
LEVEL SETS ON SPHERES

L . M. SONNEBORN

The purpose of this paper is to prove that corresponding to any
continuous real-valued function whose domain is the ^-dimensional
sphere (n Ξ> 2), there is a connected set on the sphere which contains
a pair of antipodal points and on which the function is constant. While
this constant need not be unique, a stronger property is found which
ensures uniqueness and gives continuity to the constant over homotopies
of the function.

The weaker theorem was stated in abstract by R. D. Johnson, Jr.
[2]. The proof which follows constitutes a portion of the author's
dissertation, [4].

Throughout this paper, n will be used to denote any integer not
less than 2. The usual ^-dimensional measure on the %-sphere will
be taken to be normalized so that the total measure of the sphere
is one. Each time the measure of a set is mentioned, the set will be
either open or closed, and therefore measurable. Everytime the
components of a set are listed, the set will be open, and will therefore
have a countable number of components. A subset of Sn (n ^ 2) will
be said to be "too big" if it has measure greater than one-half. A
subset of the sphere is said to "cut up" the sphere if no component
of its complement is too big.

The fundamental tool to be used here is the following:

THEOREM. // 0 is an open set on the n-sphere, then either 0 or
its complement Sn — 0 has a component which cuts up the sphere.

The method of proof is to assume that 0 has no such component
and to prove that then its complement does.

LEMMA 1. If A is a connected subset of Sn (n > 1), and if B is
a component of Sn — A, then Sn — B is connected, and F(B), the
boundary of B, is also connected.

Proof. Sn is connected. The connectedness of Sn — B follows
from [3], page 78. F(B) is connected since F{B) = Bf]Sn - B and
since Sn is unicoherent. See [5] pages 47-60.

Henceforth, let 0 denote an open subset of Sn, no component of
which cuts up Sn. Corresponding to any component, O, , of 0, there
is, then, a (unique-consider the measure) component, Tiy of its component,
Sn — Oif which is too big.
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LEMMA 2.
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either

Proo/. By Lemma 1, Γ*, Tό, S
n - Γ,, and Sn - Γ< are all connected

as is the boundary of each. 0^ and 03 are connected and disjoint.
Each lies in a single component of the complement of the component
of the other. Hence, either 0{ £ Ts or 0{ ^ Sn - Tjm In the first
case, Sn — Ot contains the connected set Sn — Th and Sn — Tj is
contained in a component of Sn — Oί# Either this component is I7; or
not. If it is Tif then Sn - T, £ Γ* and 2\ U Γ,- = Sn. If not, then
Sn - Γyn Γt - φ, and Γ, E Γ,-. In the second case 0{ g Sn - Γ,- and
I7,- g S 5 1 - Oi, so that Tj being connected lies in a single component
of Sn — Oi. But this component must be Tif for it is the only one
big enough to contain Tj which is also too big. In this case, then

COROLLARY. For i Φ j , either
( i ) Sn - Ti^Sn - Tj
(ii) Sn - Tj a Sn - Tt

(iii) os -r 4)n(S - r y ) = 0.
Now, let Of = Uiί^" - Γ, ). Clearly 0' ^0 since for each i, 0, E

Sw — Γ̂ , and the 0^ are the components of 0. 0' is the union of open
sets and is, therefore, open. Let Xjf j — 1,2, (possibly finite) be
the components of 0'. Since for any i, Sn — T{ is connected, it must
lie entirely in one of the X/s, and any X3 is the union of all the
Sn — T/s contained in it.

LEMMA 3. // Sn — T̂  and Sn — Tj are disjoint but are both
contained in the same component, Yk, of 0', then there is an integer
I such that Sn - Ti £ Sn - Tι and Sn - T,- g S t t - Tt.

Proof. Assume there is no such integer I. Let T be the union
of all Sn — Tm which contain Sn — T{. Clearly none of these intersects
Sn — Tj by the corollary to Lemma 2. Let S be an arc in Xk connecting
xe Sn — Ti to y £ Sn — Tj. (Xk is open and connected and hence arcwise
connected). S must intersect F(T). Let peSf)F(T). peSn-T,
for some q such that Sn — TqeXk. Some neighborhood of p also is
in Sn — Tg which is open. But this neighborhood of p contains a point
zeT since pe F(T). Hence zeSn — Tm for some m such that Sn —
Tm^ Sn - Ti. Since Sn - Tm and Sn - ΓQ intersect, one contains the
other by the corollary to Lemma 2. In either case, however, Sn —Tq £
Γ. But then pe T, p being a boundary point of the open set T.

Q
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This contradiction establishes the lemma.

LEMMA 4. Each Yk can be written as a countable expanding
union of sets Sn — Tά (i.e. a union in which each set contains the
previous).

Proof. If Xk contains only a finite number of Sn — Ti} it contains
a biggest one (repeated application of Lemma 3.) Suppose then, that
Xk — Uΐ=i(Sn — T{). We choose a subunion of this union as follows:
Let £ = Sn - 2\; for m > 1, let Lm = Sn - TUm) where i{m) is the
smallest number for which Sn — Ti{m) 3 S " - T<(m-i) if there is such
a number i(m). If, at some stage, there is no such number, the union
will be finite; otherwise it will be countably infinite. It remains to
be shown that \Jm(Im) = Xk Let xeXk. If xe Ily xe\Jm(Im)f so
suppose xίlt. xe Sn — Tp for some p. There is, therefore, a smallest
integer q for which xe Sn - Tq and Sn - Tq a £ (Lemma 3). There
is a largest integer s for which s = i(h) for some /̂ , and s < q. It
follows that g = i(h + 1) for (Sw - Tq) n (S% - Γ.) =£ ̂  and a; e Sn - Γg

while αj $ Sw - Ts. Hence x e | J » (ί«)

LEMMA 5. For each k, the measure of Xk does not exceed one-half.

Proof. Each T{ has measure greater than one-half, so that each
Sn — Ti has measure less than one-half. The expanding union of open
sets measuring less than one-half cannot have measure greater than
one-half. [1],

LEMMA 6. Sn — Or is connected.

Proof. Each Sn — X{ is either one of the Tjf or is expressible as
the decreasing intersection of a countable number which are closed
and connected. By Lemma 3.8 of page 80 of Wilder [5], Sn — X{ is
connected. Since X{ is also connected, it follows from Lemma 1 that
F(X{) is connected. Now suppose Sn — 0' is not connected. Then
Sn — O' = A U B where A and B are disjoint, nonempty, and relatively
closed in Sn — 0' and hence closed in Sn. Since each X{ has a connected
boundary, each X{ has its boundary entirely in A or entirely in B.
Then consider Sn = A! U B' where A! = A U (U ei -Xi), / = {i I ^ ( ^ ) S A}
and B' = B{J ([Jj€J Xs), J={j\ F(XS) g β ) . A' and B' are easily seen
to be closed, nonempty and disjoint. Hence Sn is not connected. This
contradiction establishes the lemma.

THEOREM 1. If 0 is an open set of Sn (n > 1), then either 0 or
Sn — 0 has a component which cuts up the sphere (i,e. a component
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whose complement consists of components with measures no than
greater one-half).

Proof. All the previous lemmas except the first were based on
the assumption that 0 had no such component. Since 0' Ξ2 0 it follows
that Sn — 0' c Sn—O. But Sn — Or is connected and lies in a component,
A, of Sn - 0. Since A^Sn-Ot,Sn — A^ 0', and every component
of Sn — A is contained in a component of 0'. But the components of
0' all have measure no greater than one-half, and so also do the
components of Sn — A.

LEMMA 7. If A and B are both connected, closed sets on Sn which
cut up Sn, then Af]B is not empty.

Proof. Suppose A and B are disjoint. A being connected, lies in
a single component, say Blf of Sn — B. Sn — B1 is connected (Lemma 1)
and lies in a single component, say Ax of Sn — A. Now the measure
of the open set Aλ is strictly greater than the measure of the closed
set Sn — Bλ contained in it. However, M{B^) < 1/2 by assumption, so
that M(Sn — Bλ) ̂  1/2 and M{Aλ) > 1/2 contrary to the assumption
that A cuts up Sw. This contradiction establishes the theorem.

COROLLARY. // g: Sn—>Sn is a measure-preserving homeomorphism,
and if A is a connected, closed subset of Sn which cuts up Sn, then
there is a point xeA for which g(x) e A. In particular, any such
set A, contains a pair of antipodal points of Sn.

THEOREM 2. Let F: Sn x I—> E1, be continuous, (n > 1), and define
ft: Sn -+ E1 for each t, 0 ^ ί ^ 1, by ft(x) = F(x, t) for each x e Sn.
Then for each t, 0 ^ t ^ 1, there exists an unique real number kt

such that f^\kt) contains a closed connected subset which cuts up Sn.
This subset contains a pair of antipodal points of Sn. Further, kt

is a continuous function of t on 0 ^ t ^ 1.

Proof. The uniqueness of kt and the fact that the subset contains
a pair of antipodal points follow from Lemma 7 and its corollary. The
continuity of kt follows in the usual way from the compactness of
Sn x I and the resulting uniform continuity of F. The existence of
kt remains to be proved, that is it must be shown that for every
function /: Sn -• E1, there exists a real number k, such that f~\k)
contains a closed connected subset which cuts up Sn. For each positive
integer m, there exists an open subset, Om of E1 with the property
that all components of both Om and of E1 — Om have diameter less
than 1/m. For each m, f~\Om) is an open subset of Sn, so that according
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to Theorem 1, there is a component of either f~\Om) or of Sn —
f-\Om) = f-\Ex - Om) which cuts up S \ Denote by Am one such
component. Then the diameter of f(Am) which is connected and which
is either in Om or in E1 — Om is less than 1/m. For each m, pick a
point xm G Am. Since Sw is compact, the sequence {xm} has a limit point.
Let x be such a limit point, and set k — f(x). Also let Br — {s \ k — 1/r ^
s ^ A; + 1/r} and let Cr be that component of f~\Br) which contains x.
Then each of the sets Cr contains at least one of the sets Am. For,
there is a number δ > 0 for which \y — x\< δ implies \f(y) — k| < l/2r,
and there exists m{δ) > 2r for which |xm(δ) — x\ < δ. Now Am(δ) g Cr;
for, since | # m ( δ ) — x\ < 5, the segment of great circle connecting x to
CGw(β) also satisfies this property so that for every point y on this segment
\f(y) — & I < l/2r and xm{5) e Cr. Also for any point z e Aw{8), I/O) - ft | ^
I/O) - /(»*(«,) I + |/(»m(«,)) - ft l < l/2r + l/2r = 1/r. Thus the connected
set consisting of the segment and Am{8) is all mapped into Br, so that
Cr contains Am(δ) and hence Cr cuts up S B for each r.

Now let C = ΠΓ=i Cr. C is then the intersection of a decreasing
sequence of closed, connected sets in a compact space and is thus closed,
connected and nonempty. ([3] page 81.) Quite clearly, xeC and/(C) —
ft. Suppose now that C does not cut up Sn. Then there is a component,
say D, of Sn — C, with measure more than one-half. Let we D. For
all sufficiently large r, w $ Cr. Let Dr be that component of Sn — Cr

which contains w. {Dr} is an increasing sequence of open connected
sets. D = UΓ=iA for otherwise there would be a point veD not in
any Dr. D being open and connected contains an arc joining w to v.
If v $ U Dr, there is a first point % along this arc such that %g U A
But since t& e D, te ί Π Cr so for some r, ug Cr. For this value of r,
u and some neighborhood of it are Sn — Cr. Also for some ί > r, points
of this neighborhood are in Dif and so must u be. Thus % e u ΰ r and
this contradiction establishes that D = (J Dτ. But now each Dr is a
component of the complement of Cr and each Cr contains some Am.
Hence, since each Am cuts up Sn, each Dr has measure not greater
than one-half. However, the expanding union of sets with measure
not greater than one-half cannot have measure greater than one-half,
so that D has measure no greater than one-half contrary to the
hypothesis above, and C does cut up Sn. This concludes the proof of
Theorem 2.

Extensions and related topics. The only property of the real
numbers used in the foregoing is that fact that for every ε > 0, there
exists an open subset of them with the property that every component
of the open set and of its complement has diameter less than ε. Thus
the reals could be replaced by any (metric) space with this property.
Hence, since E1 cannot be replaced by E2 in Theorem 2, we conclude
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that E2 does not have this property. The theorems which follow are
easily deducible from this fact.

THEOREM. If 0 is an open subset of the unit square I x I, then
either some component of 0 or some component of (I x I) — 0 contains
a pair of points belonging to opposite faces of I x I.

THEOREM. If f: Ix I—> E1 is continuous, there is a connected
subset of Ix I which contains a pair of points on opposite faces of
Ix I and on which f is a constant.

THEOREM. // /: S1 x S1 —> E1 is continuous, and if p: E2—> S1 x
S1 is the usual projection map of E2 as the universal covering space
of S1 x S\ then there is a connected subset A of E2 such that diam
A — co and fp\A is a constant.

THEOREM. If /: S1 x S1 —> E1 is continuous, there is a connected
subset B of Sι x S1 such that f\B is a constant and such that B
carries a nontrivial one-dimensional Cech cycle of Sι x S1.

The proofs of all these theorems are straightforward and are given
in the author's dissertation [4].

A different extension is given by the following theorems.

THEOREM. If n^ 2m + 1 and f: Sn—*Em is continuous, there
exists a connected subset of Sn which contains a pair of antipodal
points and on which f is constant. {This theorem follows easily
from Yang [6].)

THEOREM. // n ^2m—1, m ^ l , there exists a continuous function
f: Sn —• Em such that on no connected subset of Sn containing a pair
of antipodal points is f a constant.

Proof. Consider the case n = 2m — 1. S2m~~ι = {x = (xlf x2, , x2m) \
2 (Xif = 1}. For 1 ^ i S m, define Ai9 B, and Cif by A{ = ψ\xu-i =
0, x2i ^ 0}, B~{x I x2i = -x2i-lf x2i-ι ^ 0} and C{ = {x \ x2i = x2i-lf x2-x ̂  0}.
Let D{ = AiUBiΌC^l^iSm. Let /*: S^-^E1 be given by
f.(y) = d(y, D{). Since every closed connected set containing a pair
of antipodal points of S2"1'1 intersects Dif the points which are con-
nected to their antipodal points by a level set of fi consist of those
points for which xi = χi+1 = 0. Thus /: S2™-1 ~> Em given by / =
(fit At '' y fm) satisfies the conditions of the theorem. For n <2m —
1 one can take a great ^-sphere on the 2m — 1 sphere and use the
restriction of the above example.



LEVEL SETS ON SPHERES 303

I can give no information in the case / : S2m —> Em, m ^ 2.
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