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l Introduction* Let the rotation group SO(3) of the euclidean
3-space act on a locally compact Hausdorίϊ space X such that the
highest dimension of the orbits is 3. Then the following results can
be found in Montgomery-Samelson [2].

THEOREM 1. If X is an integral cohomology n-manifold and an
integral cohomology n-sphere, then the principal isotropy group is
either trivial or contains a dihedral subgroup of order 4.

THEOREM 2. // X is the n-sphere, if the action of SO(3) on X
is differentiate and if the union of all the singular orbits is of
dimension <n — 2, then the principal isotropy group is trivial.

The purpose of the present paper is to generalize these theorems.

Basic notations, concepts and theorems which are often used in
the study of topological transformation groups will not be given in
this paper. Any reader who is not familiar with them may consult
[1] or the references given in [1].

Throughout the paper, Z denotes the ring of integer, E denotes
the field of rational numbers, p denotes a prime and Zp denotes the
field of integers mod p. G denotes the rotation group SO(3) of the
euclidean 3-space, T denotes a circle group in G and N denotes the
normalizer of T. Notice that NjT is of order 2 and that every
element of N— T is of order 2. Also notice that the cyclic subgroup
of T of order p, which we also denote by Zp, has iVas its normalizer
in G. As in [1], Hc

k(M; L) denotes the &th Alexander-Wallace-Spanier
cohomology group of M with compact support and with coefficients
in L. When M is compact, it is also written Hk(M; L).

2. On the action of N.

LEMMA 1. Let N be the normalizer of a circle group T in
SO(3) and let N act on an orientable connected rational cohomology
m-manifold Y such that

( i ) all the orbits are 1-dimensional and
(ii) N/T acts freely on Y\T.
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Then YjN is a connected rational cohomology (m — l)-manίfold which
is orientable or nonorientable according as the elements of N— T
reverse or preserve the orientation of Y.

Proof. Since all the orbits are 1-dimensional, the sheaf

Tx; R) = \J H\Tx; R)

on Y/T is constant so that Y/T is an orientable connected rational
(m - l)-manifold. Since NjT acts freely on YjT, YJN= (Y/Γ)/(N/Γ)
is a connected rational cohomology (m — l)-manifold. Moreover, Y/N
is orientable or nonorientable according as N— T preserves the ori-
entation of Y/T.

Let he N — T and let yeY. Then there is a connected slice K
of the transformation group (N, Y) at y and a connected neighbor-
hood Q of the identity in T such that the map Q x K-* QK, given
by (9, aθ —> 9%, is a homeomorphism onto and such that hQhr1 = Q.
Clearly fciΓ is a slice of (JV, Y) at Λ# and the map Q x fcif —> QhK
(=hQK), given (g,x)-+gx, is a homeomorphism onto. Let Y, Q, K
and ΛUL be oriented such that the maps Q x K—> Y and Q x feiΓ—> T,
given by {g, x)~^gxf are orientation-preserving. Since the mapQ—>Q,
given by t —• λtλ"1, reverses the orientation of Q, it follows that /&
reverses the orientation of Y if and only if h: K—>hK is orientation-
preserving.

Let π: Y-+ Y/T be the canonical projection. Since the sheaf
^f\Tx\ R) on Y\T is constant, Y\T may be oriented such that the
maps π | K and π \ hK are both orientation-preserving. Hence h re-
verses the orientation of Y if and only if N— T — hT preserves the
orientation of Y\T. This completes the proof of Lemma 1.

LEMMA 2. Let X be a connected mod 2 cohomology n-manifold
with Hc

k(X; Z2) = 0 for k = n - 1, n - 2, and let G = SO(3) act on
X. If the principal isotropy group is a finite group of even order,
then it contains a dihedral subgroup of order 4. Moreover, the
stationary point set of every cyclic subgroup of G of order 2 is a
connected mod 2 cohomology {n — 2)-manifold and that of every di-
hedral subgroup of G of order 4 is a mod 2 cohomology (n — 3)-
manifold.

Proof. Let Z2 be the cyclic subgroup of T of order 2. Since
the principal isotropy group is a finite group of even order, the
stationary point set F(Z2) of Z2 intersects every principal orbit at a
1-dimensional set. Therefore F(Z2) is of mod 2 cohomology dimension
n — 2 everywhere and hence it is a mod 2 cohomology (n — 2)-manifold
[1; P. 76].
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By hypothesis,

H?(X; Z2) = Z2 ,

Hc

k(X; Z2) = 0 for k > n and for k = n - 1, w - 2 .

Using Smith sequence [1; p. 41], one can easily see that

Hence F(Z2) is connected.
Let A be a dihedral subgroup of JV of order 4. We assert that

the stationary point set F(D2) of D2 is not empty. Assume that the
assertion is false; then we have a fibre map

λ: X-*GjN

given by X(gF(Z2)) — gN, geG. Therefore we have a spectral sequence
{Er} whose i?2-term is given by

E{* = HS(G/N; &f*(gF{Z2y, Z2))

and whose ϋ^-term is associated with H*(X; Z2). Clearly

JS?. -» = Z2 ,

El1 = 0 f or s < 0 and f or s > 2 .

It follows that

This is impossible as we know that H?~\X\ Z2) = 0.
By Borel theorem [1; p. 182], J^(A) is a mod 2 cohomology (w — 3)-

manifold. Since F(D2) intersects every orbit at a finite set, it must
intersect principal orbits. Hence the principal isotropy group contains
a dihedral subgroup of order 4.

LEMMA 3. Let N' be the normalizer of a circle group T in
SO(3) and let Y be a connected mod 2 cohomology m-manifold with
Hr~\Y) Z2) = 0. If N acts on Y such that the principal orbits are
1-dimensional and such that for some he N — T, the fixed point set
F(h) of h is a mod 2 cohomology (m — l)-manifoldy then the stationary
point set F(N) of N is a mod 2 cohomology (m — 2)-manifold.

Proof. Since the principal orbits are 1-dimensional, m ̂  1 and the
stationary point set of T is of mod 2 cohomology dimension ^ m —2.
Hence for m = 1, F(N) = φ so that our conclusion is trivial.

Let m ^ 2. Let 2?a be a dihedral subgroup of N of order 4 and
let A — T = {/&!, fca}t Since all the elements oί N — T are conjugate
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to one another in N, it follows from our hypothesis that the fixed
point set F{h%) of hi is a mod 2 cohomology (m — l)-manifold, i = 1, 2.
By hypothesis, Hc

m(Y; Z2) = £ 2 and #c

f c(Γ; Z2) = 0 for k > m and for
k = m - 1. We infer that Hf^F^; Z2) = Z2 so that Y - F(hλ)
has exactly two components each of which is mapped into the other
under hλ. Similarly Hc

m~\F(h2); Z2) == Z2 so that F(h2) is connected.
Since h,h2 = h2hu hλF{h2) = .F(Λ2). Hence F{hτ) Π i^(Λa) =£ «*.

By Borel theorem, F(D2) = F(hj) f] F(h2) is a mod 2 cohomology
(m — 2)-manifold. Moreover, in the vicinity of F{D2)y F(D2) coincides
with the fixed point set of hλh2 which is independent of the choice
of A in N. Hence F(N) = F(D2) is a mod 2 cohomology (m - 2)-
manifold.

3. Main theorems*

THEOREM 1. Let X be an orientable connected integral cohomo-
logy n-manifold with Hc

k(X; Z) = 0 for k = n — 1, n — 2 and let
G — SO(3) act on X. If the principal isotropy group is finite, then
it is either trivial or contains a dehedral subgroup of order 4.

Proof. Suppose that the principal isotropy group does not con-
tain a dihedral subgroup of order 4. Then, by Lemma 2, it is of odd
order so that it contains a subgroup Zp for some odd prime p. Let
F(Zp) be the stationary point set of Zp and let N be the normalizer
of Zp. Then N acts on F(ZP) and F{Zv)jN can be canonically im-
bedded into X/G.

Since F(ZP) intersects every principal orbit at a 1-dimensional
set, F(ZP) is a mod p cohomology (n — 2)-manifold and F(ZP)/N —
X/G. By hypothesis, Hc

n(X; Zp) = Zp and Hc

k(X; Zp) = 0 for k > n
and for k = n — 1, n — 2. It follows from Smith sequence that

HΓ2(F(ZP); Zp) = Zp

so that F(ZP) is connected and orientable.
Let B be the union of all the singular orbits. Then F(ZP) Π B

is the stationary point set of T so that it is of integral cohomology
dimension ^n — 4. Hence

Y = F(ZP) - B

is an orientable connected mod p cohomology (n — 2)-manifold.
Let yeY. It is clear that a slice K of the transformation group

(G, X) at y is an integral cohomology (n — 3)-manifold and it is also
a slice of (N, Y) at y. Since the isotropy group Ny is finite, there
is a neighborhood of y in Y homeomorphic to the product of an open
interval and K. Hence Y is an orientable connected integral coho-
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mology (n — 2)-manifold and consequently an orientable connected
rational cohomology (n — 2)-manifold.

Every he N — T preserves the orientation of F. In fact, let
/: [0,1] —» G be a map such that

( i ) /(0) is the identity,
(ii) /(I) - h and
(iii) whenever 0 ^t < V < 1, f(f)NΓi f(t')N= ψ. Then whenever

0 ^ ί < ί ' < l , f(t)YΠf(t')Y=φ. Since /(0)F = F = Λ F = /(1)F,
/([0, 1])F is a connected integral cohomology (n — l)-manifold. We
have seen that Ϋ— Y= F(Zp)f)B is of integral cohomology dimension
<; w — 4. Therefore /([0, 1])( F — F) is of integral cohomology di-
mension tίn — 3 so that X — /([0,1])(F— F) is an orientable coho-
mology w-manifold with i J Γ ^ X - / ( [ 0 , 1 ] ) ( F - F); Z) = 0. Since
/([0, 1])F is closed in X - /([0,1])(F- F), it follows that /([0, 1])F
is orientable. Hence fe preserves the orientation of Y.

Now we may apply Lemma 1 to (N, Y) and conclude that YjN
is a nonorientable connected rational cohomology (n — 3)-manifold.
Since F{Zp)jN = X/G,

Y/N =(X- B)jG.

However, X — B is an orientable connected rational cohomology n-
manifold and the sheaf έ%fz(βx\ R) on (X — B)/G is constant; we
infer that (X — B)/G is orientable. Hence we have arrived at a
contradiction. The proof of Theorem 1 is thus completed.

THEOREM 2. Let X be an orientable connected integral cohomology
n-manifold with H^{X\ Z) = 0 for k = n — 1, n — 2, n — 3 and let
G = SO(3) act on X such that the principal isotropy group is finite.
Then one of the following must hold.

(1) The principal isotropy group is trivial.
(2) The principal isotropy group is the dihedral group of

order 4. There exists a 2-dimensional singular orbit and all the
2-dimensional singular orbits are protective planes. Moreover, the
union of all the singular orbits is of integral cohomology dimension
n — 2.

(3) The principal isotropy group is the icosahedral group.
Every singular orbit is a stationary point of G and the stationary
point set of G is an integral cohomology (n — 4)-manifold.

Proof. Assume that the principal isotropy group is not trivial.
Then, by Theorem 1, it contains a dihedral subgroup of order 4. Let
Z2 be the cyclic subgroup of T of order 2 and let D2 be a dihedral
subgroup of N of order 4. We have shown in Lemma 2 that the
stationary point set F(Z2) of Z2 is a connected mod 2 cohomology
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(n — 2)-manifold and that the stationary point set F(D2) of D2 is
a mod 2 cohomology (n — 3)-manifold. Since H?(X; Z2) — Z2 and
Hc

k(X; Z2) — 0 for k > n and for k = n — 1, n — 2, w — 3, we infer
that HΓ3(F(Z2); Z2) = 0 and that HΓ\F(D2); Z2) = Z2 so that F(D2)
is connected.

The transformation group (N, F{Z2)) satisfies the hypothesis of
Lemma 3. In fact, F(Z2) is a connected mod 2 cohomology (n — 2)-
manifold with Hc

n-%F(Z2); Z2) = 0, the principal orbits of (JV, F(Z2))
are 1-dimensional and the fixed point set of h e N — T in F(Z2) is the
stationary point set of the dihedral group generated by Z2 and h so
that it is a mod 2 cohomology (n — 3)-manifold. By Lemma 3, the
stationary point set F(N) of N is a mod 2 cohomology (n — 4)-manifold.

Suppose first that there exists a 2-dimensional singular orbit Gz.
Since the isotropy group Gz at 2 contains the principal isotropy group
which has been shown to contain a dihedral subgroup of order 4, it
follows that Gz is isomorphic to N so that Gz is a projective plane.
Therefore F(N) is the stationary point set of T and hence is an
integral cohomology (n — 4)-manifold. The union of all the singular
orbits is GF(N) which is clearly of integral cohomology dimension
n-2.

The principal isotropy group is a subgroup of Gz so that it is a
dihedral group containing D2 As in the proof of [3; (3.6)], one can
easily show that if y is a point of F(D2) such that Gy is a principal
orbit, then the isotropy group Gv leaves every point of F(D2) fixed.
If Gy is not of order 4, then Gy leaves only one point of Gz fixed,
contrary to the fact that F(D2)Γ) Gz contains three points.

Suppose next that no singular orbits is 2-dimensional. Then every
singular orbit is a stationary point of G. Hence the union B of all
the singular orbits is the stationary point set of T which is clearly
an integral cohomology (n — 4)-manifold.

If % = 3, then X is an integral cohomology 3-sphere and G acts
transitively on X (Here H%X; Z) means the reduced group.) Hence
the principal isotropy group is the icosahedral group.

If n > 3, then there is a point z of B. As in [1; Chapter XV],
the principal orbits are integral cohomology 3-spheres. In fact, there
is a neighborhood V of z in F(D2) invariant under the normalizer C of
D2. Since V is a mod 2 cohomology (n — 3)-manifold and the station-
ary point set of C in V is a mod 2 cohomology (n — 4)-manifold, we
may choose V such that V — B contains exactly two components each
of which is a cross-section of (G, G(V — B)). Hence we may follow
the argument of [1; p. 213] to show that the principal orbits are inte-
gral cohomology 3-spheres. Consequently the principal isotropy group
is the icosahedral group.
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REMARK. It is not hard to see that all three cases in Theorem
2 actually occur. In fact, we can have linear actions of S0(3) on
spheres as examples for the first two cases as seen in [3] and a
typical example for the third case is seen in [2]. In the third case,
the stationary point set of the icosahedral group is not a cohomology
manifold for n > 3; in fact, it is an integral cohomology (n — 3)-
manifold with the stationary point set of G as its boundary. Hence
the third case never occurs when (G, X) is a differentiate transfor-
mation group and n > 3.

REFERENCES

1. A. Borel et al., Seminar on Transformation Groups, Annals of Mathematics Studies
No. 46, Princeton University Press, 1960.
2. D. Montgomery and H. Samelson, On the action of 50(3) on Pacific J. Math., 12
(1962),
3. D. Montgomery and C. T. Yang, A theorem on the action of SO(3), Pacific J. Math.,
12 (1962) 000-000.

UNIVERSITY OF PENNSYLVANIA AND

THE INSTITUTE FOR ADVANCED STUDY






