SOME EXTREMAL PROPERTIES OF LINEAR COMBINATIONS OF KERNELS ON RIEMANN SURFACES

Georges G. Weill

1. Introduction. Let Γ_{a} be the Hilbert space of analytic differentials of finite Dirichlet norm on an open Riemann surface. We shall consider analytic singularities which are finite linear combinations of elements of the type

$$
s_{j} d z=\sum_{k=0}^{\infty} \frac{c_{k}^{j} d z}{\left(z-\xi_{j}\right)^{k+2}}+\frac{d^{j} d z}{z-\xi_{j}} .
$$

Let

$$
s d z=\sum_{j=1}^{N} s_{j} d z, \quad \sum_{j=1}^{N} d^{j}=0
$$

To a given singularity $s d z$ there correspond Bergman kernels

$$
k_{s}(z, \zeta) d z \quad \text { and } \quad h_{s}(z, \zeta) d z
$$

for the space Γ_{a}.
We now consider various subspaces $\Gamma_{a} \subset \Gamma_{a}$, and show that linear combinations of the kernels for Γ_{α} of the form

$$
h_{s} d z+\lambda k_{s} d z,
$$

where λ is complex, extremalize an explicity given functional.
We proved in our thesis [2] that, for the space $\Gamma_{a e}$ of analytic exact differentials on a planar Riemann surface,

$$
\begin{aligned}
& k_{s} d z=\frac{1}{2} \frac{\partial}{\partial z}\left(p_{1}-p_{0}\right) d z \\
& h_{s} d z=\frac{1}{2} \frac{\partial}{\partial z}\left(p_{1}+p_{0}\right) d z
\end{aligned}
$$

where p_{1} and p_{0} are Sario's principal functions with the corresponding singularities [1, Chapter III].

Here we show that the right hand sides still enjoy the same properties on an arbitrary Riemann surface, for the subspace $\Gamma_{p} \cap \Gamma_{a s e}$, where $\Gamma_{a s e}=\left\{a d z: a d z \in \Gamma_{a}, \int_{\gamma} a d z=0, \gamma\right.$ any dividing cycle $\}$, and Γ_{p} is generated over the complex numbers by $\left\{\Gamma_{p}\right\}=\{a d z$: $a d z=\partial p / \partial z, p$ a sin-gle-valued harmonic function on W, with finite Dirichlet integral.\}

[^0]2. Inner products and singular differentials. We shall be concerned here with the Hilbert space Γ_{a} of analytic differentials on a given Riemann surface W. The inner product of two analytic differentials $a d z=\alpha d x+\beta d y$ and $a_{1} d z=\alpha_{1} d x+\beta_{1} d y$ is defined as:
$$
\left(a d z, a_{1} d z\right)_{W}=-i \int_{W} a \bar{a}_{1} d z \overline{d z}=\int_{W}\left(\alpha \bar{\alpha}_{1}+\beta \bar{\beta}_{1}\right) d x d y
$$

If we now consider differentials analytic on W, except for a singularity of the type $d z /(z-\zeta)^{m+2}, m \geqq 0$, we delete a disk δ of radius r about $z=\zeta$ and define for differentials $b d z$ and $b_{1} d z$ analytic except for a singularity of the above type, the inner product

$$
\left(b d z, b_{1} d z\right)_{W}=\lim _{r \rightarrow 0}\left(b d z, b_{1} d z\right)_{W-\delta},
$$

which amounts to considering the Cauchy principal value for the inner product. In the case of a singularity $d z /\left(z-\zeta_{1}\right)-d z /\left(z-\zeta_{2}\right)$, we replace δ by disks about $z=\zeta_{1}$ and $z=\zeta_{2}$, plus a narrow strip along a cut joining $z=\zeta_{1}$ to $z=\zeta_{2}$ and define in the same fashion the inner product by a Cauchy limit.

The previous remarks may be extended to finite linear combinations of singularities of the type

$$
s_{j} d z=\sum_{k=0}^{\infty} \frac{c_{k}^{j} d z}{\left(z-\zeta_{j}\right)^{k+2}}+\frac{d^{j} d z}{\left(z-\zeta_{j}\right)}
$$

provided $\sum_{j=1}^{N} d^{j}=0$.
3. Extremal properties of the kernels. Let $s d z=\sum_{j=1}^{N} s_{j} d z$ be a singularity differential and $k_{s} d z, h_{s} d z$ be the Bergman kernels correspond to that singularity. We shall consider linear combinations

$$
\left(h_{s}+\lambda k_{s}\right) d z
$$

which are normalized in the sense that they all exhibit the same ${ }^{2} \sin$ gularity.

We recall that for $l(z) d z \in \Gamma_{a}$, the Bergman kernels corresponding to a singularity $s d z$, enjoy the following properties:

$$
\begin{array}{ll}
\text { for } s d z=\frac{d z}{(z-\zeta)^{m+2}}, m \geqq 0 & \left(l d z, k_{s} d z\right)=\frac{2 \pi l^{(m)}(\zeta)}{(m+1)!} \\
& \left(l d z, h_{s} d z\right)=0 \\
\text { for } s d z=\frac{d z}{z-\zeta_{1}} \frac{d z}{z-\zeta_{2}} & \left(l d z, k_{s} d z\right)=-\left(l d z, h_{s} d z\right)^{\prime}=' 2 \pi \int_{c} l d z
\end{array}
$$

where c is a path from ζ_{1} to ζ_{2}.
For $s d z=a s_{1} d z+b s_{2} d z,(a, b$ constant $)$,

$$
\begin{aligned}
& k_{s} d z=a k_{s 1} d z+b k_{s 2} d z \\
& h_{s} d z=a h_{s 1} d z+b h_{s 2} d z .
\end{aligned}
$$

Such a linear property is a consequence of the uniqueness of the kernels. Notice that in particular: $\left(l d z, k_{s} d z\right)=\bar{a}\left(l d z, k_{s 1} d z\right)+\bar{b}\left(l d z, k_{s 2} d z\right)$. Let now $a_{s} d z$ be a differential, analytic except for the singularity $s d z$. We form

$$
\begin{gather*}
\left\|a_{s} d z-\left(h_{s}+\lambda k_{s}\right) d z\right\|^{2}=\left\|a_{s} d z\right\|^{2}-\left\|h_{s} d z\right\|^{2}+|\lambda|^{2}\left\|k_{s} d z\right\|^{2} \tag{1}\\
\quad+2 \operatorname{Re}\left(\left(h_{s}-a_{s}\right) d z, h_{s} d z\right)+2 \operatorname{Re} \bar{\lambda}\left(\left(h_{s}-a_{s}\right) d z, k_{s} d z\right)
\end{gather*}
$$

Assume now that in a disk about $z=\zeta_{j}$

$$
\begin{aligned}
& h_{s} d z=s_{j} d z+\sum_{k=0}^{\infty} b_{k}^{j}\left(z-\zeta_{j}\right)^{k} d z \\
& a_{s} d z=s_{j} d z+\sum_{k=0}^{\infty} a_{k}^{j}\left(z-\zeta_{j}\right)^{k} d z
\end{aligned}
$$

We then compute:

$$
\begin{gathered}
2 \operatorname{Re}\left(\left(h_{s}-a_{s}\right) d z, h_{s} d z\right)=-4 \pi \sum_{j=1}^{N} \operatorname{Re} \bar{d}^{j} \int_{c_{j}}\left(h_{s}-a_{s}\right) d z \\
2 \operatorname{Re} \bar{\lambda}\left(\left(h_{s}-a_{s}\right) d z, k_{s} d z\right)=4 \pi \sum_{j=1}^{N} \operatorname{Re} \bar{\lambda}\left[\sum_{k=1}^{\infty} \frac{\left(b_{k}^{j}-a_{k b}^{j}\right) \bar{c}_{k}^{j}}{k+1}+\bar{d}^{j} \int_{c_{j}}\left(h_{s}-a_{s}\right) d z\right.
\end{gathered}
$$

using the linear property of the kernels, with respect to the coefficients of the singularity. We now write (1) in the following form:

$$
\begin{aligned}
& \left\|a_{s} d z\right\|^{2}-4 \pi \sum_{j=1}^{N} \operatorname{Re}\left[\sum_{k=0}^{\infty} \frac{\bar{\lambda} a_{k}^{j} \bar{c}_{k}^{j}}{k+1}+(\bar{\lambda}-1) \bar{d}_{j} \int_{c_{j}}\left(a_{s}-s\right) d z\right]=\left\|h_{s} d z\right\|^{2} \\
& -|\lambda|^{2}\left\|k_{s} d z\right\|^{2}-4 \pi \sum_{j=1}^{N} \operatorname{Re}\left[\sum_{k=0}^{\infty} \frac{\bar{\lambda} b_{k}^{j} \bar{c}_{k}^{j}}{k+1}+(\bar{\lambda}-1) \bar{d}^{j} \int\left(h_{s}-s\right) d z\right] \\
& \quad+\left\|a_{s} d z-\left(h_{s}+\lambda k_{s}\right) d z\right\|^{2} .
\end{aligned}
$$

We can now study the value of the bracket in the functional, and prove that

$$
\sum_{j=1}^{N}\left[\sum_{k=0}^{\infty} \frac{\bar{\lambda} b_{k}^{j} \bar{c}_{k}^{j}}{k+1}+\bar{\lambda} \bar{d}^{j} \int_{c j}\left(h_{s}-s\right) d z\right]=0
$$

We shall summarize our results in a theorem:
Theorem III A. Let $s d z=\sum_{j=1}^{N} s_{j} d z$ where

$$
s_{j} d z=\sum_{k=0}^{\infty} \frac{c_{k}^{j} d z}{\left(z-\zeta_{j}\right)^{k+2}}+\frac{d^{j} d z}{\left(z-\zeta_{j}\right)}
$$

be an analytic singularity with $\sum_{j=1}^{N} d^{j}=0$.

Let $k_{s} d z, h_{s} d z$ be the Bergman kernels corresponding to $s d z$, and let λ be a complex parameter.

Then the linear combination $\left(h_{s}+\lambda k_{s}\right) d z$ minimizes the functional:

$$
\left\|a_{s} d z\right\|^{2}-4 \pi \sum_{j=1}^{N} R e\left[\sum_{k=0}^{\infty} \frac{\bar{\lambda} a_{k}^{j} \bar{c}_{k}^{j}}{k+1}+(\bar{\lambda}-1) \bar{d}^{j} \int_{c j}\left(a_{s}-s\right) d z\right]
$$

over the class of differentials $a_{s} d z$, analytic except for the singularity $s d z$. The minimum is

$$
\left\|h_{s} d z\right\|^{2}+4 \pi \sum_{j=1}^{N} \operatorname{Re} \bar{d}^{j} \int_{\sigma_{j}}\left(h_{s}-s\right) d z+|\lambda|^{2}\left\|k_{s} d z\right\|^{2}
$$

and the deviation from the minimum is

$$
\left\|a_{s} d z-\left(h_{s}+\lambda k_{s}\right) d z\right\|^{2}
$$

Proof. $h_{s} d z+\lambda e^{i \theta} k_{s} d z$ for θ real is a competing function; therefore:

$$
\begin{aligned}
& \left\|h_{s} d z\right\|^{2}-|\lambda|^{2}\left\|k_{s} d z\right\|^{2}-4 \pi \sum_{j=1}^{N} R e\left[\sum_{k=0}^{\infty} \frac{\bar{\lambda} \bar{c}_{k}^{j} b_{k}^{j}}{k+1}+(\bar{\lambda}-1) \bar{d}^{j} \int_{c_{j}}\left(h_{s}-s\right) d z\right] \\
& \leqq\left\|h_{s} d z\right\|^{2}-|\lambda|^{2}\left\|k_{s} d z\right\|^{2}-4 \pi \sum_{j=1}^{N}\left[\sum_{k=1}^{\infty} \frac{\bar{\lambda} e^{-i \theta} \bar{c}_{k}^{j} \bar{b}_{b}^{j}}{k+1}\right. \\
& \left.+\left(\bar{\lambda} e^{-i \theta}-1\right) \bar{d}^{j} \int_{c j}\left(h_{s}-s\right) d z\right] .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\sum_{j=1}^{N} R e\left[\sum_{k=0}^{\infty} \frac{\bar{\lambda} \bar{c}_{k}^{j} b_{k}^{j}}{k+1}+\right. & \left.\bar{\lambda} \bar{d}^{j} \int_{c_{j}}\left(h_{s}-s\right) d z\right] \\
& \geqq \sum_{j=1}^{N} R e\left\{e^{-i \theta}\left[\sum_{k=0}^{\infty} \frac{\bar{\lambda} \bar{c}_{k}^{j} b_{k}^{j}}{k+1}+\bar{\lambda} d^{j} \int_{c_{j}}\left(h_{s}-s\right) d z\right]\right\}
\end{aligned}
$$

which is only possible if the bracket is real. It cannot be real fer all λ except if it is equal to zero.
4. Particular cases-applications. Assume now that $a d z=(\partial p / \partial z) d z$, where p is a single-valued harmonic function on W, except for a singularity $\operatorname{Re} S(z)=\sum_{j=1}^{N} \operatorname{Re} S_{j}(z)$, with

$$
\operatorname{Re} S_{j}(z)=d^{j} \log \left|z-\zeta_{j}\right|+\operatorname{Re}\left[\sum_{k=0}^{\infty} \frac{c_{k}^{j}}{(-k-1)\left(z-\zeta_{j}\right)^{k+1}}\right]
$$

where d^{j} is real. The singularity of $(\partial p / \partial z) d z$ is then $s d z=\sum_{j=1}^{N} s_{j} d z$, with

$$
s_{j} d z=\frac{d^{j} d z}{z-\zeta_{j}}+\sum_{k=0}^{\infty} \frac{c_{k}^{j} d z}{\left(z-\zeta_{j}\right)^{k+2}}
$$

Moreover if $p=\operatorname{Re}\left\{S_{j}(z)+\sum_{k=0}^{\infty} A_{k}^{j}\left(z-\zeta_{j}\right)^{k}\right\}$ near $z=\zeta_{j}$ and

$$
\frac{\partial p}{\partial z} d z=s_{j} d z+\sum_{k=0}^{\infty} a_{k}^{j}\left(z-\zeta_{j}\right)^{k}
$$

it follows that $A_{k+1}^{j}=a_{k}^{j} / k+1$ for $k \geqq 0$. We notice furthermore that $\|a d z\|^{2}=2(B(p)-A(p))$, where $B(p)=\int_{\beta} p d p^{*}(\beta$ the ideal boundary of ω) and $A(p)=2 \pi \sum_{j=1}^{N} d^{j} \int_{c_{j}}\left(\alpha_{s}-s\right) d z$. The functional to be minimized becomes:

$$
2\left[B(p)-2 \pi \sum_{j=1}^{N} R e\left[\sum_{k=0}^{\infty} \frac{\bar{\lambda} a_{k}^{j} \bar{c}_{k}^{j}}{k+1}+\bar{\lambda} d^{j} \int_{c_{j}}\left(a_{s}-s\right) d z\right]\right] .
$$

We notice that the differentials $a d z=(\partial p / \partial z) d z$ with p single valued harmonic function generate a subspace $\Gamma_{p} \subset \Gamma_{a}$. If $k_{s p} d z$ and $h_{s p} d z$ are the Bergman kernels for Γ_{p}, they correspond to two functions K_{s} harmonic and H_{s} harmonic except for the singularity $R e S(z)$ and such that:

$$
\begin{aligned}
& k_{s p} d z=\frac{\partial K_{s}}{\partial z} d z \\
& h_{s p} d z=\frac{\partial H_{s}}{\partial z} d_{s}
\end{aligned}
$$

We can write the value of the minimum as:

$$
2 B\left(H_{s p}\right)+|\lambda|^{2}\left\|k_{s p} d z\right\|^{2}
$$

We now shall prove the following theorem.
Theorem IV A: Let $\left(\partial_{p 0} / \partial z\right) d z$ and $\left(\partial_{p 1} / \partial z\right) d z$ be the analytic differentials with singularity sdz, corresponding to the principal functions p_{0} and p_{1}. Then

$$
\begin{aligned}
& \frac{1}{2} \partial / d z\left(p_{1}-p_{0}\right) d z=k_{s p} d z \\
& \frac{1}{2} \partial / d z\left(p_{1}+p_{0}\right) d z=h_{s p} d z,
\end{aligned}
$$

where $h_{s p} d z$ and $k_{s p} d z$ are the orthogonal and reproducing kernels for $\Gamma_{p} \cap \Gamma_{a s e}$, corresponding to the singularity sdz.

Proof. First, we know from the definition of p_{0} and p_{1}, that $\left(\partial_{p 0} / \partial z\right) d z$ and $\left(\partial_{p 1} / \partial z\right) d z$ are elements of $\Gamma_{p} \cap \Gamma_{a s e}$. Second, from (1. Chapter III. Theorem 9 E where only the notation is different), $\left(\partial_{p 0} / \partial z\right) d z$ minimizes the same functional as $h_{s p} d z-k_{s p} d z$ (which corresponds to $\lambda=-1$), and ($\left.\partial_{p 1} \partial z\right) d z$ minimizes the same functional as $\left(h_{s p} d z+k_{s p}\right) d z$, (which corresponds to $\lambda=1$). The theorem follows.

We shall consider here a family of functions P harmonic, except
for a singularity of the type $\operatorname{ReS}(z)$; the periods of P vanish along all dividing cycles. It follows that the differentials $(\partial P / d z) d z$ are elements of $\Gamma_{P} \cap \Gamma_{a s e}$, except for a singularity $s(z) d z$.

We shall call H_{s} the function corresponding to $h_{s p} d z$, and K_{s} the one corresponding to $k_{s p} d z$. The following results are consequences of the main Theorem.

Theorem IV B: Among all functions P with singularity $1 /(z-\xi)$, $H_{s}+\lambda K_{s}$ minimizes the functional $B(P)-2 \pi R e \bar{\lambda} A_{1}$.

Theorem IV C: Among all functions P with singularity $\log \mid\left(z-\xi_{1}\right) /$ $\left(z-\zeta_{2}\right) \mid, H_{s}+\lambda K_{s}$ minimizes $B(P)-2 \pi R e \bar{\lambda}\left(A_{0}^{1}-A_{0}^{2}\right)$.

Theorem IV D: Among all functions P with singularity $\operatorname{Re} S(z)$, H_{s} minimizes the functional $B(P)$.

We shall now consider exact differentials, analytic except for some singularity $s(z) d z=\sum_{j=1}^{N} s_{j}(z) d z$, which may be written $f^{\prime}(z) d z=d f(z)$, where f is a function analytic except for a singularity $S(z)=\sum_{j=1}^{N} s_{j}(z)$ such that $S^{\prime}(z) d z=s(z) d z$; then $f=S_{j}(z)+\sum_{k=0}^{\infty} \alpha_{k}\left(z-\zeta_{j}\right)^{k}$ near $z=\zeta_{j}$. We proved [II] the existence of a non-zero reproducing kernel if $W \notin 0_{A D}$. We shall now find a sufficient condition for the existence of an orthogonal kernel. We recall that in the case of a planar Riemann surface

$$
\Gamma_{h}=\Gamma_{h e}+\Gamma_{n e}^{*} \cap \Gamma_{h o}^{*} .
$$

We shall consider here Riemann surfaces on which

$$
\Gamma_{h}=\Gamma_{h e}+\Gamma_{n e}^{*} .
$$

We call such surfaces type W_{E}. On a surface of type W_{B}

$$
\Gamma_{h 0} \cap \Gamma_{h 0}^{*}=\left[\Gamma_{h e}+\Gamma_{h e}^{*}\right]^{\perp}=0 .
$$

We then get the following lemma:
Lemma IV E: On a surface of type W_{B}, given a singularity $s(z) d z=d z /(z-\zeta)^{m+2}, m \geqq 0$, there exists a differential analytic exact, except for the corresponding singularity.

Proof. Let Θ be constructed as in [1, Chapter V. 18.19]. The differential $\theta-i \theta^{*}$ is square integrable and hence has the decomposition?.

$$
\theta-i \theta^{*}=\omega_{h}+\omega_{e 0}+\omega_{e \rho}^{*}=\omega_{h e}+\omega_{h e}^{*}+\omega_{e \rho}+\omega_{e \rho}^{*} .
$$

It follows that

$$
\eta=\Theta-\omega_{e \rho}-\omega_{h e}=i \Theta^{*}+\omega_{h e}^{*}+\omega_{e 0}^{*}
$$

is harmonic exact except for the singularity and so is η^{*}. We may write $\eta=\phi+\bar{\psi}$ where ψ is analytic and ϕ is analytic except for the singularity. It follows that ϕ is the differential mentioned in the lemma; $\phi=d F_{m}$ where F_{m} is an analytic function except for the singularity

$$
\frac{-1}{(m+1)(z-\zeta)^{m+1}}
$$

and from [2] there exists an orthogonal kernel $d H_{m}$ for $\Gamma_{a e}$ on W_{E}.
Note. An analogous proof works for differentials with $s(z) d z=$ $d z /\left(z-\zeta_{1}\right)-d z /\left(z-\zeta_{2}\right)$; we have only to discard the periods about $z=\zeta_{1}$ and $z=\zeta_{2}$.

From the existence of orthogonal kernels for $\Gamma_{a e}$ we can state the following theorems; here $B(f)=\frac{1}{2} \int_{\beta} f d \bar{f} ; H_{s}$ and K_{s} are analytic functions whose differentials are respectively the orthogonal and reproducing kernels for $\Gamma_{a e}$, corresponding to the singularity.

Theorem IV F: Among all functions f analytic except for a simple pale at $z=\zeta$ with expansion $f=c_{1} /(z-\zeta)+\alpha_{1}(z-\zeta)+\cdots$ in a neighborhood of $z=\zeta, H_{s}+\lambda K_{s}$ minimizes the functional $B(f)+$ $2 \pi R e \bar{\lambda} \bar{c}_{1} \alpha_{1}$.

Theorem IV G: Among all functions $f(z)$ analytic except for the singularity

$$
S(z)=\sum_{j=1}^{N} \sum_{k=0}^{\infty} \frac{c_{k}^{j}}{\left(z-\zeta_{j}\right)^{k+1}(-k-1)},
$$

the function H_{s} minimizes $B(f)$.

Bibliography

1. L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton University Press, Princeton 1960.
2. G. G. Weill, Reproducing kernels and orthogonal kernels for analytic differentials on Riemann surfaces, Pacific J. Math., 12 (1962), 729-767.

[^0]: Received August 21, 1961.

