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In this article we determine the Bergman kernel function of the
tube domain over an arbitrary convex cone not containing any entire
straight line. For homogeneous self-dual cones this problem was solved
by 0. S. Rothaus ([3], Theorem 2.6). It turns out that his method can
also be used in our considerably more general case. In fact, the proofs
of our Theorems 1 and 2 follow closely the corresponding proofs of
Rothaus; it is only in Lemma 2 that the proof of Rothaus has to be
replaced by an essentially different convexity argument.

Let V be an w-dimensional real vector space. A set D c F is called
a cone if x e D and λ > 0 imply Xx e D. Let F * be the dual space of
F. The dual cone D * of D is defined as the set of all a e F * such
that ζa, xy > 0 for all x e D, x Φ 0. We call the cone D regular if it is

( i ) open,
(ii) convex,
(iii) nonempty, and
(iv) contains no entire straight line, i.e. xeD implies ~x$D. It

is easy to see that if D is regular then D* is regular too, and D** = D.
We assume that a Euclidean norm ct? —> | α; | is defined on F. The

dual norm on F * will likewise be denoted by α — > | α | .

LEMMA 1. If D is a regular cone and K c D is a compact set then
there exists a number p > 0 such that ζa, xy ^ p\a\ for all x e K, α e ΰ * .

Proof. The proof is the same as that of [2] Lemma 1. By homo-
geneity it suffices to prove the assertion for | a | = 1. Let S —
{ae F * | | α | — 1} be the unit sphere in F * . Now (a, xy is a positive
continuous function on the compact set (S Π 5*) x K and thus has a
positive minimum p, finishing the proof.

We define the positive real-valued function M on D* by

M(ά) =

for all a e D*. By Lemma 1 the integral converges uniformly on compact
sets. As it can immediately be seen, M is a homogeneous function of
degree —n.

LEMMA 2. Let D be a regular cone and let βedD* (the boundary

of D* in F*). Then
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lim M(a) = oo .

Proof. If β = 0 the assertion is trivial. Let β Φ 0. For
and ί > 0 define HΛ(t) - {# e D|<α, α?> - ί} and let

)l

be the volume of HJt) (dvω denotes the volume element of the hyperplane
{x\<a, x> = ί}). Clearly we have VJt) = t^V^l) for all ί > 0. Also

= Γdίί
JO Ji

= Γ VΛ(t)e-*dt = VΛ(l)Γ(n) .
Jo

Therefore the Lemma will be proved if we show that linv-^Va(l) = co.
Let U a D* be a compact neighborhood of β relative to 5* . Then

the set L of all x e D such that (a, x} < 1 for all α e U has an interior.
(In fact, if A is a bound for | a | on U, it is easy to see that L contains
all xeD such that | x\ < A"1). Let K be an open sphere contained in
L; let ce D be its center and r > 0 its radius.

For a G U let iζ* be the (n — l)-dimensional sphere of radius r and
center ca = ζa, c>-1c contained in the hyperplane {x \ ζa, α?> = 1}. By
convexity and by <α, c>-1 > 1 we have if̂  c -£^(1). Since | cΛ | = <α, c>-1| c |
and since the continuous function <α, c>-1 is bounded on the compact
set U, there exists a number R such that

( 1 ) \cΛ\^R

for all α e U.
Now let β > R be an arbitrarily large number. There exists an

element a 6 D, \ a \ — 1 such that </3, α> = 0, for otherwise we would
have /3eD*. Hence there exists an element xeD, \x\ = 1 such that
</3, a?> < (JB + fl)"1. It follows then that there exists a neighborhood
U(Ω)cz U oΐ β relative to D* such that <a, x) < (R + β)-1 for all
α e ί7(β). Let ^Λ = <α, a;)-1^. Clearly we have xa e H^l) and

( 2) I g Λ I > R + β

for all a e U(Ω). Now ίία(l) is convex, and thus contains the convex
hull Ba of KΛ and x*; hence, be (1) and (2),

Λ(1) ^ \
J — 2

-Ω

for all α e U(Ω), C denoting the volume of the (n — 2)-dimensional
sphere of radius r. This completes the proof.
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Let VG = F φ i F be the complexification of V. The tube over D
in Vo is the domain TD = {x + iy | x e D, y e V}. For z — x + iye Vo and
a e V* we write (a, z) — (a, x} + iζa, y). We denote by Sίf\TD) the
Hubert space of holomorphic functions on TD, square integrable with
respect to dxdy, and by L2

M(D*) the Hubert space of functions on ΰ *
square integrable with respect to M(a)da.

THEOREM 1. The mapping φ-+f defined by

(3) f(z) = π~nl2 \ ψ{a)e-^^da
J D*

is an isomorphism of L\(D*) onto Sf\TΌ).

Proof. Let φ e L\(D*). Then

ί I φ(a)e-<oύ z> I da = ( | ψ{a) \ e~<oί x>da
JD* JD*

1/2

by the Schwarz inequality. The first integral is just | |^ | | 2 , the second
is also convergent by Lemma 2 and by the homogeneity of M; by Lemma
1 it is even bounded on compact subsets of D. Thus (3) converges
absolutely and uniformly on compact subsets of TD, and hence represents
a holomorphic function. Furthermore, reversing the order of integration
(which is possible since the integrand is positive and measurable), and
then applying the Plancherel theorem we have

( 4 ) | | 9 > I Γ = ( \φ(a)\2M(a)da= \ \φ{a)|2da\ e~^x>dx
JD* JD* JD

= 2n \ I φ{a) I2 da \ e-**-*>dx = 2n \dx \ \ φ(a)e~ia'x> |2 da
JD* JD J JD*

= \ dx\ \f(χ + iy)\*dy=\\f\\\
JD JV

which shows that fe^f2(TD) and also that the mapping is an isomor-
phism.

Remains to show (and this is the more important part) that the
isomorphism is onto.

First we prove that there exists a measurable function φ on F*
such that

f(z)=f(x + iy)^\imπ~n'^

for almost all x e D. In fact, by Fubini's theorem f(x + iy) as a function
of y is in L\V) for almost all x; so the Fourier transform
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ψ(x, a) = Km π~nl2 \ f(x
Jv

exists. The assertion is that ψ(x, a) = φ(a)e~ia'x> with some measurable
φ. Let Nd D be a subset whose distance from dD is d > 0. Then,
by a well-known property of .Sf2-spaces, \f(z)\ = \f(% + w)\ ^ CJI/H
for all xeN, fe^f2(TD). Using this remark the proof of our assertion
is the same as that of a similar assertion in [1], p. 128, and will not
be reproduced here.

Next we show that φ(a) = 0 for almost all α ί ΰ * . In fact, using
the Plancherel theorem and reversing the order of integration we obtain

11 /112 = 2n \ da\ I φ{a) \2 e~2i<*'x>dx .
JV* JD

In particular, I | φ(a) \2e~Koύ'x)dx exists for almost all a and is integrable.

Γ
Now if α g ΰ * , then <a, x) < 0 for some xeD and hence I e~2<(*'x}dx

JD

diverges. Therefore φ{a) = 0 for almost all such a.
Finally we must show that <peL2

M(D*). This however follows at
once from the Plancherel theorem through the equalities (4).

THEOREM 2. The Bergman kernel function of TD is

K(z, w) = —
πn

Proof. From Theorem 1 it is clear that, for fixed w e TDJ K(z, w)
as a function of z is in ^f\TD). Also for fixed weTD and xeD, K{z, w)
is in L2(V) as a function of y.

Let fe^?\TD), then / can be represented in the form (3). Using
the Plancherel theorem and then reversing the order of integration
(which can be done since the integrand is measurable and the repeated
integral in reverse order exists absolutely), we obtain

— f f —
f(z)K(z, w) dxdy = \ dx \ f(z)K(z, w)dy

D JD JV

dx\
D JV

= \ φ(a)e-{a wyda = f(w)
Jv*

for all w e TD. Owing to the fact that the Bergman kernel is uniquely
determined by its reproducing property, the proof is finished.
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