
A CONE OF SUPER-(L) FUNCTIONS

F. W. ASHLEY, JR.

1. Introduction* Bonsall [2] introduced the following generalization
of the concept of a real-valued concave function of one real variable
on a closed interval [α, 6], where a < δ:

DEFINITION 1.1. Let y1 and y2 be arbitrary real numbers, and let
x1 and x2 be real numbers such that a g x± < x2 gΞ b. Let L(y) =
d2yjdx2 + p{x)dyjdx + #(#)2/ = 0 be such that there exists a unique
solution F on [a, b] (where the appropriate one-sided derivatives are
used at the end-points) for which F(xt) = yif i = 1, 2. Then a real-
valued function / is super-(L) on [α, 6] if /(#) ^ i^(/, a?i, $2; #) for all
x, x19 and x2 such that α ̂  x1 < $2 fg & and xλ^x ^ x2, where F(f, xl9 x2; %)
is the solution of L(y) — 0 such that F(f, xlf %21 xt) = /(»»), i = 1, 2.

This definition is a special case of the generalized concave function
introduced by Beckenbach [1].

In this paper, it will be shown that the set of non-negative con-
tinuous super-(L) functions on [α, b] is a convex cone, and the extremal
structure of the cone will be characterized. A result due to Choquet
[4] will then be used to prove the existence of a type of integral
representation for the elements of the cone in terms of the extremal
elements of the cone. It will be assumed throughout this paper that
the functions considered are continuous on [α, &].

DEFINITION 1.2. Let A be a set in a real linear space. Then A
is a convex cone if

(1) for every / and g in A and every nonnegative real number
k, f + 9 a n d M belong to A, and

(2) / in A and —/ in A imply / = 0, the origin of the real linear
space.

It is easy to check that if / and g are super-(L) functions on [α, 6]
and k is a nonnegative real number, then kf and f + g are super-(L)
functions on [α, 6], and hence it follows that the set C of nonnegative
super-(L) functions on [a, b] forms a convex cone.

2 Extremal structure of C. McLachlan [5] has characterized the
extremal structure of the convex cone of nonnegative concave functions
on [α, 6]. It will be shown in this section that the extremal structure
of C is analogous to that obtained by McLachlan.
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DEFINITION 2.1. A real-valued function / on [a, b] is {L)-linear
on [xu x2] if f(x) = F(f, xlf x2; x) for all x in [xl9 x2], where a ̂  xx < x2 ̂  6.

LEMMa 2.1. / / / ,/ i , αwd / 2 are super-(L) functions on [a, 6] swc&
£/κz£ /(#) = fx(x) + /2(OJ) /or aii x in [xlf x2], where a ^ xt < x2 ^ 6,
and f is (L)4inear on [xlf x2], then fλ and f2 are (L)4inear on [xlf x2].

The proof is straightforward and will be omitted.

DEFINITION 2.2. A real-valued function/on [a, b] is an (Laconical
function with its vertex over w in [a, b] if

(1) f(w) > 0,
(2) /(α) - f(b) = 0 if w Φ a, 6; f(a) = 0 if w = 6; or /(&) = 0 if

w = α; and
(3) / is (L)-linear on [α, w] and on [w, 6],

LEMMA 2.2 [2, p. 101]. 7/ / is super-(L) on [α, 6], then f(x) ^
i^(/, a?i, x2; x) for all x in [α, xx] and [x2, b].

LEMMA 2.3. If f in C is such that f(x0) = 0 for some x0 in (α, 6),
then f = 0.

Proof. Suppose there exists an xf in [a, b] such that /(#') > 0.
There is no loss in generality in assuming that xf < x0. Since / is
super-(L), F(f, a, b: xo)^f(xo) = O. If F(f, a, b; xo)<O, then F(f, a, b b)^
0 and F(f, a, b; a) ̂  0 imply F(f, afb;x) has zero function value at
two distinct points, and hence is zero on [α, 6], a contradiction. Thus
F(f, a, b; xQ) = 0 =f(x0), and it follows that F(f, a, xo; x) = F(f, a, 6; x) —
F{f, x0, b; x) on [a, b]. Since / is super-(L), f(x) ^ F(f, a, xo; x) on
[α, x0] and f(x) ^ F ( / , a?0, 6; x) on [α;0, 6]. By Lemma 2.2, f(x) ^
^ ( / i a, av, α?) on [a;0, b] and /(a?) ^ i^(/, x0, 6; a?) on [α, OJ0]. Thus /(a?) =
F ( / , a, b; x) on [α, 6], Let xλ and α?2 be such that a ^ xλ < xQ < x2 ^ bf

and let yx and τ/2 be positive real numbers. Since F(f, a, b; xr) > 0,
it follows that F(f, a, b; x) > 0 for all x Φ x0 in [α, b]. Then there
exist real numbers rx and r2 such that yi = r<F(/, α, 6; #<), ΐ = 1, 2.
Let G be the solution of L(̂ /) = 0 such that G(^) = yif i = 1,2. Assume
r i ^ r 2 , since the proof for the other case is similar. Then rJΓ(f, α, 6; x2)^
r2F(f, a, b; x2) = y2 — G(x2). If G(x0) < 0, G is zero at two distinct
points and hence is identically zero on [a, 6], a contradiction. Then
G(#o) ^ i^(/, α, 6; a?0) and G(x2) ̂  τλF(f, α, 6; a?a) imply the existence of
an xz in [̂ 0, x2] for which G(a?8) = rxF(f9 α, 6; a?8). Hence G(x) =
n F ί / , α, δ; a?) on [α, δ] since G(xJ = r ^ ί / , α, 6, a?χ). This contradicts
the existence of solutions of L(y) = 0 taking arbitrary positive function
values at x0 and ̂  Φ x0.
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DEFINITION 2.3. Let A be a convex cone. An element / of A is
an extremal element of A if for every pair of elements fx and /2 of
A such that / — Λ + /2 there exists a real number k such that fλ — kf.

THEOREM 2.1. A function f(Φθ) is an extremal element of C if
and only if f is an (L)-conicaί function.

Proof. It is easy to check that an (L)-conical function is super-(L).
The result follows in a straightforward fashion upon applying Lemma 2.1.

If / in C is not (£)-linear on [α, b] and is such that either /(α) > 0
or f(b) > 0, then / is not an extremal element of C since a non-
proportional decomposition for / is F(f, a, b; x) and f(x) — F(f, a, b; x).

If / in C is (L)-linear on [α, b] and f(a) > 0 and f{b) > 0, then /
is not an extremal element of C since a nonproportional decomposition
for / is the (L)-linear function fλ such that fλ(a) = /(α) and fτ(b) = 0
and the (L)-linear function f2 such that /2(α) = 0 and /a(δ) = /(&).

To complete the proof of the theorem, let / Φ 0 be an element
of C which is not (laconical and is such that f(a) = f(b) = 0. Let
a;0 be such that a < xQ < 6. Assume / is not (L)-lmear on [a?0, δ], since
the proof for the other case is similar. Let g(x) = /(a?) — F(/, a?0, 6; x)
on [α, 6]. For each positive real number y, let Fy be the (L)-linear
function determined by (α, 0) and (6, #). Let ^ = inf {y: Fy(x) > g(x)
for all x in [α, 6]}. Clearly u exists and is positive. The assumption
that Fu(x) > g{x) for all x in [a, b] leads to a contradiction, so {x: Fu{x) =
g(a?)} is not empty. Let sc = sup {x: FJx) = sr(aj)}. Since 2^(δ) > 0,
there exists an xr in (», b) such that jPtt(a?) = F(fy a, x'; x) on [α, 6].
Let / / ^ - F(f, a, %'; as) on [a, x] and //α?) =/(a?) - F(f, x0, b; x) on [x, δj.
Let /2 = / — /1# It will be shown that /x and f2 form a nonproportional
decomposition of /. Clearly Λ and f2 are nonnegative. Let xx and α?2

be in [α, b]. Since Λ is super-(L) on [α, ̂ ] and on [x, b], it will be
assumed that a ^ x± < x and x <x2^b. If Λfe) < F(/ l f x19 x2; α?3) for
some x3 in (a?!, a?2), then F(flf xlf x2; x) must intersect F(f, α, xf; a?) for
some x in [x, x2), a contradiction. Thus /2 is super-(L) on [a, b]. By
observing that f2(x) S F(f, %o, b; x) on [α, x], a similar argument may
be used to prove f2 is super-(L) on [α, b]. Suppose there exists a real
number k such that fx = fc/. Then / is (L)-linear on [α, x] since fx is
and A; Φ 0. Since / - Λ + /2 and /2 ^ 0, it follows that k Φ 1, and
so/2 = (1 — fc)/ implies / is (L)-linear on [x, b]. This contradicts the
assumption that / is not (L)-conical.

3. Integral representation• The existence of an integral represen-
tation (Radon measure) for the elements of the cone C in terms of
its extremal elements will be based on the following theorem due to
Choquet:
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THEOREM 3.1 [4, p. 237]. / / the linear space L is a locally convex
Hausdorff space, and if A is a convex compact subset of L, then for
each x in A there exists a nonnegative Radon measure on the closure
of the set of extreme points of A whose center of gravity is x.

The theorem will be applied in the following way: First, it is
known that C — C is a real linear space such that the vertex of C is
the origin of C — C [3]. It is also known that when C — C is topol-
ogized with the topology of simple convergence (the induced product
topology of RlaM), it is a locally convex Hausdorff topological linear
space [4]. It will be shown that B = {/:/ is in C,f(x0) — 1}, where
x0 is a fixed real number in (α, 6), is a convex compact subset of C •— C
which meets each ray of C once and only once and does not contain
0, the origin of C — C, and that the set of extreme points of B is
closed in C — C. Then by the theorem there will exist an integral
representation for each element of B in terms of extreme points of
B. It will then follow that there exists an integral representation
for each element of C in terms of extremal elements of C since B
meets each ray of C once and only once and does not contain 0.

LEMMA 3.1. Let Fx be the (L)-lίnear function determined by the
points (x0,1) and (b, 0), and let F2 be the (L)-linear function determined
by the points (α, 0) and (x0, 1). Then {fix) :f is in B) ~ [F2(x), F^x)]
for each x in [a, x0] and {f(x) :f is in B} — [Fλ{x), F2(x)] for each x
in [x0, b].

Proof. Clearly Fx and F2 belong to B, Fx(x) > F2(x) on [a, x0), and
Fx{x) < F2(x) on (x0, b]. Let / belong to B. The assumption that there
exists an xx in [a, xQ) such that f(xx) > F^xJ leads to a contradiction
through an application of Lemma 2.3. Similarly, f(x) ^ F2(x) on [xQ, b].
The assumption that fix2) < F2(x2) for some x2 in [α, x0) or f(x3) < F^x3)
for some x3 in (x0, b] either contradicts / being super-(L) or / being
nonnegative. Therefore {f(x) :f is in B}c[F2(x), Fx{x)\ for each x in [α,x0]
and {/(a?):/ is in . B j c f i ^ ) , F2(x)] for each x in [x09 b]. Given any x
in [α, 6] and y between Fλ{x) and F2(x), there exists an (L)-linear
function in B passing through that point. Hence {f(x): f is in B} =
[F2(x)y F^x)] for each x in [a, x0] and {f(x) :f is in B} = [F^x), F2(x)]
for each x in [x0, b].

The Tychonoff product theorem may now be applied to show that
B is a subset of a compact set in JSCα>6], so that to prove B is compact
it is only necessary to prove it is closed in RlaM.

LEMMA 3.2. The convex cone C is closed in Rla"bl for the topology
of simple convergence.
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Proof. Let / belong to the complement of C. If there exists an
xx in [α, b] such that /(α^) < 0, let ε = — /(x^/2. Let g belong to
£/(/; xλ; ε), a neighborhood of / in the topology of simple convergence.
Then \g{xλ) - / ( ^ ) i < e implies gfa) - f(x1) < ~/(^)/2, so that g(x,) <
/(fl?i)/2 < 0. Thus g is not in C, and hence U(f; xx\ ε) is in the
complement of C.

If / is nonnegative, then / is not super-(L), Hence there exist
xlf x2, and x3 such that xx < x3 < x2 and /(x3) < F(f, x19 x2; a?3) Let
ft, = f(xt) [F(f, xlf x2; x3) - f(Xs)]l[f(Xi) + F{f, xu x2; x3)], i = 1, 2. Take
ε = min {k19 ft2}/2 if kx > 0 and fc2 > 0, ε = j^/2 if k2 = 0, or ε = ft2/2 if

ftx = 0. Then £/(/; a?x, x2, x3; ε) is in the complement of C.

THEOREM 3.2. T&e se£ B is a convex compact subset ofC—C
which meets each ray of C once and only once and which does not
contain 0,

Proof. Let fλ and f2 belong to B, and let k be any real number such
that 0 < k < 1. Then kfλ+(1 - k)f2 belongs to C and (kf,+(1 - fc)/2) (α0) = 1,
so that fc/i + (1 — ft)/2 belongs to JS. Thus B is convex.

Let / be in the complement of B relative to C. Since / is in C,
f(x0) Φ 1. Let ε = \f(x0) — 11. Then U(f; xo; ε) Π C is in the complement
of B relative to C, and hence B is closed in iu[a-6] by Lemma 3.2. It
now follows that B is a compact subset of C — C.

Let H be any ray in C. Let / in C be such that H = {ft/: ft is
a nonnegative real number}. By Lemma 2.3, f(x0) Φ 0 since x0 is in
(α, 6), so that k± = l//(αs0) is such that ftx/ belongs to J5. Thus the
intersection of B with i ί exists and is unique. Obviously 0 is not in B.

THEOREM 3.3. The set e(B) of extreme points of B is closed in
C — C for the topology of simple convergence.

Proof. By Theorem 3.2, B is closed relative to C — C, so that it
is only necessary to prove e(B) is closed relative to B. Let / be in
the complement of e(B) relative to B. Then clearly there exists an
x1 in (α, b) such that f(xλ) Φ Fx{x^ and f{x^ φ F2(x^), where F± and F2

are the functions defined in Lemma 3.1. It will be assumed that xx

is in (α, x0) since the proof for the other case is similar. Let G1 be
the (L)-conical function in e(B) determined by the points (α, 0) and
(XufiXx)). Let x be the ̂ -coordinate of the vertex of G19 and observe
that x < x0. Suppose f(x) = Gλ(x) on [α, x]. Then / super-(L) and
F(f, %, ^0; ») = Fx{x) on [α, 6] imply f(x) ^ FL(x) on [x, x0] and f(x) ^
i^(x) on [x0, b] by Lemma 2.2. By Lemma 3.1, f(x) ^ Fx{x) on [x, x0]
and/(x) ^ ^(x) on [a?0, δ]. Thus / = Gl9 which contradicts / being in
the complement of e(B). Therefore there exists an x% in [α, x] such
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that f(x2) φ Gx{x2). Let G2 be the (L)-conical function in e(B) determined
by the points (α, 0) and (x2, [f(x2) + G1(x2)]/2). Since G2(a) = G1(a) and
G2(x2) ψ Gx(x2), it follows that G2{xτ) Φ G1(x1) = f(xx). Let ε = (1/2) min
{|/0*i) - G2(xJ I, |/(tf2) - Gτ{x2) |}. Then t7(/: ̂ x, x2; e) n 5 is in the comple-
ment of e(ί?) relative to J5, and hence e(B) is closed relative to B.
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