FAMILIES OF INDUCED REPRESENTATIONS

JAMES GLIMM

In [11], Mackey constructed certain representations (the induced
representations) of a group G. If the group is acting on a measure
space X then the construction also gives a projection valued measure P
on X which is a system of imprimitivity for the representation U of G.
(P(cE) = U(o)P(E)U(c7").) In this paper we determine the topology
in the set of equivalence classes of induced pairs U, P whose joint action
is irreducible, provided certain restrictions are imposed on G and X.
This set of pairs is (homeomorphic to) a space W/G of orbits, where
W consists of fibers over X as a base space and G acts on W. The
fiber over x is @z, the space of equivalence classes of irreducible repre-
sentations of G, = {v: vz = x}. The principal restriction on G and X is
equivalent to assuming that G, is a continuous function of z. (See the
Appendix.) One might hope that in interesting cases X could be ex-
pressed as a finite disjoint union of subsets upon which our assumptions
are satisfied.

One of the motivations for this paper was the hope of introducing
in certain cases a differentiable or real analytic structure into W/G. If
W is a manifold (except perhaps for a set of singular points), if G is
an analytic group and if G acts smoothly on W then W/G is a manifold,
except perhaps for a set of singular points, if W/G is countably sepa-
rated (if there are Borel sets W,, W,, --- in W which are G invariant
and which separate points of W/G). This is a simple consequence of
[14, Theorem 8, page 19] and [6, Theorem 1] and does not depend upon
the special nature of W. In particular it applies equally well to a closed
subset K of W which is a manifold and upon which G acts smoothly.
As might be expected, K/G being countably separated is equivalent to
all representations of a certain C*-algebra being of type I. The as-
sumption that W is a manifold except for singular points is unsatis-
factory. One would like to assume that X is a manifold and that G
acts on X smoothly and conclude that W is a manifold (except perhaps
for singular points) if all the G, are type I groups. Whether this is
true is not known even when X is a point. The results of this paper
presumably have implications for the representations of analytic groups
which have closed normal subgroups.

The group G and the topological space X considered in the paper
will be assumed to satisfy the second axiom of countability. This is
not used until § 2 and in view of [10, 1], it would not be surprising
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if Theorem 2.1 were true without this assumption. That ¢ is a repre-
sentation of a group (resp. #*algebra ) means that the representation
space (@) is a Hilbert space and that @ is a unitary representation
(resp. =*representation and @(R)D(e) is dense in H(p)). For any locally
compact space Y, C(Y) denotes the set of complex valued continuous
functions on Y with compact support.

1. Group algebras. In this section we study x-algebras which are
fields of group algebras and which are associated with a locally compact
group G acting as a topological transformation group on a locally com-
pact T, space X. That G is a topological transformation group means
that there is a jointly continuous map (v, #) — vx from G x X into X
such that (87'v)x = 8~(yx) and ex = x. Suppose a left invariant Haar
measure d(x, ) = do can be chosen on the isotropy subgroups G, “con-
tinuously,” that is so that for each f in C(G), the function x—»S flo)do
defined on X is continuous. Let Y = {(z,0):xc X and aer}G:x Then
Y is a closed subspace of X x G and so is locally compact.

The continuity requirement of the Haar measures could also be
expressed by saying that x — d(x, o) is a w*-continuous map from X to
regular Borel measures on G.

LEmmA 1.1. Let x — dui(x, o) be a w*-continuous map from X to
the regular Borel measures on G. For each compact subset K of X x G

there is a constant M = M(K) such that Hf(w, o)dm(x, U)‘ =M flle

Jor all f in C(K) and z in X.
There are compact subsets K, and K, of X and G respectively such
that Kc K, x K,. If geC(G)and g =1on K,, let M be the supremum

of Sl g9(0) | dM(=z, o) as = varies in K. If fe C(K) then |Sf(ac, o)dum(x, a)l
is dominated by ]]f]lwglg(o)ldﬂ(x, o) = ||fll-M if xz€ K, and is equal to
zero if ¢ K.

It follows from Lemma 1.1 that S f(z, 0)do is a jointly continuous
@

function of f in Cy(K) and = in X.
Let 4, be the modular function for G,, d(x, 07) = d(%x, 0)4,(7). For
a suitably chosen f in C/(G),

4.0 = | foedsl| fio)do

Gz

and so as a function on Y, 4,(7) is continuous. If f,ge C(Y) define

fro(@,0) = | £(@, Pate, p0)ip
F*@,0) = £(a,07) 407 .
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Then fxg and f*e€ C(Y) and C(Y) is a *-algebra. It is also an algebra
of vector fields defined on X and having values in the C(G,) If fe C(Y),

let ||f]l.= Squexg |f (2, 0)| do and let || f|| be the supremum of || P(f)I],

for @ a representatlon of C(Y) which is continuous in the inductive
limit topology on Cy(Y) (the topology which is the inductive limit of
the uniform topologies on the C,(K) for K compact). The next lemma
shows that ||f]| < . It then follows that the completion ® of Cy(Y)
in ||+ || is a C*-algebra.

LEmMmaA 1.1AY |-l |- ll. If ¢ is an irreducible representation
of & then there is a unique © in X and a unique representation @,
of G, such that

P(f) = (@, +)), fe C(Y) ,

and x is determined uniquely by the kernel of @. Furthermore K 1s
closed under multiplication by bounded continuous functions on X.

Let @ be a continuous irreducible representation of C,(Y) on a
Hilbert space . Let X, = {x:x<c X and for some neighborhood N, of
2, kernel ¢ contains all fin C(Y) which vanish off N, (or more precisely,
off (N, xG)N Y). Then X,# X. If x and y are distinct elements
of X ~ X, then there are disjoint neighborhoods N, and N, of x and ¥
respectively and elements f, and f, of C(Y) ~ kernel @ which vanish
off N, and N, respectively. Then @(Cy(Y))o(f.)9 and o(C(Y))p(f,)9
are orthogonal nonzero invariant subspaces of ©. This contradicts the
irreducibility of @ and so X, = X ~ {x} for some z. It is now evident
from the definition of X, that if f(x, ) = 0 then fekernel . Hence
there is a representation ¢, of C(G,) for which o(f) = @.(f(z, +)), and
one can check that ¢, is continuous. Thus ¢, comes from a represen-
tation, also called @,, of G, and this implies ||@(f)]| < S‘” | f(x, 0)|do.
The first two statements of the lemma follow immediately. If % is a
bounded continuous function on X then [[@hf)]|l = |k(x)| | P(f)] =
[|k]l«1lf]l, and so multiplication by % is an operator on Cy(Y) which is
continuous in || -|[. It thus has a unique continuous extension to all of
&. If we regard & as functions from X to the C*-group algebras of
the G, then this extension of multiplication by % is still multiplication
by h.

If fe CyGy-,,) then the functional

f— SG f(vloy)do

defines a left invariant integral on G,_,,. Thus there exists a unique
positive number ¢(x, v) for which

1 This is based in part upon a lemma supplied by R. Blattner.
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1.1) c(z, 7)80 f(roy)de = SG . f(o)do .

y_ @z
If we choose f to be a nonnegative element of C(G) which is positive
at e then (1.1) implies that c(x, v) is jointly continuous in « and ~. It
is easy to see that the identities

(@, Bv) = c(x, B)e(87'w, 7)
ow,7) = 4t); oz, e) =1

are true for 8,veG,teG,. Also 4, (v 'ty) = 4,(t) since if f is a
suitable element of C(G,_,,) then

4(z) = SGE f(yory)do / Lx F(voy)do
- SG ST / L f(o)do

vy~ 1o

= 4y, (y7TY) .
PROPOSITION 1.2. If fe C(Y) then v(f)e Cy(Y), where

()&, 0) = f(v'®, v ov)e(z, ) .

vx has a unique extensiton to an automorphism v of & and v — v 18
a strongly continuous representation of G on K.

There is no difficulty in seeing that v (f)eCy(Y). If f,geC[(Y)
then

Ye(f*x9)(®, 0) = SG 1 SOz, o)g(vx, o7y tov)e(x, v)dp

= SG fOr i, v on)g(y e, v o oy)e(x, v)'do
= ('YK(f)*'VK(g))(xy 0) ;

Te(f W@, 0) = f*(v "%, v 'ov)e(x, 7)
=f(v7'w, v 0T Ay (0T e, )
= ve()@, 07)4,(07") = (ve(S))* (@, 0)
and v is an automorphism of C(Y). vx is continuous in the inductive
limit topology and so @o<v, is a continuous representation of C,(Y) if

@ is. 7k is thus continuous in [|-]|. Hence it has a unique continuous
extension to &, and the extension is an automorphism. Also

Be(ye NN, 0) = fF(y'B7%, v'BIoBY)(B ™, v)e(w, B)
= (B Nz, 0),

80 Y—1vg is a representation. If fe Cy(Y) and v—r, then v (f)— voc(f)
uniformly with support contained in a fixed compact set and so in the
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norm ||-||. It follows that v, is strongly continuous.

G acts on the dual & of ® as a topological transformation group,
in fact more generally we have the following lemma; we do not claim
that this result is original.

LEMMA 1.8. Let U be a C*-algebra with dual U and let there be
a strongly continuous representation of a topological group G as auto-

morphisms of A. Then the map (v, ) —vp = oy~ from G x 9 into
A makes G into a topological transformation group acting on €.

9 is the set of equivalence classes of irreducible representations of
‘A with the hull kernel topology, which is the topology which has as a
subbasis for closed sets the sets of the form {p: kernel ¢ D I} where
g is an ideal (closed two sided) in A. It is evident that (87v)p =
B (vp) and that ~{p: kernel ¢ DY} = {p-7v': kernel ¢ DI} = {p:
v (kernel @) D J} = {®: kernel » D ¥} so each v in G acts by homeo-
morphisms of (. Thus we have only to show the joint continuity of
the map (v, ®) —>vp at v = e¢. A subbasic neighborhood of ¢ is given
by N = {y: kernel 4 7 &} where & is an ideal which is not contained
in kernel . There is a positive A in & which is not in kernel ¢, by
Lemma 2.3 of [16]. Let M = {y:||v(A)|| > ||p(A)]|/2}). Let f be a
continuous function which is zero on [0, || (4) ||/2] and positive elsewhere.
M is open since M = {yr: 4(f(A)) = 0}. For all v sufficiently near e,
v 4y — A < ||e(A4)]|/2 and for such v and for « in M, ||y - v (A)]|| >
0 80 v € N and the proof is complete.

If Z is the structure space of 2 (the set of kernels of irreducible
representations of 2) with the hull kernel topology then the map (v, z) —
vz = {v(A): Aez} form G x Z into Z makes G into a topological trans-
formation group on Z. This follows from Lemma 1.3 and from the facts
that v kernel ¢ = kernel vp and that ¢ — kernel ¢ is an open continuous

map of 9 onto Z.

Let Z be the structure space of &, let @ be a representation of G.
By a system of imprimitivity for @ based on X (resp. Z) we mean a
regular countably additive projection valued measure P defined on the
Borel subsets of X (resp. Z) with values acting on 9(¢) such that P(X)
(resp. P(Z)) =1 and o()P(E)p(v™) = P(vyE) for all v in G and all
Borel sets E in X (resp. Z), cf. [11]. We shall call the pair (¢, P) a
representation of G, X (resp. G, Z). Here the Borel sets are the elements
of the smallest o-ring containing the open sets and regular means that
for open U, P(U) = VY {P(C): C is a compact Borel set contained in U}.

There is a *-algebra associated with representations of G, X. It is
the set Cy(X x G) with multiplication and involution defined by
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1.2 Frae, 1) = | @, B, 6708
(1.8) £, ) = £, 1) = 46r)

for f,9e C(X x @), dB a left invariant Haar measure and 4 the modular
function (dBvy = 4(v)dB) of G. This definition is essentially that of [2,
p. 310]. There is also a multiplication between elements f of Cy(Y)
(resp. Cy(X), C(@)) and elements g of Cy(X x G) given by

(L.4) fro@,m) = | F@ g, o 4l0) Ao do
(1.5) Faw, ) = F@)ta, )
(1.6) Fro@ ) = | £@0e ", 570d8

and there is a norm on Cy(X x G) given by
) gl = |, sup { @, 1) |: @ € X} .

THEOREM 1.4. CyX x G) is a normed x-algebra with multiplication,
wnvolution and morm given by (1.2), (1.8) and (1.7) respectively and
addition and scalar multiplication defined pointwise; involution s
isometric. It is also an algebra over the ring CyY) (resp. C(X), C(G))
with scalar multiplication given by (1.4) (resp. 1.5), 1.6)).

THEOREM 1.5. There is a one-to-one correspondence between bounded
(n || +]],) representations @, of C(X X G) and representations (¢, P) of
G, X. The representation @, which corresponds to @, P is given by

(1.8) 2uf) = | | @ naP@eends .

The tmages of @, and of the corresponding (¢, P) generate the same
von Neumann algebra. @, 1s norm decreasing (||o(F)l £ f1). A
unttary operator implements an equivalence between representations @,
P and @', P' of G, X if and only if it implements an equivalence
between the corresponding @, and @;.

THEOREM 1.6. There s a “canonical procedure” for extending
representations (@, P) of G, X to representations (¢, R) of G, Z.

If ze Z, let ® be an irreducible representation of & with kernel z.
Let © = m(z) be the x determined by Lemma 1.1A. If E is a closed
subset of X then 77Y(FK) = {z: f& C zif f(E) =0, fe C(X)} and is closed.
Thus 7 is continuous and 7 (£) is a Borel set if E is. That R extends
P means that R(z (F)) = P(E) for all Borel subsets E of X.
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Proof of Theorem 1.4. Let f and g be in Cy(X x G). Then
@) = £, )40 = £, 7)
and
(F20)"@, ) = 40| FOw, By g(8~ v, £777)dp
= |, 967, ) 48 £ (0w, v B) Ay B)AB
= |, 0%, B * (670, BB = (9" 1)@, 7)

and (1.3) defines an involution. Suppose that x — d(x, v) is a function
from X to the finite measures on G which is w*-continuous and is such
that U.ex support dut(x, v) is contained a compact set. If fe Cy(X x @),
define ¢xf by the formula

pefla,m) = [FE70, e, 6)

Then p+f has compact support, and by Lemma 1.1, pxfe CO(X x @).
Furthermore

(ex(fxg))(, 7) frgla™ e, av)d (e, @)

!

J

=
S g fla—e, B)g(B-aw, B e~ y)dBdu(x, @)
|

§ Flas, aB)g(8z, B~ )dBdu(e, a)

I

[, et @, B8, £70)8 = (14F) <)@, )

In particular if dg(x, v) = h(x, v)dv, he C(X x G) then this proves that
multiplication is associative. If h, and h, are in Cy(Y), then the case
am(x, o) = h(x, 0)[4,(0)]4(0)]*d(x, 0) proves that h,x(fxg) = (h,*f)*g.
Let w(x, 0) = [4,(0)]4(0)]"*. The formula h,*(h,*g) = (h,xh,)*g follows
from the associative law in the measure algebra of G and the fact that
@(h,xh,) = (wh,)*(wh,). The remaining algebraic assertions of Theorem
1.4 are easy to verify.

The function sup {] g(z, v) ] : x € X} is a lower semicontinuous function
of v and so is measurable. It is bounded and has compact support and
so is integrable. If f, ge Cy(X x G)

I7+gll, = | sup|{ 7z, O0(87, £nde |dr
< [ [ 5wl s, )1 suplo(e~s, 6| d6dy = 1 £1k gl
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LEMmA 1.7.2 Let %A be a normed x-algebra, let B be a =*-algebra
and let 6 be a representation of B as bounded operators on A such that
af(0(b)a,) = (0(b*)a,)*a, for a, a, in A and b in B. Let ¢ be a con-
tinuous representation of W. Then there is a unique representation
¥ of B such that

(1.9) Y(b)p(a) = P(0(b)a)

Jor a in A and b in B. Moreover ||y(b)|| < |/0(*b)|["* and +(B) is
contained in the weak closure of ().

There is at most one representation + satisfying (1.9). If A’ com-
mutes with @) then A’ (b)P(a) = ¥(b)P(a)A’ = 4 (b)A'P(a) and A’ com-
mutes with ¥(8). By the double commutant theorem, «(8) is in the
weak closure of @().

To prove the existence of +(b) it is sufficient to consider the case
where the representation space $ of ¢ has a vector £ which is cyclic
with respect to @(2). Let a be in U, b be in B. Then

lp(@@)a)z || = (P((O(b)a)*b(b)a)z, )
= (p(a*0(b*b)a)x, x)"*
= (P(6(b*b)a)z, p(a)r)"
= [[e(@@*b)a)e |['* || p(a)z 7 .

Iterating this inequality, we have

Il 2(0(b)a)z || < || Zp(ﬂ(b*b)zn_la,)x 117" || @(a)a T
< 1o 1 106 D) [ @ 1 17 || playe 17"

and taking limits, ||@(0®)a)x || < || 0(0*D) ||'? || p(a)z||. Thus (1.9) is an
unambiguous definition of +(b) on @Rz, +(b) is bounded and has a
unique bounded extension, +r(b), defined on all of 9.

Formula (1.9) shows that + is linear and multiplicative. +(b)* =
P(b*)since P(a,)*(b)P(a) = P(ai 0(b)a,)) = P((6(b*)a.) " a,) = (v(b*)P(a.))*P(a).
Y(B)H is dense in O since (V) is dense in A, since @ is bounded and
since @(A)D is dense in . Thus + is a representation and the proof
is complete.

Proof of Theorem 1.5. The integral S f(x, v)dP(x) is the ordinary
X

uniformly convergent spectral integral; it is by definition the uniform
limit of approximating sums X, P(E))f(x;,v), where X is a disjoint
union of the Borel sets E,, --+, E, and ;€ E;. Since f is continuous

2 We are indebted to R. Blattner for this lemma and its proof. This replaced consider-

ably more complicated arguments, some of which were in the spirit of [13, §5 and 6] and
appeared to be limited to separable situations.
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and has compact support, the integral S f(x, v)dP(x) exists and is a
X

continuous function (in the operator norm) of v with compact support.
Thus @(f) exists; [[@y(f) || = || £, follows from the fact that

l fo(oc, v)dP(x)‘ | < sup{f(®, V) |:zweX}.

To show that @, is a representation, let f and g be in Cy(X x @)
and let » and ¢ be in H(¢). Then

esr+ap.0) = | (1 ] 7@ 6196, 8-1dsaP@reip, odr
=, aim S (PE)| Flaw Ao(s™s, £71)d890)p, Dy

Ep} i=1

= H{ lim Z (P(E) S (z:, B)9(B7:, B77)P(7)p, a)dvdp

ZS S (z,m Z(P<E )f (@, B)@(B)}ZP(B‘IE )9(B7x;, V)P(V)D, )dvdB

By} i=1

- Seganf (, B)AP(2)P(8) Lg(w, 7)dP(2)P(7)p, q)dvdB
= (2 F)P:(9)P, 9)

and

@m0 = | (| rere, v a6aP@ywp, odr

G

|
S <Sxf vz, ) dP@)P(v)p, q)d
= (1. 2|_rere, naP@p)ir
- L(p SRACE V)dP(wW(v)q)dv = (p, P(1)9)

since gD(fy)S h(ve)d P(@)p(y) =S Wz)dP(x) for any h in CyX), as is
seen by cor)lzsidering approximatirfg sums to the spectral integrals. Let
h be in C(G) with support K, and let %, be a net in Cy(X) which eventu-
ally has the value one on each compact subset of X, and suppose 0 =

h, =<1. Then S h,(x)d P(x) converges strongly to I and so
P-4

| m@dP@eep
converges to ¢(v)p uniformly for all v in K. Thus
| (Pohul)p — P(R)P, ) |
=[1,(1_ m@naP@ee) — ke, )]
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= sup | () | sup || _r.@)dP@pp — 2n |1 911 a7

and so @,(k,h)p—(h)p strongly. This proves that the set @,(Co(X % G))D(¥)
is dense in $(®) and since @, is linear, it is a representation. Since the
integrals with respect to dP and dvy are weak limits of approximating
sums, @(C(X x G)) lies in the von Neumann algebra generated by the
images of ® and P. We have also proved that ¢(C(G)) (and so ®(G))
lies in the weak closure of @,(Cy(X x @)).

Suppose we are given a representation +, of Cy(X x G) which is
continuous in || - |;. In Lemma 1.7 let B be the algebra C(X) (resp.
C,(@)) and let 6 be the multiplication defined by (1.5) (resp. 1.6)). If
e, feC(X x G), g€ Cy(X) and h e C(G) then

e* (0 ), 1) = [e(87'n, 67" 4(B)g(8™0) (87, £71)d8

= \(@-exs e, 8y 4607870, 576
= (o) < £ (@, ),

and e*x(hxf) = (h*xe)*xf. To prove the latter formula one could either
compute the integrals in question or, as is easier, observe that the
formula is true for % in Cy(X x G) and then approximate % in C/(G) by
elements of Cy(X x G). Moreover ||| <1 in both cases. By Lemma
1.7 there are representations + of Cy(G) and +, of Cy(X) such that
DV F) = vuaF), (R f) = Y(hxf). Since 4 is continuous it comes
from a representation v of G, and (V) (h) = y(h(v*+)). If we let h
run through an approximate identity and use the formula k(v ™"+ )xf(x, @)=
hxf(v'x, va), we conclude that v(V)yo(f) = vo(f(v*+,v*+)). This
implies Y (NV(@Vo(f) = ¥g(v ™ DS+, 77 2)) = Yra(g(v T Nv (Mo )
and (V@) (vY) = vi(9(v+)). By standard methods (compare [9, p.
93, Theorem], [7, p. 239, Theorem D], or Theorem 1.9), v, can be ex-
tended uniquely to a regular countably additive projection valued measure
Pon X. Let K, be the characteristic function of a Borel set E. Since
Ky(v*:) = Kyp(+), v(")P(E)(v™) = P(vE) and (v, P) is a representation
of (G, X). It follows from Lemma 1.7 that +(Cy(X)) is contained in
the weak closure of (Cy(X x G)) and by monotone limits, this is also
true for the range of P.

Let @, be defined by (1.8) (with ¢ replaced by ), let fe C(X),
g€ Cy(G), he C(X x G). Then fge Cy(X x G) and the finite linear com-
binations of such elements of C(X x G) are dense in C(X x G). If
2, 7 € P(C(X x G))D(y) then

@dfayn®a, ) = (| | f@oeaP@vmirya, 7
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= |, e vy, ryds
= |, GO, 77 ), 1)y

= (wl |, FCramO 7 v )a, 7)
= (l(f9)xh)g, ) = (F(F9)v (), 7)

and so ¢, = 4. Thus the correspondence defined by (1.8) is onto from
representations of G, X to representations of Cy(X x G); one can also
check that it is one-to-one. The statement concerning unitary equivalence
is verified by a direct computation.

THEOREM 1.8. If @, P is a representation of G, X then the formula

(1.10) PU(PL9) = P(f*9)

where feC(Y), ge C(X x G) and @, is defined by Theorem 1.5, defines
a representation @, of K. The tmage of @, lies in the von Neumann
algebra generated by the images of ¢ and P.

Let the 2 (resp. B) in Lemma 1.7 be Cy(X x G) (resp. C(Y)) and
let 6 be the multiplication defined by (1.4). Let e¢,g be in Cy(X x @)
and let f be in Cy(Y). Then

& (F0)(2, 1)

AR G R CRUCR

- 9(87'w, 07 B )4y (0) Ao )] *dod B
= [\, @ metee, 5y 206767, 508)

- 9872, B0 ] 4.0) Mo dods
= (1. e, relea, £0) 267767, o)

- 9(87'%, 87407 d(0)]"*dod 3
= 1,1, 87w, 08 287872, 0

- (87, B4, (07 A0) " dod
=5, 7767w 0y e, 08y a8 (6, 57

4 (07 Aoy dods
=5, oy, oy a8

- 9(87x, B7V)[4,-1,(0)4(07)]*dod B
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- Sef* *e(B7'w, B~ ABM9(B %, B 7)dodB
= (f*xe)*xg(x, V),

and
If+glh = | sun | 1/, 0@, o 40) 201" | dod

= sup | | 17, 0)o(e, o 40) A0 | dodsy

since the function 7—>S | f(x, 0)g(x, 077)|do is continuous and has

compact support for each 2 in X. We apply Fubini’s theorem, substitute
v — ov, and conclude that

(1.11) =gl = [1f (2, 0)[4)4(a )" [l 1| g ]I, -

Lemma 1.7 shows that (1.10) defines a representation of C(Y) and Lemma
1.1, the bound in 1.11) and Lemma 1.7 show that ¢, is continuous in
the inductive limit topology on C,(Y). By the definition of ||-||, @, is
continuous in || - || and defines a representation of f.

Let £ be the completion of Cy(X x @) in the norm || f|| = sup {||2(/)l|:
@ is a representation of Cy(X x G) which is continuous in ||-||;}. Then
€ is a C*-algebra. It follows from Theorem 1.8 that the multiplication
defined by (1.4) extends to a multiplication between £ and 2.

THEOREM 1.9. Let + be a representation of a C*-algebra R and
let Z be the structure space of &. If U is an open Borel subset of Z,
let R(U) be the projection onto the closed span of

W(fp:fe Nz pedy)}.

Then R can be extended wuniquely to a countably additive projection
valued measure on the Borel subsets of Z. The image of R is contained
i the center of the weak closure of (&).

Let & be the set of proper differences of open sets and let <2 be
the set of finite disjoint unions of elements of <. By [7 § 5, exercise
(2) and (3)], .&Z is a ring and by [7, § 6, Theorem B] <Z is the smallest
class of sets containing . and closed under sequential monotone limits.
Thus R has at most one extension to a projection valued Borel measure
on Z. <% is the class of Borel sets.

We extend R to <. Let D,=E, ~ F, and D,= E, ~ F, be in &
where E, and F, are open and E; D F; and suppose D, D D,. We assert
that R(E,) — R(F) = R(E,) — R(F,). If zeZ and fec &, let f(z) be the
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element f + z in the C*-algebra /2. Then fe{z:2¢€Z ~ U} if and
only if f(z) =0 for all z not in U, and in this case we say that f
vanishes off U and we let J(U) denote the set of all f in & which
vanish off U. Let p be in Range R(F)) and let ¢ be in Range R(E,) —
R(F,). If fe & and f vanishes off F, then (f)¢ =0 and ¢q (resp. )
can be approximated by vectors of the form +r(g)q (resp. +(k)p) where
g (resp. h) vanishes off E, (resp. F)). Then (p, ¢) can be approximated
by (p, v(h*g)g) which is zero since h*g =0 off E,N F,C F,. Thus
R(F) L R(E,) — R(F,). J(E) + J(F,) is an ideal contained in (&, U FY)
and its closure ¥ is equal to (&, U F,) since otherwise &, U F,) has
an irreducible representation @ which annihilates ¥, ¢ can be extended
to an irreducible representation @' of & which annihilates & but not
S(E, U Fy) and z = kernel ¢'ce K, U F, but z¢ E, and z¢ F,. Since
EUF,DE, =3&, U F,)DIE,). Thus g can be approximated by
elements f, + f, of &, with f, in (&) and f, in J(F,), and ¢ can be
approximated by +(f)g + ¥(f)a = ¥(f)g. This proves that g < Range
R(E), R(E,) = R(E,) — R(F,) and R(E)— R(F) =z R(E,) — R(F). 1If
D, = D, then R(E,)) — R(F)) = R(F,) — R(F}), and R(D) is defined unam-
biguously by the formula R(D) = R(E)) — R(F)).

Let D,=FE, ~ F,and D,= E,~ F, be in &, where E, D F, and
E; and F; are open and suppose D, N D, = ¢. Let p be in Range R(D),)
and let ¢ be in Range R(D,). Then p (resp. q) can be approximated
by ¥ (f)p (resp. v(9)q) where f(resp g) vanishes off E, (resp. E,). g*f
vanishes off £\ N B, C F, U F, and so g*f can be approximated by ele-
ments h, + h, of & with Ak, vanishing off F,. Thus (p, ¢) can be ap-
proximated by (v(9*f)p, @) and by (y(h)p + +(h.)D, @), which is zero.
This proves that R{(D,) 1 R(D,).

We prove that R is countably additive on <. Let D and D,
3=1,+++,00,bein &,let D= FE ~ F and D, = E, ~ F;, where E D F,
E;DF; and E, F,E; and F; are open and suppose D = |Jz, D; and
suppose the D,’s are disjoint. Then R(D)=R(D;) and R(D)= >\, R(D;).
To prove R(D) = >, R(D;) we assume the contrary and we suppose
without loss of generality that D, = ¢ = D, E, = E = F, and
E,=F=F, Let N, N\, and N\, be real continuous functions such
that 0 =\ =1, 2NO)=0, XNQ) =1, Mry =Ny MA; =)\, and
N(x) >0 if xe[l/2, 1], If ge®, if 0<g=1I if peH(y) and if
[[v(9)p — pll = I p]l/3 then y(\y(9))p # 0. In fact if J(\(9)p =0 and
if P is the spectral projection for +(g) associated with the interval [1/2,
1] then Pp = 0 and [[y(¢)p|| = [|p]l/2 and [[y(9)p —pl| = ||p|l/2. There is
by ascomption a nonzero p in Range R(D)— >\2, R(D;). We can choose
a ¢ in & which vanishes off E, so that p, = ¥(\y(9))p #+# 0. Let h, =
M(9), let g, = \(g9). Let n be a positive integer and suppose inductively
that we have chosen
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(a) ¢g,in &
(b) nonzero vectors p,, ++-, », in Range R(D) — ¥\, R(D;)
(¢) n; in S(F;) whenever p; € Range R(F})

in such a manner that if j <k < n then

(i) »; L Range R(E;)= p, L Range R(E);)
(ii) p;eRange R(F;)= p,cRange R(F,) and v (h,)p, = p,
(iii) p, e Range R(F};), p, € Range R(F,), and j < k= h,h, = h,
(ivy 0=h;, =L 0=g, =1,

and if ¢ is the largest index for which p, € Range R(F)andif i <k < n
then

(v) hig, =9, and ¥(9,)D, = D.

It (I — R(E,+))p. #0, let p,., = (I — R(E,:1))p, and let g,., = g,.
For each C in &7, Range R(C) is invariant under (), and since ()
is closed under the taking of adjoints, R(C) commutes with v(R). R(C)
is also a weak limit point of v(8) and so R(C) is in the center of (&),
the weak closure of (). Using this, it is easy to see that the inductive
assumptions are satisfied for » +1. If (I — R(E,..))p,. =0 then 0 =
R(F, )0, = ¥(9.)R(F,,)p,. Thus there is a ¢ in £ which vanishes off
F, ., such that p,., = ¥(A(9.99.))R(F,.)p. # 0. Let hyyy = N(9.99,) and
let g,.1 = M(9.99.). Since \.(9.99,) is a limit of polynomials in g¢,99,,
hh,.. = h,,,, and the remaining inductive assumptions are easy to verify.

Let M be the linear subspace of & + NI generated by I and h; if
p; € Range R(F;) and ((E)) if p; 1 Range R(E,),7=1,2, +--. Let o,
be the linear functional on M defined by o (I) = 1, p(h;) = 1 if p, € Range
R(F;) and p(J(E;)) = 0 if p; 1. Range R(E;). This definition is consistant
and o, is a state (= positive linear functional normalized by p,(I) = 1)
of M, since o, = (lim, , o /|| p,|[*)| M, where w,_is the linear functional
A — (Ap,, p,) defined on operators on (). p, is an extreme point of
the set of states of M. In fact let p, = ar, + 1 — a)7,, with a e (0, 1]
and 7, and 7, states. Since J(E;) is generated by its positive elements
[16, Lemma 2.3], 7.(3(¥,)) = 0 if p; | Range R(F;). If p;,cRange R(I"))
then 7y(h;) =1 and 1=ar(h;) + (1 — a)ry(h;) =a+1—a=1. Thus
there is equality throughout and 7,(%;) = 1, 7, = p,, and P, is an extreme
point. p, can be extended to a state p of & + NI by a Hahn-Banach
type argument and applying the Krein Milman Theorem to the set of
such extensions, it is possible to choose o to be a pure state (extreme
point of the set of states) of & + M. The procedure of [15] yields an
irreducible representation ¢ of & for which z = kernel ¢ is the set
{f:fe&, p(gxfh) =0 forall g, hin &. If p;c Range R(F;) then ¢(h;) +
0 and so ze F;. If p;, | Range R(E;) then o(J(E;)) =0 and so z¢ E;.
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In particular z€ F;, = F and z¢ E, = F. We have proved z€ D but 2¢ D;
for any j. This is a contradiction and so R(D) = 3\, R(D)).

Let. F=Ur, D, = U~ E; be in .&#, where D; and E; are in D and
D,ND;=¢=EKENE;if :+3. Then D, N E;c & and

gR(Di) = ::Z:R(Di nNE)= élR(E» .

Thus R can be extended to <Z by the definition R(F) = >, R(D)),
and the same reasoning shows that R is countably additive on .&#. For
each p and ¢ in $(v), the function E — (R(E)p, q) is a measure on %
and can be extended to a measure (t,, on <Z. If B is a Borel set then
there is a unique operator R(B) such that (R(B)p, q) = t,(B) for all
»,q. R(B) is a projection and B — R(B) is a projection valued measure.
If Fe & then we have already observed that R(F) is in the center
of the weak closure of (f). By finite sums and monotone limits this
is true if K is a Borel set

If & is separable and type I and if () is separable then Theorem
1.9 is essentially known and in this case presumably the range of R is
all projections in the center of the weak closure of (). If & is not
type I the range of R might not be this large, and in fact might be
{0, I} even when the weak closure of () is not a factor and is  of
type I.

R is regular in the sense that for any open U, R(U) is the supremum
of the R(K), as K ranges over the compact Borel sets in U. To see
this, let p be in  and let f=f* be in & and vanish off U. Then
w(f)p can be approximated by +r(g)p, where g = g* and g vanishes off
U.={&fR)I > s {fR)| = =K. U is open [8, Lemma 4.2]
and +(f)p can be approximated by R(U.))p and so by R(K.)p. K. is
compact [8, Lemma 4.3] and is a Borel set since K, = Nycs<c Us.

Proof of Theorem 1.6. Let @, P be given as in the statement of
1.6, let ¢, and @, be defined by Theorem 1.5 and 1.8 respectively, and
let R be defined by Theorem 1.9 in the case +» = ¢,. If ve G, fe C(Y),
g€ Cy(X x G) and pe () then

PP )P(r P9)P = (P10 YIS )P9)P

since
Sy -, 7 N, v76)
= SG » frz, o)g(x, yo v B4 1 (0)4(07)]*do
= o@, )|, SO, Tog(a, 0B 4(0) (o) do
= (7x(f)*9)(x, B)
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and since @(7)Py(9) = P(g(v"+,7v*+)). (See the proof of Theorem 1.5.)
Let R, be the projection valued measure defined on Z by Theorem 1.9
in the case 4 = @,0v,. If U is an open subset of Z then

R(D)9@) ={p.07e(S@) e N o}
—{pNor e N o) ={enerse N @}
—{pno@:fe N o} = ROV,
and

POR(DIPIDP) = {p(p (NP9 fe N o}
= R(U)2(9) -

Both £ — o(7)R(E)®(v™) and E — R(vFE) are projection valued measures
which we have just shown to agree with R, on open sets. By the
uniqueness part of Theorem 1.9, they both are equal to R, and thus to
each other. This proves that @, R is a representation of G, Z.

To show that R extends P, it is enough to show this for closed
subsets £ of X. The range of I — P(¥) is the closure of the set of

vectors S f(@)dP(x)p where pe (@), feCy(X) and f(E)=0. This

closure is Xalso the closure of the vectors ¢,(fA)p where Ac & and f and
p as before. To see this, use formula (1.10) and choose a suitable ap-
proximate identity for  in Ci(Y). The element fA of & has the prop-
erty (fA)z) =0 for z in #7%(&). Let B be a self adjoint element of
& and suppose B(z) = 0 for z in 7%(F). Let ¢ be a positive number.
Then the set K = {2:|| B(2)|| = ¢} is a compact subset of Z ~ 77(¥) and
m(K) is a compact subset of X disjoint from E. If g is a function
which is one on 7(K) and zero on E then ||gB — B]| < ¢ provided 0 <
g = 1. Thus the range of I — P(E) is the closure of the vectors @,(B)p
where pe 9(p), Be® and B(z) =0 for z in 7#~%(&). This is the range
of I — R(m7(FE)) so R(m (F)) = P(F) and R extends P.

2. Induced representations. It follows from Mackey’s work [11]
that certain representations of G, X can be constructed in an explicit
fashion from the action of G on X; these representations are called
induced representations. In this section we determine the topological
structure of the space of all irreducible induced representations. This

space is homeomorphic to the orbit space @/G. Thus there is a corre-

spondence between properties of SA%/G and properties of the induced repre-
sentations; a simple example of this is Theorem 2.2.
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Each ¢ in R determines a z in Z, namely z = kernel @ € Z and this
z determines an ¢ = 7(z) in X. 7(2) is the unique element of X such
that all f in Cy(Y) which vanish on {#} x G, C Y are in z. For any f
in C(Y), @(f) thus depends only on values of f at {#} x G, and @
defines an irreducible representation @' of L,(G,) and so of G,. If  is
an irreducible representation of L,(G,) for some x in X, then f—
J(f{x} x G,), f in C(Y), defines an irreducible representation - of &,
nw(kernel ) = and + = 4!. The map @ — @' preserves unitary equi-
valence anq so & is in one-to-one correspondence with the pairs = in X
and @' in G,. The point x determines a correspondence between G/G.,
the right G, cosets, and the orbit Gx; G,r corresponds to v~'x. This
correspondence is a Borel isomorphism since the map G,7 — v« is one-
to-one and continuous and since the restriction of this map to a compact
set is a homeomorphism. The induced representation U¥, P¢, which
is a representation of G and G/G, (G is transformation group acting on
G|/G,), defines by means of the correspondence G,y — v~'x a represen-
tation U% P¢ of G, X. By means of Theorem 1.5, U’ P¢ define a
representation which we shall call @ of C(X x G) and so of 2. If @'
is irreducible, so is the joint action of U?, P¢ [11, §6] and so is @ by
Theorem 1.5. The map @' — U?, P¢? preserves unitary equivalence [11,
Theorem 2] as does the map U?¢ P¢— @ (Theorem 1.5). Thus the map

@ — @ is a well defined map of & into &. We recall that G acts on &
by the map (v, ) — @ 7¢'.

THEOREM 2.1. If @ and + are in R then @ =¥ if and only if @
and + lie in the same orbit under G, that is if and only if there is
a v i G such that = povy. The map ¢ — @ is continuous and the
wnduced map of the orbit space &G is a homeomorphism with its image.

Proof. A. + = povyg. Let pe® and let % = mw(kernel ). The
Hilbert space $(U¥) is the set of measurable functions f from G to H(@)
such that f(o8) = @' (0)f(B) for ¢ in G, and B in G and such that the
integral / NFM P dUG,) is finite, where £t is some finite measure on

Glax
G|G, which is quasi invariant. If = @ove then an f in Cy(Y) is in
kernel + if v (f) vanishes on {x} x G,, which occurs if f vanishes on
{v'&} x G,~,. Thus 7m(kernel ) = v 'w. Let v be the measure defined
on G/G,-, by means of the formula

[, WG.B)Gy ) = | RO G.EYHG.5)
G/G-y—lz GGy
where & € C(G|G,-1,). This makes sense since v 'G,8 = G,-,7 '8 is a
G,—1, coset, and one can see that v is quasi invariant.
If Fe U, let (UF)B) = f(vB). Then Uf is a measurable function
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from G to (@) = D(v). If 0e€G,~, then vov'eG, and (Uf)(0B) =
F(voB) = P(vov ) f(vB) = P (voy " WUF)NB) = (o) Uf)(B). The last equ-
ality follows from the fact that for g in C(Y) and p in (@),

Y (0 (9)p = Y (g(+, 07 +)p = Ple(+, MNg(¥™+, 077+ 7))p
= @ (vav )P(e(+, Mgy, NP = P (vov W (9D .

If f.e (U also then

@) | (U, (URNENC.H =, (F8), FB)iG.5)

and since the right member of (2.1) is the inner product in H(U¢) and
the left member is the inner product in H(UY), Ufe H(U?) and U is a
unitary transformation of (U¥) onto D(UY).

Let E be a Borel subset of X. Then P?ZX) (resp. P¥(E)) is multi-
plication by the characteristic function of {8:8'xe E} (resp. {B:
B vz e K}) and

(PHE)UFYNB) = xu(B777'2).f (7B)
= U(ta(-72) S)B) = UPAE)f)B) ,

where X is the characteristic function of E. Let a be in G. The
definition of U“(a)f = U“«a)f is

UAa) f(B) = f(Ba)(MG.B, @),

where M-, @) is a Radon Nikodym derivative of the measure E — t(E«)
with respect to ¢£. Then M7, @) is a Radon Nikodym derivative of the
measure K — v(Ea) with respect to v and

(UH@)UF)B) = f(rBaYM1Gy-1.6, @)
= f(Ba)MGYB, ) = (UUTAX)F)(AB) .

Thus U?%, P¢ is equivalent to U?, P¥ and so @ is equivalent to ¥.

B. o=%. Let ¢ and + be in ® and suppose that @ is unitarily
equivalent to ¥, Let x = m(kernel p) and let y = w(kernel v). P?Gx)
is multiplication by the characteristic function of {5: 82 e Gz} and so
P?(Gz) = I and likewise P¥(Gy) = I. (Gx is a Borel set since it is a
countable union of compact sets.) Since P¢ and P¥ are equivalent,
PoGy) =1, PY(Ge N Gy) = I,Gx N Gy + ¢ and Gx = Gy. Suppose ¥ =
v%,v€@, and let ® = +povy. Then 2 is equivalent to ¥ by A, and so
is equivalent to @. Thus U¢, P¢ is equivalent to U, P and by [11,
Theorem 2], ' is equivalent to ¢' and so ® is equivalent to . Thus
® and 4 have the same orbits under G.

C. The continuity of ® — @. The unitary equivalence class of the
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induced representation is independent of the choice of the quasi-invariant
measure /# on G/G,. We make the choice ¢ = p,, where p, is defined
by the formula

@ | foe@nay=| | fenaededpn ey,

and fe Cy(G). That (2.2) defines such a p, follows from Lemma 1.5 of
[12] and its proof, and it is also shown there that 4(v)e(-~'x,¥)™ is a
Radon Nikodym derivative of the translated measure E — p (Ev) with
respect to (..

LEMMA. Let M be a compact symmetric subset of G and let s be
a mnonnegative element of C(G) which 1is positive on M. Then the

Sfunction t(x,v) = s(¥)c(x, V)S s(o7)4.(c7Y)do]™ is defined and continuous
G

on the subset {(x,7): v xe Mx}x of X X G. If xe X and g is a bounded
Borel function on GG, and if support g C G, M then

2.3) SM o 0)dpe(GY) = Lt(ac, () .

It is easy to see that ¢ is defined and continuous. If g is continuous
then formula (2.8) follows from (2.2). The general case in which g is
a bounded Borel function follows by taking monotone limits.

Let ™ be a net of irreducible representations of & converging to
an irreducible representation . Let x,=n(kernel ™), let y=r(kernel ).
If U is a neighborhood of y and if % is a function in Cy(X) which is
zero outside U and is one at y and if «,,¢ U then h& C kernel ™. The
set {p: h® & kernel ¢} is a neighborhood of + and so for large m,
h& & kernel o™ and %, € U. Thus =, —¥y. The topology of ® can be
described in terms of w* convergence of linear functionals, and in par-
ticular there are vectors v, in £(®™) and a w in () such that ||v, || =
1 =|/w]| and such that the linear functionals (¢™(:)v,, v,,) converge in
the w* topology to (y(-)w, w).

If feCy(X x G), let f°()(x, 0) = f(x,07). Then fo(v)e Cy(Y) and
v — f°(v) is continuous in the norm ||-||, and so in the norm |/-||. Let
®™ be the representation of G, determined by ™. By [12, Lemma
3.1}, if

V(1) = @"(f*(N))vm = ng f (@, 07 1)P™ (0)0,d0

then V,e 9(U?™) and likewise W = (v — (S '(V)w) is in H(UY¥). We
suppose that W = 0. This is the case for example if f is nonnegative
and has its support near X x e. If B and v are in G then

(TN VaXB), ValB)) = (VaulBY), ValBNA(M)e(B72m, 7)1
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= (@"(SB)* *FUBY))Vmy V)l A(V)(BT% 0, 7) ]
(2.4) = (P (B xS U(BY)w, w)A(V)e(B Yy, 7) T
= (W(B7), WENA)e(By, )7 = (Ur) WXB), W(B))
and the convergence in (2.4) is uniform for 8 and v in compact sets.
Let g be in C(X x @), let M be a compact symmetric subset of G

such that support f < X x M and let ¢(x, v) be chosen by the lemma.
If 8¢G,, M then V,(8) =0 and we have

@@V V) = | (] 00 NP DUV, V)b
=\, g, OB 0m MU Va)B), VoD, (G, 8)y
= || ton, B0 20 WU V.E), VaB)iBLY

= | |, tw, B)Xa(8 'y, WU W)(B), W(B)dsdy

- H, (9(B~y, WU WB), W(B)d(G,B)dr
= T(@W, W).
This implies that @ — ¥ and proves C.

D. The induced map is a homeomorphism. It follows from what

~

we have proved that the map from @/G into & induced by the map
@ — @ is one-to-one and continuous. Let K be a closed G-invariant

subset of & and let L = {@; pe K}. To complete the proof we must
show that L is relatively closed in the image of R.

Let + be in SA?, let ¥ be the corresponding element of @, let
w(kernel ¥) = y, let g be in C(Y), let 2 be in Cy(X x @) and let V and
W be in H(U¥). Then

F(gxh)W, V)
- H, (g+R)(E "y, DU WB), V(B)A(GB)dy

= S S / S 9By, OBy, (U () W)(B), V(B))
@ Jelay Jeg—1y
- [4g—1,(0)] 4(0)]*dad 2(G,B)d .

The above integral is absolutely convergent and so we can interchange
orders of integration, placing the integration with respect to v first.
If we substitute ov for v, place the v integration last again, and then
use the substitution ¢ — 8~'¢B as in (1.1), we obtain

F(gxh)W, V)
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= S S, SG,,BK(-")@’ By, N(UHB-aB87)W)EB), V(8))
-« [4,(0)] 4(0) ] *dod (G, B)dry

= SGL/G,,SG,,BK(Q)(% By, VN UM W)B), V(B))
- dodp(G,B)dr

-, L,gyh(ﬂ“% NAUHNWNB), ¥ © Be(g™) V(B)dp,G,B)d .
Since the function 8 — o Be(g*)V(B) is in H(UY),
@)W, V) = (@EWNE), 406" V(O)1,(G6)
- SG,G,,(WBK(Q)(W(h) W)(B), V(8)d(G.B) ,

and by limits converging in the norm in &, this is true for g in .

Let I ={g;9e&® and @(g) =0 for all ¢ in K}. If FeL then
T(S*+8) = 0 by the above calculations. Now suppose ¥ is a limit point
of L. Then 7(IxQ) =0 also. Since ¥(¥) contains a norm bounded
sequence converging strongly to I, if geJ& and Ve®(UY) then
PolB(@)V(B) =0 for a.e.B. If we choose V continuous then B —
JroBx(g) V(B) is continuous also; this can be seen directly if ge C(Y)
and by taking uniform limits otherwise. For such V, 4roB(9)V(B) =0
for all 8. By [12, Lemma 3.2], this implies that «oB(9) = 0 and in
particular that (3) = 0. By the definition of the hull-kernel topology,
weK =K, ¥eL and L is relatively closed. This completes the proof
of Theorem 2.1.

If x € X let ¢, be the one-dimensional representation f — S f(x, 0)do,
Gy

feCy(Y). Then @, can be extended to R, ¢,e R, kernel ¢, Z and
x — kernel @, is a homeomorphism of X with its image in Z. This
image is invariant under G and so X/G is countably separated (there
are G invariant Borel sets E,, E,, --+ in X which separate points of X/G)
if Z|G is. However one might be interested only in representations
induced from a subset K of & or of Z, and it is possible that K/G is
countably separated when X is not.

THEOREM 2.2. Let K be a closed G-invariant subset of & and let
L be the closure of its image in 8. Let (K )(resp. (L)) be the set of
g n RKresp. &) for which (9) = 0 if € K(resp. L). Then the fol-
lowing statements are equivalent:

(1) RBJ(L) s type I

(2) K|G is countably separated

(3) RIJ(K) is type I and every factor representation of L which
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annihilates (L) is induced.

For a C*-algebra to be type I means that the weak closure of the
image of each representation is type I in the sense of Murray and von
Neumann.

Suppose (8) is true and let @' be a factor representation of ¥/(L).
Then the corresponding representation @ of € is induced from a repre-
sentation ¢ of & By Theorem 1.5 the commutant @(8) of &(8) is the
intersection of the commutants of P¢ and U? and by [13, Theorem 6.6],
this is isomorphic to (). Since K/IJ(K) is type I, @(R) is type I and
so is @'(R/X(L)Y. Thus @' is type I and so is /I (L), and (3) = (1).

Suppose (1) is true. By [5, Theorem 2], L is countably separated and
by Theorem 2.1, K/G is homeomorphic to a subspace of L. Thus K/G is
countably separated, and (1) = (2).

Suppose (2) is true. If xe X, let K(x) be the set of # in K such
that mw(kernelp) = x. If v€G and ¢ and @ov, are both in K(x) then
ve@G, and @ is equivalent to @ovg. Thus the restriction to K(z) of
the quotient map K — K/G is one-to-one. Let E, E,, --- be G invariant.
Borel subsets of K which separate the points in K/G and let U, U,, +--
be open subsets of X which separate points of X. Then 7~(U,),7(U,), -« ~
separate points of K(x) from points of K(y) for * +y and E, E,, --~
separate points of K(x). Thus K is countably separated and by |5,
Theorem 2], & I(K) is type I.

Let @, be an irreducible representation of £ which annihilates J(L),.
let @ and P be the corresponding representations of G and X and let.
R be the projection valued measure on Z which extends X and is given
by Theorem 1.6. We assert that R(Z ~ K) = 0. Let 4, be the repre-
sentation of £ defined by Theorem 1.8. In view of the definition of R,
we must show that +(J(K)) = 0. Suppose first that ¢, = ¥ is induced
from an irreducible representation +» of & which annihilates J(K) and
let g be in K) and W in (U¥). As in the proof of Theorem 2.1,
D, (4(9) W)(B) = ¥ o Be(g) W(B) for a.e. 5, and so y,(g) = 0 and y(J(K)) =
0. If we no longer assume that ¢, is induced, @, is in any case a limit
of such induced representations ¥. Thus if W and Ve () and
he Cy(X x G) the representative function

9= ((@)PW)W, V) = (plgx)W, V)

defined on Cy(Y) is a limit of uniformly bounded representative functions.
defined on & and vanishing on (K). This implies that +(J(K)) =0
and R(Z ~ K) = 0.

Since the images of ¢ and R are not simultaneously reducible and
since K/G is countably separated, R must be concentrated in an orbit
([11]). Thus P is also concentrated in an orbit and by [11] ® and so
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@, are induced. This means that the map of K/G — L is onto, that L
is countably separated and by [5 Theorem 2] that 2/(L) is type I.
We have proved that any irreducible representation of € which annihilates
J(L) is induced and thus this is also true for factor representations.
We have proved (2)= (8), and this completes the proof of Theorem 2.2.

Some of the results of this section extend results of [3], and this
paper is in part addressed to the problems considered in [3] (cf. The
final paragraph of [3]).

We conclude with a proof of the result mentioned in the introduction
concerning a manifold structure in orbit spaces. We are indebted to
R. Palais for discussions concerning this theorem.

THEOREM 2.3. Let K be a C= or real analytic separable n-dimension-
al manifold and let G be an analytic group acting smoothly on K. If
the orbit space K|G is countably separated and if the orbits all have
dimension m then there is an open dense G invariant subset U of K
and o unique C= or real analytic n-m dimensional manifold structure
on U|G such that a function f defined on U|G is differentiable (=C*=
or real analytic) near Gx if and only vf the corresponding function
x — f(Gx) defined on U is differentiable near =x.

If K/G is countably separated then Theorem 1 of [6] implies that
there is a dense open G invariant subset U, of K such that U,/G is T;;
we can suppose K = U,. If ze K, let 6,(v) = vz, for v in G. If I"eg,
the Lie algebra of G, let 6%(I") be the vector field defined by 0%(I"), =
d0,("). Then 6+(g) is an m-dimensional involutive differential system
M on K, by [14, page 35, Theorem 2]. Necessary and sufficient conditions
for coordinate functions z,, -+, 2, to be flat with respect to Wt (we use
the terminology of [14]) is that z;(vy) = #;(y) for v near e, y in the
domain of the z, and j =m + 1, ---, n. Suppose this is the case, suppose
that the coordinate system is cubical of breadth 2a and domain W, and
let S = S(¢us1, *++-, ¢, denote the slice {x;z;(x)=¢c;,7=m +1, -, n}
of W,. Let  bein S. Since df, maps g onto I, 6, maps each neighbor-
hood of e onto a neighborhood of # in S. Let T be the leaf containing S.
Since each y in T is in some such S, T' N G is an open subset of T in the
manifold topology for T as a submanifold of K. Since K/G is T,, Gz is
closed and T N Gx is a relatively closed subset of T with the relative
topology and so is a closed subset of T in the manifold topology. Since
T is connected in the manifold topology, T'C Gx. For some neighborhood
N of e, Nt S, and then {v;vx € T} can be shown to be an open and
closed subset of G and thus all of G. Thus the leaves are the orbits.

Let W be a G invariant open subset of K. We show that W con-
tains a G invariant open subset consisting of regular leaves. This will
complete the proof since the union U of all open G invariant subsets



908 JAMES GLIMM

of K which consist of regular leaves will then be dense, and [14, Theo-
rem 8, page 19] defines the required manifold on U/G. Let W, =
{x: |2;(x)| < e}. There is an ¢ in (0, @) and a neighborhood N of e such
that

N(S(cm+1! ey Cn) N WE) c S(cm—l-ly ] C,,,,)

for all ¢,11, =+, ¢,. By Theorem 1 of [6] there is a nonempty open
subset U, of W, such that for each m in U,, Nm N Uy,=Gm N U, If
S(cm+1y cty cn) n UO + ¢ then

(GS(cm-i—ly *t cn)) N UO = (G(S(cm-)-l; ) cn) N UO)) N UO
= (N(S(cm+17 cty Cn) N UO)) N Uo = S(cm+1y ) cn) n UO

and so each orbit that meets U, meets it in a set of the form
S(Cmi1y *+*,¢,) N U, It follows that each orbit through U, is a regular
leaf and that GU, is the required open subset of W.

D. Mumford has constructed an algebraic quotient using related
hypotheses (Conversation with A. Mattuck).

APPENDIX

J. M. G. Fell has proved the equivalence stated on the first page of
this paper. What follows is his proof.

Let G be a locally compact group with unit ¢ and let & be the
family of all closed subgroups of G. Let us give to .&” the topology
having as a basis for its open sets the family of all

72(C,7)={Kes:KNC=¢,KN A=+ ¢ for each A in &}

(where C runs over the compact subsets of G and & runs over the
finite families of nonvoid open subsets of G). This topology makes &
a compact Hausdorff space [4, Theorem 1]. Let us fix a nonnegative
function f, in Cy(G) such that f,(¢) > 0 and for each K in & let £ ¢ be
the left Haar measure on K for which

| At gea) = 1.
THEOREM. For each f in Cy(G), the function
K— | f0dus)
18 continuous on °.

First, we observe that to each compact subset C of G there is a
positive number a = a(C) such that

(1) t(CNEK)=a
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for all K in .&#. In fact if fy(2) > ¢ > 0 for all z in a neighborhood U
of ¢ and if x € C then choose a neighborhood U, of « such that U;*U,c U.
A finite number of these, U,, -, U,,, cover C. Let a = nfe, let J =
{5; U., N K # ¢} and if jeJ, let y; be chosen in U., N K. Then

#e(C 0 K) = |8 A R)dpa(t) < nfe = a..

The essential technique is that of generalized limits. Let K, be a
net in & converging to K and let K, be directed by a set N. A
generalized limit is a positive linear functiocnal I" defined on the space
B of all bounded real valued functions on N such that if s€ B and
lim,_.. s, exists then I'(s) = lim,...s,. If se B and I'(s) is the same for
all possible generalized limits, then lim,_. s, must exist and equal I'(s).

Now let I be any generalized limit and let f be in Cy(G). By (1),

the functiong f(k)dpe (k) defined on N is bounded. Let
Ky

o(f) = 1| i)

@ is a positive linear functional on C(G). If f =0 on K, choose f; in
C(G) converging to f uniformly and such that the support of f; is
contained in {x:|f(x)| = 6}. Then Z/(suppt fs, ) is a neighborhood of

K and if K, is in this neighborhood then S fo(k)dpte (k) =0 and so
K

O(f;) =0 and O(f) =0. Also every g in CO(I% ) extends to an f in Cy(G@),
so the definition

P(fIK)=0(f), [FeC(G)

gives a positive linear functional @ on Cy(K).
If k,e K and if ¢ > 0 then by (1) we can choose an open neighbor-
hood U of k, such that

[ remmo — | siiapao)< e

for all k, in U and H in .&*. For large n, K,€ %/ (¢, U) and so there
isak,in K, N U. Hence

| P(f(,+) | K) — @(f | K) |
= tim sup| 7([_ rOidpee, 0 — | £ )dpee, )]

+ tim sup| ([ 6 dgee, () = 2(£19)

= el 71l + imsup | ([ £(0dpe,00) = o 10| = <l T,
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so @ is left invariant on K and thus is a left Haar measure. Since

P(ful K) = (| Fidpee, ()= 11 = 1,

we must have

o(f) = | _Fdpli)

for all £ in C(G). The right member of the previous equation is inde-
pendent of the choice of I and hence so is the left member. Thus

tim | FOdpne, ) = | fOOdpell)

and the theorem is proved.

If G, is a continuous function of % and if g, = (s, is chosen as
above then z — p, is a continuous choice of the Haar measures. Con-
versely suppose we are given a continuous choice © — 2, of Haar measures
on the G, and suppose that {x,:ne N} is a net in X converging to y
and that Z/(K, &) is a neighborhood of G,. If G, N K is not eventu-
ally empty then for all » in a cofinal subset of N, there is a ¢, in
G., N K, and if we pass to a suitable subnet, o, — o. However 0 ¢ K NG,
which contradicts the fact that (K, &) is a neighborhood of G,. Let
Ve & and let f be a nonnegative nonzero element of C,(G) with support

in V. ThenS f(o)d, (o) > 0 and so SG flo)d, (o) is eventually greater
G

that zero. He;lce G.,,NVis eventuallfr not empty, G, is eventually
in Zz(K, &), and G, is a continuous function of x.
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