
ON HARMONIC FUNCTIONS OF FOUR VARIABLES

WITH RATIONAL ^-ASSOCIATES*

R. P. GILBERT

1. Introduction. In this note we shall investigate the solutions
of the four dimensional Laplace equation,

<1) D # = Σ HXyXy = 0 ,
V = l

by means of the integral operator approach as developed by S.
Bergman and some others ([1] [2] [3] [4] [6] [7] [8] [9] [10] [11]). In
particular, we shall use the operator which transforms analytic func-
tions of three complex variables into solutions of (1) [7] [10].
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where &r = C x Γ is the product of a contour C in the f-plane and
a contour Γ in the ^-plane, and ε > 0 is taken to be sufficiently
small. The domain & is further restricted for a particular choice of
f(τ, V> ζ) s o that the integrand is absolutely integrable [3] [13]; in
this case the double integral may be regarded as an iterated integral,
and the orders of integration may be interchanged.1 The function
f(τ9 V> I) is called the ^-associate of H{X).

The operator p4(/) was first introduced by R. Gilbert [7]; how-
ever, certain improvements in the notation, which are employed here
are due to E. Kreyszig [10]. Kreyszig has also obtained an inverse
operator for p4(/), and investigated in detail the representation of
harmonic polynomials generated by this operator.

In order to understand how the operator p± transforms analytic
functions into harmonic functions it is useful to consider the powers
of τ, which act as generating functions for the homogenous, harmonic
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1 It is also possible to give a meaning to p* in the case where the integrand is not
absolutely integrable, but one of the iterated integrals exists.
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polynomial [5] [7] [1O]2

r + ±
ξ 7] Ύ]ξ A fcxi=o

where

(3) £Γ* XX) s Hϊ*(xlf x2, x5, x<) = Hnkι{Y, Y*, Z, Z*) ,

and

Y — χλ + iχi9 Z = x3 + ix4

Γ* = χx — ίa a> ^ * = — (α?3 — ia;4) .

The Hk

n

 ι(X) are linearly independent polynomials, which form a com-
plete system. From (3) it is clear then that there are just (n + I)2

independent, homogeneous, harmonic polynomials of degree n. These
polynomials have an integral representation (in view of (3))

(4) Hl\X) = —-L.f ( τ^
47Γ J If !=iJ l>7l=i

where k,l are integers from 0 to n. Because of this representation
it is clear that we must consider a special class of analytic functions
{/(r, 7], I)}, which are transformed into harmonic functions H(X).
For instance, as Kreyszig points out both the functions

(5) f(τ, η,ξ)= Σ < W W -
n,m,v—Q

and

(6) /(r,7,|) = Σ Σ ^ Λ
n=0 m.p—O

are transformed into the harmonic function

(7) H(X) = £ Σ e»
W=0 m,2>=0

Following the notation of Bergman [4], Kreyszig [10] refers to (6>
as the normalized associated function of H(Z) with respect to p4.
Kreyszig [10] also give an inverse operator for p4 (which is similar
to Bergman's [4] inverse of p3), that maps H(Z) back onto its nor-
malized associate f(τ, η, ξ).

2 The introduction of the variables Y, Y*, Z, Z* is due to Kreyszig. In this form.
Laplace's equation may be written as Hyy* = B.zz*.
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(8) f(τ, η, ξ) = pϊ\H) = (τ(τH]t)Tda dβ ,
J o J o

where the subscripts τ denote partial derivatives,

H = H\τ(l - α)(l - β), τξβ(l - a), τηa{l - β)) ,

and H°(Y, Z, Z*) is H(Y, Y*f Z, Z*) restricted to the set

E{x\ + x\ + x\ + x\ = 0} .

2 A class of harmonic vectors in four variables. It is possible
to introduce an integral operator which generates a class of harmonic
vectors u = (ulf u2, u3, uA) (where \Z\uk — 0), from analytic functions
of three complex variables. Let {f(τ, η, ξ)} be the class of analytic
function described earlier, and let us define the components of u as
follows,

4τr2 JiΉ=iJιeι=i

(9) ^=-M \ n τ , η , d l )
4π 2 j|i7i=iJm=i V rjξ J η

u^-M \ f{τ,v,
4 π 2 J ι ^ ι = i J ι e ι = i

i [ [ -Pin- y,
4TΓ2 J l i l = i J U I = i

then it may be shown that u satisfies the four dimensional analogue
of the vanishing of the curl and divergence. (This property is simiar
to that given by Prof. Bergman [3] in the case of three dimensional
harmonic vectors). By direct computation it follows that Σv=i0wv/9#v
— 0. As a generalization of the curl of u, we introduce the skew-
symmetric tensor

(10) P . . = e m m ^ ,

where emnrs is a permutation symbol, and we are using the summa-
tion convention for repeated indices. The components of the four-
vector u may be expressed as

(11) uXX) = -±\\j{τ, V,

where Nr is the rth component of
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consequently, dur/dxs has the representation

since τ may be written as the scalar product of X and N. It follows
from (13) that

(14) Pmn = 0 .

The class of harmonic vectors, whose components are defined by
(11) play an interesting role in the development of a residue calculus
for harmonic functions of four variables. This aspect will be presented
in a later paper.

3 Integral representations for harmonic functions with rational
associates. The introduction of the operator p4 allows a simple method
for constructing harmonic functions with standard singularities. For
example, let us suppose that the p4-associate f(τ, η, ξ) of H(X) is a
rational function, that is f(τ, η, ξ) = p(τ, η, ξ)lq(τ, η, ξ) where p and
q are polynomals. It is convenient for some of our formulae and no
real loss in generality to assume further, that q(τ, η, ξ) = τ —
φ(V> I)5?"1!"1- I n order to investigate the harmonic, function-element

and the connection between the branches of the whole harmonic
function it is useful to consider the singularity manifold of the in-
tegrand,

(16) Z4 = E{τξη - φ(V, ξ) = 0}

= EΪYηξ + Z7J + Z*ξ + Γ* - φ(η, f) = Σ Φv(X;VW = θ} ,
I V = 0 J

where n is the degree of φ(η, ξ) in ξ. Alternately, one might represent
the singularity manifold as

7S = E{ξ - AV(X;V); v = 1, 2, , η) ,

where the AV(X; rj) are algebraic functions of X and ΎJ. We choose
an initial point X° (about which we define our harmonic function
element) and a domain of integration *%r9 such that

E{ξ = AV(X°; η)} f] & = 0, for v - 1, 2, , n .
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Suppose £^ = C x Γ (where C, Γ lie in the ξfη planes respectively),
and let rf be a fixed value of η e Γ. Furthermore, let us suppose
that the denominator rfξq(τ, rf, ξ) = Q(X; rj\ ξ) vanishes for μ roots,
ξu ξto , £> inside of C, that as η varies about Γ the μ roots do not
cross over or meet C, and as η returns to rf after a circuit over Γ
the new roots ξhl, ξk2, , ξkμ are simply a permutation of the
ξi, f2, •••,!>. In this case the integral may be evaluated as follows
[12]

1 f
47rJo

V{τ\rf,ξ) dξ _ , . . !

Q(X"; τf,ξ)

and hence one may write

(18) H(X°) =

Π9) = - J - ( P(X"; V'ξin)) dv - 1 ί
2πi )i~v Q(X»; 7], ξ{7])) ' 2πi

( dv ί
2πi )i~v Q(X»; 7], ξ{7])) ' 2πi hY"η + Z°* - φt(η,

where the individual terms in (18) correspond to different circuits
about Γ in (19). This expression is thus seen to be equivalent to a
period of an Abelian integral [14].

We next consider the domain of definition of the function element
defined by pKflq), &, X"). Certainly

<2ύ) H"(X)- 1 {{ P(X; V' ξ) d^dv - 1 f P(X>( 2 0 ) H ( X ) - j ^ dξdη ^ \

will be valid for all points X, which may be reached by continuation
along a contour J5f(X) originating at X° provided that at no time
a point of J£?{X) corresponds to a singularity of P(X; η, ξ)IQ(X; η, ξ)
on &r. The domain of definition &\ of the function element is then
seen to contain at least the points X whic may be reached from X°
along Sf(X) such that

(21) E{Xe J^(X)} n E{Q(X; y, ξ) - 0; (η, ξ)

Certainly &\ may be enlarged to include a point X1 on the set
/i4 = E{Q(X; Ύ], ξ) = 0; (η, ξ) e ^} if it is possible to deform & con-
tinuously so as to not pass over a point of

(22) E{Xe ^{X1) c &§ n E{Q(X; η, ξ) = 0} .

However, there are instances where the integral representation (20)
for H°(X) is defined for X1 e Λ\ and in these cases it may be possible
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to continue the function element H°(X) along a contour ^f(X) which
passes through X1. This is the case, when the intersection E{Q(X1;
V> I) = 0} Π S& consists only of isolated points and these points are
inessential singularities of the first kind for P(X*; ηf ξ)IQ(X1; η, ξ)
whose pole-like behavior is of order one.3 [13] We are now in a posi-
tion to consider the representation

under general circumstances. As before we assume that the singu-
larity manifold Z* = E{ξ = AV(X; η)\ v = 1, 2, , rj\ has n branches;
then for a particular η° e Γ there will be μ roots ξlf ξ2, , inside C
and n — μ roots ξu+1, ξu+2, , ξn outside C. If the discriminant,

(23) Π YMX; Ϋ) - A,(X; jf)] Φ 0

the branches of the singularity manifold are unique. Now if X i
some point in a neighborhood of X°, N(X°)f such that

(24)

then as rj transcribes Γ the branches | μ = Aμ(X; η) move in the f-
plane and may cross C, but no point ξu e C can be more than a first
order pole of the integrand. Furthermore, if 3f = CxΓ has been
chosen such that C (Ί E{ξμ. = A^X; rj)',rj^Γ} consists only of isolated
points the integral (20) is defined, and we may write

(25)
4ττ2

where Γμ is that subset of Γ for which fμ — Aμ(X; rj) lies inside
of C.

4. Illustrations of integral representations.

EXAMPLE 1. Let us consider the double integral

H(X) = —Mi
4ττ2 ))&Yηξ + Zη + Z*ξ + Γ* - α

Ξ—L-((
47Γ2 ))&τξη - a '

where a is a complex constant, ^ = C x Γ and C, Γ are unit circles
in the ξ, η planes respectively. H(X) may be rewritten as the

3 If these points are inessential singularities of the second kind they do not have
a pole-like behavior.
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iterated integral,

(27) H(X) = —
Yη +

\
* J

dξ

cί Zη_ a
Yη + Z*

which is absolutely integrable providing, that the linear transformation

(28) V YV + Z* '
(for Δ = ZZ* - ΓΓ* + Ya Φ 0)

does not map the unit circle | η \ = 1 into itself. This may be seen
to happen only when Y = £a, if a?!, x2, xB, x4 are taken to be real.
One may readily evaluate integral (27) by realizing how the trans-
formation (28) maps the unit circle | η | = 1. We distinguish three
case:

( i ) ^ 1 for all - 1 }

(29) (ii) | |(i7)| ^ 1 for all
(iii) I ξ{η) I < 1 for some subset Γ c Γ, and | ξ(η) \ ̂  1

for rj a point of the complement of Γ with respect to Γ. Since,
(28) is a linear transformation it maps circles into circles, and if the
image circle of | η \ — 1 touches | ξ \ — 1 at all it must do so in two
points or be tangent to | ξ \ = 1. If it touches in two points we shall
call these points lOλ), ^(%), and they will be the images of η, rj2 going
around | η \ = 1 in a positives sense. In case (i) the integral may be
evaluated as follows,

(30) dη 0, if

undefined, if -t

In case (ii) H(X) = 0, and in case (iii)

(31)
+ Z* 2πiY

2πί * I Yη,

providing that Z/YgΓ.

EXAMPLE 2. Picard and Simart [14] give some interesting cases
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of double integrals with higher than first order inessential singularities,
and evaluate the residue by using infinitesimal domains of integra-
tion. We shall apply some of these methods below to evaluate in-
tegral representations for harmonic functions. Let us consider the
harmonic function element

(32) ττίτr\ — — x \\ dξdη

4τr2 \\A + Zη + Z*ξ+ Γ* + /(£,?)]
dξdη 1

ΐ-Γ[Yηξ + Zη + Z*f + Γ* + g(ξ, η)]-

where £& shall be specified below.
For a fixed X = (Γ, Γ*, Z, Z*), let us assume that

(i) Yηξ + Zη + Z*ξ + Γ* + /(f, ?) = 0 ,

(ii) Yηξ + Zη + Z*ξ + Γ* + ί/(|, ?) = 0 ,

are two curves which intersect in a simple manner at the point
ξ — a, η — β. We now choose a suitably small contour Γ about /3,
such that for ηeΓ there correspond points ξι(η), ξ2(η) near a, which
satisfy equations 33(i), (ii) respectively. We choose for the contour
C a suitably small circle about ξx(η) such that as η traverses Γ, ξλ{η)
remains inside C and ξ2(η) remains outside. One then obtains from
the ^-integration,

dξ

4ττ2 jc{Ίξη + f){τξf] + g)

1
2πi [Yη + Z* + fξ(ξ, v)][Yηξr + Zη + Z*ξλ + Y* + g{ξu

With the ^-integration we have

H(X) = -1

1

L η dη * u Λ

where

dη Yη + Z* + ft(ξu η)

from which it follows that,
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1

(Yη + Z* +f()(Yξι + Z + g,) - (Y& + Z+fv)(Yη

(34) H (X) = Γ
Li(Yβ + Z* + fa(a, β))(Ya + Z+ gβ(a, β))

1 "1
• - (Ya + Z + fβ(a, β))(Yβ + Z* + ga{a, β))\ '

EXAMPLE 3. As another illustration we consider the integral

(OK\ TT/ v~\ 1 \ I (ίζύη
A-" U&τηξ+f(V,ξ)

dξdη ^ ^ ^

4τr2 ])9Yηξ + Zη + Z*ξ + Γ* +f(η,ξ)

where Yηξ + Zη + Z*ξ + F* + / ( ^ , ξ) = 0 has a double point at
I = a, η = β. As before, we choose a suitably small contour Γ such
that for η e Γ there correspond two roots £iθ?), &0?), with ξt inside
and | 2 outside of C; one has then

(36) w v i n - _ L _ ί ^2_

1
V [ Γ - / ^ x [η], V)Y - /«(fi [>?], V)Mii IVl V)

since dξx[η\ldη satisfies the equation

Kyi) \ —Ί— )/« + 4 γ + /ί>?) —r~" +/>?>? — ^ •

5. Singularities of harmonic functions with Rational pA associates*
In an earlier paper [7] this author proved the following theorem.

THEOREM 0. Let Z^ = E{S(X; rjy ξ) = 0} be the singularity mani-
fold of (llnξ)f(τ, η, ξ), then

is regular at XeC4 (where C4 is complex, four-dimenional space)
providing

X$E[S(X; η, ξ) = 0} Π ^ ί ^ S ^ ; 7,1) + 7Γ'()7)^S(X; ?, f) = θ} ,
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where ξ = π(η) is an arbitrary analytic function of η.

The set of points, however, which are contained in the above
intersection may consist of a four dimensional region. Consequently,
this is hardly a restriction on the possible singularities of H(X). In
order to locate the singularities more accurately we consider the case
where f(τ, η, ξ) is a rational function, that is

m> V> g )
τ 7 )

ηξJKthς' q(τ,y,ξ)

where P and Q are polynomials. Now, a singularity of the interand
occurs for a value of Xe E{Q(X; η, ξ) = 0}. If &ί = C x Γ, then for
a fixed )/ e Γ, Q(X; rj\ ξ) has the decomposition

(38) Q(X; 7f, ξ) = [ξ - A£X; V°)]mί[ξ - A2(X; rf)]** . [f - A r(X; )y0)]-^ ,

where the mk are integers ^ 0, and mx + m2 + + mr = degree
of ξ in Q. The criteria for an mk > 1 is that 8Q/8| = 0, for some
ξ = Ak(X; rf); this is equivalent to a multiple pole singularity of the
integrand.

Since, ξ = π(rj) is an analytic function of ΎJ9 and furthermore,
since only poles of order equal to or greater than two are non-in-
tegrable on ^ , X is a regular point providing

(39) X ί E{Q(X; η, ζ) = 0} Π ^{-^- + ^ ) -g- - θ} Π

7, g) = 0} n £ 7 { - ^ - = θ} Π £ / { - ^ - - θ} .

By interchanging the roles played by f] and ξ in the above
theorem (either may be considered independent), and by considering
the decomposition

Q(X; 7], p) = ft - ^(X; f»)]*i . . . ft - βs(X; ?)]*•

(where the ks are integers ^ 0, and kλ + fc2 + + fcs = degree η,
ξ° eC is fixed) one sees that η — JBZ(X; |°) is a multiple pole of the
integrand if and only if {(θlθη)Q(X; η, ξ°)} n {̂? = ^(X; ξ0)} = 0. In this
case we realize that X is a regular point providing it does not lie on

E{Q = 0} n E{χ\ξ) *L + *L = o} n E{M- = 0}

= E{Q = 0} n -κ{-^- = 0} n E{ψ- = 0} ,

since η = X(ξ) is analytic. From this we have the following result.
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THEOREM 1. Let

be a rational function of τ, η, ξ, then

•is regular at XeC\ providing

X$ E{Q(X; η, f) = 0} Π EU^- = O} Π EI^- = θ\ .

To illustrate this result let us consider the representation

(rηξ - of

In this case we may take the singularity manifold to be

Z' Ξ E{τηξ - a= Yηξ + Zη + Z*ξ + Y* - a = 0} .

We may eliminate by computing the intersection

E{Yηξ + Zη + Z*ξ + Y* - a = 0} n E{Yξ + Z = 0} Π E{Yη + Z* = 0}

= E{YY* - ZZ* = aY} .

If xu x2, x3, Xi are real this is seen to become

E{(xλ - af + (x2 - bf + x\ + x\ = at + b2} Π E{bx, + ax, = 0},

— = a + ib .

The proceding theorem also gives us an insight into the singu-
larities of the harmonic function

[[ [ [
4ττ2 ))&τηξ- a 4τr2 )r Yη + Z* )c Zη + F* - a '

Yη + Z*

which we discussed in the last section. The linear transformation

m = -Zη + a-Y*
w / Yη + Z*

is a one-to-one mapping of the ^-plane onto the £-plane if and only
if Δ = ZZ* - YY* + Ya Φ 0. If Δ = 0, then this transformation
reduces to a constant, that is the entire ^-plane is mapped into



90 R. P. GILBERT

ξ = (a — Y*)/Z*. The singularities of the integrand are at most first-
order, pole-like, inessential singularities. It is clear then, that if
X° $ E{Δ = 0} there exists a domain £gr = C x Γ, for which the in-
tegral representation of H(X°) is defined, that is it is possible to
choose 2$ in such a manner that no line segment of & is contained
in the set E{τηξ - a = 0; X = X0} H{X) may be defined at points
X in the neighborhood of X°, N(X°) providing that N(X°) c E{Δ Φ 0},
and that no line segment of & is contanined in Sχemχ^E{τcηξ — a
— 0}. (S denotes the topological sum.) Furthermore, H{X) then may
be continued to any point X, which can be reached by a contour
£f(X) originating at X°, and which lies entirely within E{Δ Φ 0},
providing no set of singularities for the integrand corresponds to a
line segment of & for any value of Xe JSf(X). It is possible, how-
ever, to extend this region of definition for H(X) to include other
points Xf if & may be continuously deformed so as to not have a
line segment lie on E{τηξ — a = 0; X = X'} for any stage of the
deformation. Such a deformation is always possible if Xr $ E{Δ = 0}.
When Xr e E{Δ = 0}, however, the entire ^-plane is mapped onto
ξ = (a - Γ*)/£* by ξ(η), hence for all values of η e Γ, ξ = (a - Y*)\Z*
will be a singularity of the integrand in the £-plane. In this case
it is impossible to deform ^ in a continuous manner so as to pass
over the singularities of the integrand without it at some time hav-
ing a line segment corresponding to E{τηξ — a = 0; X = X'}. With
this we have obtained

Result 1. The harmonic function

)&τηξ — a

is regular at X, providing X%E{ZZ* - Γ F * + Ya = 0}4.

6. An inverse for the operator* As mentioned earlier, Kreyszig
[10] gave an inverse operator for p4. (see expression 8). In an earlier
paper the present author introduced an operator which was not an
inverse for pA, but did generate a function of three complex varia-
bles closely related to the normalized associate. This was done by
using the orthonormal property of the spherical harmonics on the
unit hypersphere. Since, there are distinct advantages to inverse
operator of both types we shall develop an inverse for p4 which

4 It is interesting to consider the three categories, \Z/Y\ <1, > 1, = 1, of expression
(30) in view of this result. On E{\ Z |2 + I Y\2 - aY= 0} (xu χ2, xz, x* real) these cate-
gories become respectively | Y\ > \ a |/2, < | a |/2, = | a 1/2. Y = a/2, was seen to coincide
with the case where ξ(η) maps the unit circle into itself and this corresponds to the
third category, | Y\ = \a 1/2.
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depends on the orthonormal property.
The variable τ used in this paper is somewhat different than the

original variable

(40) t = iy(l - JL) - » ( i + i ) + „,(} - i ) + y,(l + JL) ,

and was a modification of KreysigV, which lead to a more unified
presentation of formulae. The original variable t is, however, useful
because of its connection with the surface harmonics, Sn'ι(Vι> #2, φ)>
[5]

(41) f = Σ
k1l=0

where p, θlf θ2, φ are the hyperspherical coordinates defined by

V! = p cos θx ,

y2 = ρsinθ1cosθ2 ,

y5 = p sin ^ sin ^2 cos 9? ,

y4 = p sin 0χ sin θ2 sin 9 ,

and

P ^ 0, 0 ^ 0y ^ π (i = 1, 2), 0 g φ g 2τr .

We construct the kernel

ίn\

(43) if (σp, η, | ; (?Jf <p) == Σ ± (n + 1)ψl (σpyS'Λθj , φ)yψ ,

which because of the orthogonality relations over the hypersphere,

1 tff ( Π
(44) — — \ I Sk

n

aSk

n'
 ι'dΩ = δkk,δn, — ,

\k)

(where dΩ — sin2 θλ sin θ2dθxdθ2dψ) may be used to generate to nor-
malized, p4-associate of a harmonic function H{X). For instance,
suppose

H(X*) = V(p, θu θ2, φ) = Σ Σ arι

oo n

— ZΛ Σi ankl£Ln V^ ),
n=0 k 1=0

5 Kreyszig's form and mine are related by the permutation and reflection of coordi-
nates, X*T=X:

yι -> X2, yz -> —Xi, 2/3 -> a?3,2/4 -> X i
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where

then one may generate the ^-associate,

by the integral operator

(45) f(σ, ηf ξ) = -L- j j \v(p, θjy φ)K(σp; η, ξ; θif φ)dΩ .

One may sum the series formally for the kernel K(σρ, η, ξ; θjf φ)
as follows. The term

Ĵ _ = (n - iy.ll = ( ., Γ(n-l +

may be replaced by

Hence, one has

K(σp, η, ξ; θj, ?) = Σ
w=θA;,Z

= Σ (n + iγUζ\ Σ (ζσpyί ζ Λl(ΐ)sknl(βi , Ψ)tλ ,
w=0 JO L/c,ί=O ^£[1 ~ ζ] / ^ / "•

= Σ (» + l)2\\s(ζ)Ydζ ,
n=0 JO

where

(46)

and

If I s(f) I < 1, then we may interchange the orders of summation and
integration, and formally sum the series. One has in this case

(47) K{σp, η, ξ; θs, φ)=
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)ods \ds 1 - 8 / J o ( l - s ) 3

If the representation (40) is denoted by t(X*;η,ξ) then we may
express

s(ζ) =

where

- iV l(l + ^ ) + iylξ -η)- y3(ξ + η) + y,(l - ηξ) ,

B(X*) = ξ(-iy, η-iy, + y, + yjj) .

When I σ \ < 1/| Aξ + B \ (i.e. | s \ < 1), the expression for the kernel
is itegrable and one obtains

K(σPf V, ξ; θh φ) = -^Γ
σ2σ2 Jo (Aζ + B

B(2σ~1 - A-2B)
-1 - B - A)2

Hence we have the result.

THEOREM 2. Let H(X*) be a harmonic function regular at the
origin, and let V(p, θh φ) be the function obtained by replacing
Vu V2, y*9 VH by the hyperspherical polar coordinates then

(50) f(σ, V, ξ) -
1 - B- A)2

where the integration is over the unit hyper sphere.
There are two particular uses for this type of inverse operator,

(i) obtaining integral solutions to boundary value problems, and (ii)
formulating necessary and sufficient criteria for singularities of
H(X*).

Occasionally it is useful to extend the arguments of H(X*) to
complex values; if we introduce the complex, hyperspherical, polar
coordinates

P = +Vyl
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which reduces to uλ — cos θu u2 — cos θ2, v — eiφ, for yl9 y29 yZ9 y± real,
we may represent pz\H) as a Cauchy integral. Indeed, since
(1 + s)(l — sf is analytic in uu u2, v, ζ for | s | < 1, K(σp, η, ζ \ uu u2, v)
is analytic in u19 u29 v, {uά Φ ±\,v Φ $) for | ρ\ sufficiently small.
The integral (50) may then by expressed as a triple-Cauchy integral

f(σ v ft -f{σ, V, ξ) - [[[
] J ) a ^ χ i % y h σ>(σ-i - BΆσ-i _ B „ Aγ

Vl - u \ d u Y ^

where the domain of integration is a product of contours, % x γ2 x d,
in the ulf u2, ΐ -planes respectively; ΎlfΎ2 are paths joining + 1 to-1,
and δ is a closed loop encircling the origin in the v-plane.

Since (25) is a Cauchy integral we may deform the product of
contours continuously providing we do not pass over a third-order
pole of Uj, or v. (We note that the integrand has branch-point like
singularities only at u3- — ± 1 , which corresponds to points on the
boundary of ^?). Let us start with an initial point of definition
for f(σ, Ύ], ξ) say the origin η = ξ = σ — 0, and let us choose &
such that Pl\ΐL) is absolutely integrable. f(σ, η, ξ) will then be
defined in some neighborhood of the origin JV0 providing that all
points (σ, η, ξ) = Σ e No lie on a curve J5f(Σ) originating at the origin
and such that no point of ^f(Σ) corresponds to a third order pole
of the integrand on the domain of integration etc. Having thus
established a domain of definition for f(σ, η, ξ) we may extend this
region by continuously deforming & according to the usual precau-
tions. We recognize, however, that the singularities of the integrand
are of a more complicated type than occur for the operator p4(/).
For instance, there are singularities of the kernel, which move as
we continue along a curve £f(Σ), and there are the fixed singularities
of the harmonic function H(X*). The singularities of the kernel
are those points Σ, which lie on

(53) Eiσ-1 - B = 0} U Efr-1 - B - A = 0} .

Both A and B are linear in ylf y2, y3, y±, hence the zeros of {σ~x — B)
and (o"~x — B — A) are first order for uu u2, or v, where ever the
transformation of coordinates (51) is a one-to-one, that is for u, Φ ± 1 ,
v Φ 0. The kernel is then seen not to have a pole-like singularity of
third order unless A(X*) = 0, and in this case one has

(54)

Now we may continue f{σ, η, ξ) along ^f{Σ) as long as it is possible
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to deform & so that it does not cross over a third-order, pole-like
singularity of (54). This may always be accomplished except when
the singularities of (54) coincide with the fixed (third-order, pole-like)
singularities of iϊ(X*) [8] [6] [7] [12]. Hence, we have proved the
following result.

THEOREM 3. Let H(X*) be a meromorphic harmonic function
regular at the origin, and let U(p, uly u2, v) be the function obtained
by replacing ylf y2, y3f y± by the complex, hyper spherical coordinates,
then

ιlf u2, u3)B(2σ~1 - A - 2B)
v ' ' 2π2 J J J ^ σXσ-1 - J?) 2 ^" 1 - B - Af

l / l - u\d

is regular at Σ = (σ, η, ξ) providing this point does not lie on

E{A(X*) = 0}f] Eiσ-1 - B(X*)} n h W — = θ | ΓΊ E\^- - θ}Ί ,
U=i I dUj i I du) ) Jdu)

where

U(p, Ul, «,, u3) = rf
G(ρ, ulf u2, u3)

is a decomposition of U into entire functions.
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