
if-POLAR POLYNOMIALS

RUTH GOODMAN

1# Introduction* The complex polynomials

(i) f(z) = Σ ft V , ϋ{z) = Σ ft V
j=o\3/ j=o\3/

are called apolar if their coefficients satisfy the condition

Σ(-D'ftW-A = o.

A well known property of apolar polynomials is given [1] by

GRACE'S THEOREM. If the polynomials f(z) and g(z) are apolar,
then every circular domain containing all the zeros of one polynomial
also contains at least one zero of the other.

The term "circular domain" is used here to denote any region into
which the circle | z | ̂  1 can be transformed by a nonsingular linear
fractional transformation

w = (ax + b)/(cx + d)

that is, a circular domain is a closed interior of a circle, a closed
exterior of a circle, or a closed half plane.

It is natural to ask whether similar but more stringent conditions
on the coefficients of (1) will insure that every circular domain contain-
ing all the zeros of one polynomial also contains at least k zeros of the
other when k is integer greater than unity. We show here that this
is the case. Our results can be stated more easily if we first make
the

DEFINITION. The polynomials (1) are called Λ-polar (1 g k <Ξ n, k
an integer) if their coefficients satisfy the k2 conditions

( 2 ) *Σ+ 1 (- ! ) ' (* ~ ϊ + XWy&m = 0
3=0 \ 3 /

(h — 0, , k — 1; 8 = n, , n — k + 1).

We shall show that fc-polarity of the polynomials (1) is sufficient
to insure that the desired relation between their zeros does hold.

It is apparent that when k is relatively large in comparison with
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n there is only a restricted class of polynomials f(z) for which fc-polar
polynomials g(z) can exist. We shall show that when 2k + 1 ^ n the
fc-polarity of the polynomials (1) is both necessary and sufficient for
them to have a common, repeated zero such that the multiplicities, p
and q, with which this zero occurs in the two polynomials satisfy the
inequalities p ^ k, q^k, p + q ^ n + k.

2. The polar derivative* To prove our principal results, we shall
need a lemma concerning the (n — l)st degree polynomial

fζ(z) = nf(z) + (ζ- z)f'{z) = n Σ

This polynomial is called the "polar derivative of f(z)" or the "deriva-
tive of f(z) with respect to ζ". It can be obtain [2] from f(z) as
follows:

By the linear transformation

( 3) z = L(w) = (aw + b)j(cw + d) (be - ad = 1)

transform f(z) into the polynomial

(4) F(w) = (cw + dff(L(w))

then to the derivative F'(w) apply the inverse transformation w —
L~\z)y obtaining fζ(z). If c Φ 0, then f = a/c = L(oo); if c = 0, then
ξ- = co = L(co).

We shall refer to the polynomial F(w) defined by (4) as the trans-
form by (3) of the polynomial f(z). It is important to observe [2] that
the zeros of the transform F(w) are the transforms by w = L~\z) of
those of f(z).

LEMMA 1. Let the nth degree polynomial f(z) have n — k zeros in
I z I < 1 and k zeros in \ z \ > r, where r > 1. Then there is a point ζ
(not unique) such that fζ(z) has exactly k — 1 zeros in \ z \ > r.

Proof. Form F(w) by applying to f(z) the transformation

z = L(w) = (ζw - l)l(w -ζ) (1< ζ < r) ,

which takes | z \ < 1 into | w \ < 1 and takes | z \ > r into the circle

Now F(w) has k zeros in iΓ2 and n — k zeros in | w \ < 1. Since the
maximum modulus of these latter n — k zeros is less than unity, we
can choose μ < 1 such that these zeros also lie in | w | < μ. Let p =
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(1 + μ)/2. The circle

•Ki: \w-{p-l)\<p

contains the circle | w | < μ; for the line segment connecting w = — μ
and w — μ is a diameter of | w | < μ and is contained in the line
segment connecting w = — 1 and w = μ, which is a diameter of Kx.
Thus ίΓx contains n — k zeros of F O ) . Applying the Walsh two circle
theorem [5] to Kλ and K2, we find that the zeros of F'(w) lie in Klf K2,
and the third circle

K:\w-C\<R, C={n~ k)C> + k{p ~
n n

Furthermore, it is an immediate consequence of the two circle theorem
that if the boundaries of K and K2 do not intersect then there are
exactly ft — 1 zeros of F'(w) in K2. The condition for the non-inter-
section of these two circles is

C2- C> R2 + R .

This condition is equivalent to

n(C2 - C - R2- R) = kC2- R2(2n - k) - k(2ρ - 1) > 0 ,

and this last inequality is equivalent to

φ(ζ) = ft(r2 - l)ζ - (2n - k)r(ζ2 - 1) - k(2p - l)(r2 - ζ2) > 0 .

Now

φ(l) = 2k(r* - 1)(1 - p) > 0 ,

since r > 1 and /? < 1. Since φ(ξ) is a real, continuous function of f,
it follows that (̂ξ ) > 0 in an interval 1 g f ^ 1 + ε, where e > 0. For
any value of f in this interval, K and iί2 do not intersect and F\w)
has exactly k ~ 1 zeros in iί2. Now the zeros of fζ{z) are the trans-
forms by z = L(w) of those of F'(w). Hence exactly ft — 1 of them lie
in the transform of K2J that is, in \z\> r.

3. Properties of the fc-polarity conditions* To prove our principal
results, we shall need to establish first some properties of the ft-polarity
conditions.

LEMMA 2. For ft = 1, , n + 1, the polynomials (1) can be writ-
ten in the form
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where

~ + ^ α ^ (i = o , k -

The functions fkj satisfy the relation

%fk+l,j+l T" Jk+l,j ==Jk,i

Proof. We show first the property of the functions fkJ which is
stated last in the lemma. Using the definition of / t,, and a well known
property of the binomial coefficients, we write

Σ

Σ ^ _ ̂ α ^ + Σ (

= fk.j

The proof of the first part of the lemma is by induction. It is
true when k = 1, since f1Λ reduces at once to f(z). For any k > 1 we
have

IK? =ϊ

If the first part of the lemma is true when A; is replaced by fc — 1,
then the last expression above is equal to f(z). It follows that the
lemma is true for all values of k.

LEMMA 3. The polynomials (1) are k-polar if and only if the
polynomials fk>j and gkti are apolar for all i = 0, , k — 1 and
j = 0, ••-,&- 1.

Proof. The proof is immediate, since applying the apolarity con-
dition to all fkιj and gkti yields conditions (2) at once.
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LEMMA 4. The k-polarity conditions (2) are invariant under non-
singular linear transformations of the polynomials (1).

Proof. Since any non-singular linear transformation is equivalent
to a succession of transformations of the forms z = jw(y ΦO), z = Ijw,
z — w + 7, the lemma can be established by showing the invariance of
(2) for each of these special forms.

Each sum in (2) is invariant under magnifications and rotations.
For applying z = ΊW to both f(z) and g(z) replaces αs_y by Ίs~jas-3

and bj+h by jj+hbj+h, whence each term of the sum is multiplied by
ys-jyj+h _ ys+h^ ΓJI^ g u m ^ therefore, remains equal to zero.

Under the transformation z — 1/w, the polynomials (1) are carried
into

F(w) = tCfjAjw' and F(w) = t
j = 0\J/ 3 = 0

where A3 = αw_y and JŜ  = bn-3 (j = 0, , n). The entire set of con-
ditions (2) is invariant under this transformation. For we have

v ( Λ
3=0 \ J /

3=0

/ ΊΛ i 1 v

)a2v ^..jt+i-.it-i-i

— / I\»-Λ+I n v + V
— \ ±) 2-1

3=0

where sr — 2n ~ s — ft + 1 and h' = k — h — 1, so that s' takes on the
values n — k + 1, , n and h' takes on the values k — 1, , 0. Hence
satisfaction of (2) by f(z) and #(2) insures satisfaction of (2) by F(w)
and G(w).

To prove the invariance of (2) under translations, we first make
use of Lemma 2 and show that if f(z) is transformed into F(w) by
z — w + 7, then each polynomial Fktj(w) is a linear combination of the
polynomials fh,3 {w + c)(j = 0 , , ft — 1). Precisely, we show that the
equations

( 5 ) FkJ(u>) ^ * ! f ( f c " ^ ~ ^^Λ.i+ftίw + 7) ( i = 0, , ft - 1)

hold for every k = 1, , n + 1. The proof is by induction on ft. We
show first that the desired relations hold for the highest value of ft,
that is, ft = n + 1. When ft = n + 1, the equations defining fkJ and
Fjfc.j reduce to fn+1>3 = a,- and F w + l i i = Λ, , so that (5) becomes
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α ^ (j - 0, , k - 1).

To see that this holds, we find As by collecting the coefficients of the
powers of w in the polynomial f(w + 7). We have

F(w) =f(w + 7) = Σ ( J W + 7)'

Σ (5)

so that

Thus equations (5) hold when k = n + 1. Next, we assume that they
hold for general index k + 1 and show that they also hold for index
k. For convenience, we shall temporarily let φkJ denote fkj(w + 7).
(FkJ will denote FkJ(w) as usual.) Using the property of Fktj and fk)j

established in Lemma 2 and assuming that equations (5) hold for k + 1,
we can write

Fk,j = wFk+ltj+1 + Fk+ljj

g
Σ ( f c J

fc - i - lλ (k - j - 1

+
h\\ h i ) + { h )Γ

<Pk+i,3+h+ι
/

k-j-l /L. _ A _

+ Σ

Σ
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Thus equations (5) hold for k = n + 1, , 1.
We have now established that each polynomial FkJ(w) is a linear

combination of the polynomials fkj(w + 7). To finish the proof of the
invariance of (2) under translations, we recall the known facts (i) that
apolarity is invariant under translations of the polynomials [1] and (ii)
that if Ex and E2 are two sets of polynomials such that every polynomial
of JEΊ is apolar to every polynomial of E2J then any linear combination
of polynomials from Eλ is apolar to any linear combination of polynomials
[1] from E2. By Lemma 3, the fc-polarity of f(z) and g(z) implies the
apolarity of each polynomial in the set Ex\ {fk,k-i(w), ,Λ,oW} to each
polynomial in the set E2: {f7*.*-i(w)> *' •> 9kΛw)} Property (i) therefore
implies that all polynomials of E[: {fk,k-i(w + 7), -,fkAw + 7) are apolar
to all polynomials of E'2: {gk.k-i(w + 7), , gk,o(w + ?)}. We have just
shown that each polynomial FkJ(w) is a linear combination of polynomials
from E[ and each GkJ(w) is a linear combination of polynomials from
El. Thus property (ii) implies the apolarity of all the Fktj(w) to all
the Gktj(w). Lemma 3 now gives the fc-polarity of F(w) and G(w).

For convenience, we shall denote the repeated polar derivative

LEMMA 5. Let k ^ 2 and 1 ^ s ^ k — 1. The k-polarίty of f(z)
and g(z) is necessary and sufficient for the (k — s)-polarity of the
repeated polar derivatives f(z; ζ, s) and g(z; η, s) for arbitrary points
ζu ...,f. and ηl9 •••,%.

Proof. It suffices to make the proof for 8 = 1, since re-application
of this proof will then establish the lemma for all values of s con-
cerned. Letting φ(z) = f(z; ζ, 1) and ψ(z) = g(z; η, 1), we have

whence

1>J i = o V ^

- ζjk,i+1(z) + fk>j(z) (j = 0, . . . , k - 2) .

Similarly,

Ψk-u(z) — Vi9k,j+i(z) + 9kj(z) (j — 0, , k — 2) .

The fc-polarity of f(z) and r̂(̂ ) implies the apolarity of both fkJ+1(z)
and fk)j(z) to both gk+1>j(z) and gktj(z). Thus ^-^-(z) and ψk-ltj{z), which
are linear combinations of these polynomials, are apolar. The (k — 1)-
polarity of φ(z) and ψ(z) now follows at once from Lemma 3.
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If, on the other hand, f(z; ζ, 1) = fζl(z) and g(z; η, 1) = gVι(z) are
(k — l)-polar for arbitrary values of ξλ and ηu then, in particular, both
fo(z) and foo(z) are (k — l)-polar to both gQ(z) and f/oo(s). For convenience,
denote f(z; ζ, 1) by φ{z; ξΊ) and g(z; η, 1) by ψ(z; ηx). We have

Po\ 3

Φ(z; « ) = /„(«,) = nnt(n 7 ^αy+xz' ,
3=0 \ J /

whence

Σ
n—k+ln—k+l (M 1 \

Φk-U*, « ) = n Σ ( A )ai+j+1z
{ =Λ. ί + 1 (2)

( i = 0f . . . f f c - 2 ) .

Similarly,

Ϋk-iA*', 0) = 9k,A^) ,

f *-i.i(«; °°) = 9kj+i(z) U = 0, , k - 2) .

The (fc — l)-polarity of φ(z; 0) and ^(2; c») to ^(2; 0) and ψ(z; 00) implies
the apolarity of all the 0fc_lti(3; 0) and φk^ltj(z; cχ>) to all the ψk-ltj(z; 0)
and ψk-ltj{z) 00) for i = 0, , fc — 2. The apolarity of all the fkιj(z) to
all the gklj(z) for y = 0, , k — 1 now follows at once. This, in turn,
implies the fc-polarity of f(z) and g(z).

LEMMA 6. Let the nth degree polynomials f(z) and g(z) be k-polar.
Let ξlf , ξV-/b+i be the zeros of any one of the polynomials gkιk-i(z), ,
9k,o(z)> and let all these zeros be finite. Then f(z; ζ,n — k + 1) vanishes
identically.

Proof. If ζlf , ζn-k+i are the zeros of

then their elementary symmetric functions can be expressed in terms
of the coefficients. Let S{

o

m) = 1 and for i = 1, , m let S[m) denote
the sum of all possible products of ξlf , ζm taken i at a time. (Note
that bn-k+1+h Φ 0 since it is the leading coefficient of gkth(z) and all the
zeros of this polynomial are finite.) We have

(—*+i> = (-iy(n ~Jϊ + 1) bn-k+i+n-i (i == 0, , n - fc + 1).
V % I b^-uΛ-^,
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Thus we can write

n-k+l+
υn-k+l+h 2-1 Uj+idih V
υn-k+l+h 2-1

n-k+l /M J~ i -|

Σ (-I)'! J + 1J + 1 ) α ί + 1 δ . _ t + 1 + ( k _ < ( i = 0, , k - 1 ) .

Now for each value of j , the last expression above is the left side of
one of the conditions (2). Consequently the fc-polarity of f{z) and g{z)
gives

W Σ + 1 α i + i S r Λ + 1 ) - 0 (j = 0, -, fc - 1) .

Now it is known [3] that f(z; ξ, t) can be written in the form

/(*; r, t) = τ-~zr Σ (Λ 7 *) Σ αy+iSi«^ .
(n — £)! i=o \ J / *=o

For ί = % — fc + 1, we have just shown that the sum which appears
in the coefficient of each zj vanishes. Consequently, we have
f(z; ξ, n — k + 1) ΞΞ 0, as we wanted to show.

4. iΓ-polar polynomials* We are now ready to prove our principal
results.

THEOREM 1. If the polynomials f(z) and g{z) are k-polar, then
every circular domain containing all the zeros of one polynomial
also contains at least k zeros of the other.

Proof. The proof will be by induction on k. For k = 1, this
theorem is simply Grace's theorem.

Assume that the theorem holds for k — m, and let f(z) and g(z)
be (m + l)-polar. Let C be a closed circular domain containing all the
zeros of g(z) and exactly s zeros of f(z). Then C is contained in an
open circular domain C" whose closure also contains exactly s zeros of
f(z). Since fc-polarity is invariant under linear transformations, we
can take | z \ > 1 as C". Then for a suitable r > 1, all the zeros of
g(z) and exactly s zeros of f(z) lie in | z | > r, while n — s zeros of
f(z) lie in \z\ < 1. By Lemma 1, therefore, there is a point ζ such
that exactly s — 1 zeros of fζ{z) lie in \z\> r. Also, by Laguerre's
theorem [2], all the zeros of gη(z) lie in \z\ > r whenever η lies in
I z I ^ r. By Lemma 5, the (m + l)-polarity of f(z) and g(z) implies the
m-polarity of fζ(z) and gv(z) for all values of ζ and rj. Consequently,
the assumption that the theorem holds for k — m implies that the
circular domain \z\ > r, which contains all the zeros of gη(z), must
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contain at least m zeros of fζ(z). Since we know that this domain
contains exactly s — 1 zeros of fζ(z), we have s — 1 Ξg m. That is,
s :> m + 1, so that the theorem holds for k — m + 1.

THEOREM 2. For (π + l)/2 ^k ^n, the k-polarity of the nth degree
polynomials f{z) and g(z) is necessary and sufficient for them to have
a common, repeated zero whose multiplicities, p and q, satisfy the
inequalities p ^ k, q ^ k, p + q ^ n + k.

Proof. Suppose that two polynomials have a common repeated root
whose multiplicities satisfy the given inequalities. A linear transfor-
mation will take the polynomials into

and

where a0 — = ap-x — 0 and 60= = δβ-i = 0. Now every product
afij which occurs in the fc-polarity conditions (2) vanishes. For if afij
is to be nonzero, we must have i ^ p and j ^ q, so that i + j ^ p + q
whence i + j ^ n + k. The maximum value which i + j can assume
for any afij in (2), however, is n + k — 1. Thus conditions (2) are
satisfied and the polynomials are fc-polar.

Suppose now that f(z) and g(z) are fc-polar, with k ^ (n + l)/2.
We can, if necessary, perform a linear transformation on the poly-
nomials to make bn φ 0 and b0 = 0; that is, we can make all the zeros
SΊ> •> ?n-fc+i of gk,k-i(z) finite and put one of these zeros at the origin.
By Lemma 6, f(z; ξ, n - k + 1) = 0. Thus [4] either f(z; ζ, n - k) = 0 or
f(z; ζj n ~ k) = c(z — r]n^k+1)

k. In either event, there is an fc in the
range k ^ h ^ n such that f(z; ζ, n — h + 1) = 0 and /(«; ξ", n — h) =
c(« - ?Λ- f t+1)\ (Note that /(s; f, 0) =f(z).) We can assume that ?n_Λ+1 is
at the origin, so that / ( ^ ζ,n — h) — czh. By Lemma 5, the fc-polarity
of f(z) and (̂2;) guarantees the (k + h — w)-polarity of f(z; ζ,n — h)
and g(z; η,n — h) for arbitrary ηx, , ^W_Λ. Let

Then we have Ao = = Ah^ = 0, Ah Φ 0; and the (k + h — w)-polariy
conditions which involve Ah reduce to
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ΆftA>o = • • • = = AhBk+h-n-1 = 0 ,

whence

( 6 ) BQ = = β^+ft.^j = 0 .

We know [3] that

where μ = (n\)l(hl). Now equations (6) hold for arbitrary values of
î> '> Vn-h- Hence they hold in particular for η1 — = rjn_n = 0.

For these values, we have Sίn~h) = = S£;Λ ) = 0, so that Bo = μδ0,
whence J50 = 0 implies 60 = 0. We can now use ηx = 1, % = = )^_Λ = 0,
so that Sίn~h) = 1, S{

2

n-h) = . . . = SirΛ

Λ) = 0, BQ = μ^, whence 6X = 0.
Using ^ = % = 1, % = . . . = % _ f t - 0 gives $-*> = 2, S<-*> - 1, S{-*> =
• = SftL~iA) = 0, β 0 = /jeδ2, whence b2 = 0. It is clear that we can
proceed in this way to establish b3 — = bn-h = 0. We now have
Bi = /^δn-Λ+iSi-^, whence we can conclude that δw_Λ+i = 0. It then
follows that JS2 = μbn-h+2S

{

n

nSh], whence 6%-Λ+2 = 0. We can proceed in
this way to show that successive values of bj vanish until we arrive
at I^+Λ-w-i = t&k-^n-^ = 0, whence bk-λ = 0. Thus g(z) has at least
a fe-fold zero at the origin. Let q be the multiplicity of this zero, so
that b0 = = &,_! = 0, bqΦ 0. Since q^k = 2k-k^n + l-k, it
follows that 6,, appears as the b, of highest index in k of the fc-polarity
conditions. Since it is the only nonvanishing bj in any of these k
conditions, they reduce to

bqa0 = . . = 69afc_! = 0 ,

whence

a0 = = a .̂-! = 0 .

Thus f(z) has a p-fold zero at the origin with p ^ k. To finish the
proof, we have left only to show that p + q ^ n + k. Now the product
α^δ^ is nonvanishing. If it were to appear in any of the fc-polarity
equations (2), then the indices of every product afij appearing in the
same equation would have to satisfy i + j — p + q. But this means
that if i > p so that a{ Φ 0, then j < q so that b3- = 0. Thus, if apbq

did appear in any equation of (2), it would be the only non-vanishing
product in this equation, whence the equation would not hold. Hence
the product apbq cannot appear in any of the equations (2). But every
product a{bj does appear for which

n — k + l ^ i + j ^ n + k — 1 .
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T h e r e f o r e , e i t h e r p + q <n — k + 1 o r p+q>n+k— 1. B u t
p + q^k + k^n + l>n + l — k. C o n s e q u e n t l y , w e m u s t h a v e
p + q>n + k — 1, that is, p + q ^ n + k.
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