
, 6(1/2)$f(65) — w’(E)
reduces equation (4) to the form

o) - 2" —28___de=va).
" cosh (7 —

Let
F(w) = ﬁ |__oepedy
G@) = s |__Te™d
and it is known that
= el or
dn = —=— |
S o coshl 7 cosh 7w
2
One finds immediately that
G(w)
F - )
() = —=
cosh Tw
so that
1 S” G(w)em
o) = d
(7;) (271.)1/2 _ml . )\, @
cosh Tw

From the expression it is evident that the integral equation need not
have unique solutions. The solutions of the homogeneous equation must
be of the form e”, where v is a zero of cos (wv) — A. Thus equation
(4) has unique solutions in the space of square-integrable functions, but
is only determined to within a nonintegrable term of the form cy*'72,
¢ being arbitrary.

V. The case |[M|=1. When |A|=1 we have either a =8 or
a = —B. We will consider the case & = 8 in detail and the other case
can be reduced to this one by replacing ¢ by # — 6. The given function
H(9) is to be represented in the form

H(9) = i‘,b,,(cos nf — sin nd)

and we introduce the function
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£@) = b2 = ulr, 6) + in(r, 0) .
‘Evidently
H(6) = u(, 0) — v(1, 0) 0<o<m.
Let U(r, 0) be a harmonic function defined by
U(r, 0) = u(r, 0) — v(r, 0) ,
‘whose conjugate harmonic function is given by
V(r, 0) = v(r, 0) + u(r, 0) .

Since the b, are taken to be real u will be even and v will be odd in
¢. Then

U, 6) = H(9) 0<o<r
V@, 0) = H(—) —1<6<0.

In order to determine the continuation of H(#) into the interval (—=, 0)
it is necessary to determine U(r, @) for all 6. We now define the
function

Fi)=U+11V

and introduce the function

G(z) = et :r/4<%i_§_>112

with the boundary values

G(e*) = (cot 0/2)*, o<o<r
= —i(cot —0/2)"*, —n<0<0.

‘The function G(z)F'(z) = T'(z) is an analytic function whose real part is
defined for the whole boundary.

ReTG(2)F(z) = (cot 0/2)*H(0) , oo
= (cot —0/2)'*H(—0) , —T<0<0.

Thus T'(z) is explicitly given by
T(2) = ic + Sk,
1
where

k, = Sx(cot 0]2)*H () cos nd do

3
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and ¢ is a real, but otherwise arbitrary constant of integration. F'(z)
is now fully determined and it follows that

T 616
U, 0) = Re G((ew)) — H(©), 0<o<m
= —(tan —(9/2)"2[0 + ilcn sin nﬁ] , —T<0<0.

Here U(1, 0) is not uniquely specified, but:if one requires that U(1, )
be square integrable the constant ¢ must be set equal to zero. Fur-
thermore it is not enough to require

3k, < o,
but one also needs
Yk, |lnn < o

in order for
S" tan 0/2[Sk, sin n0Pdo < oo .
0

The Fourier integral case be treated in an analogous fashion or by
formal limiting processes.

VI. Proof of Theorems A and B. To prove Theorem A it is still
necessary to show that the periodic function, which is given by h(—¢)
for — 7 < ¢ <0 and H(p) for 0 < ¢ <7 has the required properties.
From the definitions of the coefficients d, and e, it follows that

1
2
+ aBe, cos np — aB d, sin np)
N el 5y PV qzﬁg*"ﬂ(a) cot ? - ¢ 46 .

a’d, + i(a"’dn cos np — S, sin ne
1

*
S denotes the principal value of the integral. One can by the use of
this summation formula now rewrite equation (2) to read

a4+ B3 B at — B _CLQ_O _ 0—¢
S he) + S5 HE) + o S_Eh( 0) cot =2 do

n _‘}ﬁg*”ﬂ((i) et 2= =0.

2T Jo 2

To complete the proof one merely observes that
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H(p) = % -} ;i(an cos ng + b, sin ne)

. ¢ >0
) = %L + ;(a,, cos ng — b, sin ne)

1 {* 60— ¢ [sin B cos
2—7:5_” cot 2 {cos} nd do = {—sin} ng .

Then the previous equation reduces to
az—(—;"— + azi‘,an cos ng — Bzibn sin ng
1 1
+ a,@ibn coS g — aﬁian sin n¢
1 1
=0
‘which evidently shows that

aa, + £b, =0, n

v

0,

and thus completes the proof of Theorem A.

The proof of Theorem B is completely analogous and will therefore
be omitted.

The statements of the theorems can be considerably strengthened
if one assumes that the original function H(#) defined for 0 < 6 < 7 is
continuous and bounded and the {¢,} are such that the inhomogeneous
terms in (2) and (4) are also continuous and bounded. In this case it
follows from the existence of the Neumann series that the function
h(0) is also continuous and bounded for 0 < 6 < z. Then the resultant
periodic function is continuous and bounded at all points with the ex-
ception of points of the form nr.
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