FREE EXTENSIONS OF BOOLEAN ALGEBRAS

F. M. Yaqub

Introduction. This paper is concerned with the problem of imbedding a Boolean algebra B into an α-complete Boolean algebra B^{*} in such a way that certain homomorphisms of B can be extended to B^{*}. We investigate two such imbeddings which arose naturally from the consideration of the work of Rieger and Sikorski in [5] and [7]. In [5] Rieger proved the existence of a certain class of free Boolean algebras and investigated their representability by α-fields of sets. Rieger's theorem on the existence of "the free α-complete Boolean algebra on m generators" is equivalent to the following statement: Every free Boolean algebra B can be imbedded in an α-complete Boolean algebra B^{*} such that every homomorphism of B into an α complete Boolean algebra C can be extended to an α-homomorphism of B^{*} into C. The question now arises: Does this result hold for an arbitrary Boolean algebra B which is not necessarily free? If such an imbedding exists, we call B^{*} the free α-extension of B.

In [7], Sikorski gave a characterization of all the σ-regular extensions of a Boolean algebra B. To obtain this characterization, he first proved that B can be imbedded as a σ-regular subalgebra of a σ-complete Boolean algebra B^{*} such that every σ-homomorphism of B into a σ-complete Boolean algebra C can be extended to a σ-homomorphism of B^{*} into C. We call B^{*} the free σ-regular extension of B.

In $\S 2$ of this paper we prove that the free α-extension B_{α} of B exists uniquely for every Boolean algebra B and every infinite cardinal number α. In §3 we investigate the representability of B_{α} by an α-field of sets. We first prove that B_{α} is isomorphic to an α-field of sets if and only if it is α-representable. A corollary to this result is that the free σ-extension B_{σ} of an arbitrary Boolean algebra B is isomorphic to a σ-field of sets. The problem of characterizing those Boolean algebras B for which B_{α} is α-representable for $\alpha \geqq 2^{\kappa_{0}}$ is also discussed. In $\S 4$ we investigate the α-regular extensions of Boolean algebras for an arbitrary cardinal number α. Sikorski's results on the σ-regular extensions depend on the Loomis-Sikorski theorem which does not hold for uncountable cardinal numbers. We use our results on the free α-extension B_{α} of B to prove the existence of the free α-regular extension and to give a characterization of the α-regular

[^0]extensions of B.
Our result on the existence of the free α-regular extension of B is a special case of a more general result of Kerstan [3], but it is obtained here by a different method. We also learned through a written communication from Professor Sikorski that he also proved the same result and his proof will appear in [10]. Sikorski's proof is similar to ours; however he works with the free α-complete Boolean algebras while we work with the free α-extension of B (see Theorem 4.1 below). The characterization of the α-regular extensions of B given in Theorem 4.2 does not appear in [3] or [10]; the free α-extensions of Boolean algebras have not been considered in either of these papers.

1. Preliminaries. Throughout this paper, the product (=greatest lower bound) of a set $\left\{x_{t}: t \in T\right\}$ of elements of a Boolean algebra B will be denoted, whenever it exists, by $\Pi_{t \in T} x_{t}$. If A is a subalgebra of B and $x_{t} \in A$ for every $t \in T$, then the set $\left\{x_{t}: t \in T\right\}$ may have two products, one taken in A and the other in B; we denote these products, whenever they exist, by $\Pi_{t \in T}^{A} x_{t}$ and $\prod_{t \in T}^{B} x_{t}$ respectively. The complement of an element x of B will be denoted by \bar{x}, and the symbol " 0 " will designate the zero element of B.

Definitions of the more familiar Boolean concepts which are not given in this section can be found in [9] or [2]. A homomorphism h of a Boolean algebra A into a Boolean algebra B is an α-homomorphism if it preserves α-sums (hence α-products) whenever they exist in A. Equivalently ([9], §22), h is an α-homomorphism of A into B if and only if $\Pi_{x \in s} h(x)=0$ for every subset S of A such that $|S| \leqq \alpha$ and $\Pi_{x \in S} x=0 . \quad h$ is an α-isomorphism if it is a one-to-one α-homomorphism. h is a complete homomorphism (complete isomorphism) if it is an α-homomorphism (α-isomorphism) for every infinite cardinal number α. A subalgebra A of a Boolean algebra B is α-regular if the injection mapping of A into B is an α-isomorphism. Equivalently, A is an α regular subalgebra of B if and only if $\Pi_{x \in S}^{B} x=0$ for every subset S of A such that $|S| \leqq \alpha$ and $\Pi_{x \in S}^{A} x=0 . A$ is a regular subalgebra of B if it is α-regular for every infinite cardinal number α.

A Boolean algebra B is free on m generators (m is an arbitrary cardinal number) if it is generated by a subset E with cardinality m and with the property that every mapping of E into a Boolean algebra C can be extended to a homomorphism of B into C. All free Boolean algebras on m generators are isomorphic ([9], §14) and will be denoted throughout this paper by A_{m}. An α-complete Boolean algebra B is a free α-complete Boolean algebra on m generators if it is α-generated by a subset E with cardinality m and with the property that every mapping of E into an α-complete Boolean algebra C can be extended
to an α-homomorphism of B into C. All free α-complete Boolean algebras on m generators are isomorphic [5] and will be denoted here by A_{m}^{α}.

For every Boolean algebra B and every infinite cardinal number α, there exists an α-complete Boolean algebra B^{*} and a complete isomorphism h of B into B^{*} such that $h(B) \alpha$-generates B^{*} ([9], § 36). This Boolean algebra B^{*}, which is unique up to isomorphisms, is called the normal α-completion (also minimal α-extension) of B and will be denoted here by B^{α}. If B^{*} is complete and h is a complete isomorphism of B into B^{*} such that B^{*} is completely generated by $h(B)$, then B^{*} is called the normal completion (also, minimal extension) of B and will be denoted by B^{∞}. When dealing with the normal α-completion (completion) of B, we shall usually identify B with $h(B)$ and thus consider B as a regular subalgebra of both B^{α} and B^{∞}.

The Stone space (=Boolean space) of a Boolean algebra B is the compact, Hausdorff, totally disconnected space whose open-and-closed subsets, ordered by set inclusion, form a Boolean algebra isomorphic to B. For every Boolean algebra B and every infinite cardinal number $\alpha, S(B)$ will denote the Stone space of $B, F_{0}(B)$ the Boolean algebra of open-and-closed subsets of $S(B)$, and $F_{\alpha}(B)$ the smallest α-field of subsets of $S(B)$ containing $F_{0}(B)$.

A Boolean algebra B is called α-representable if it is isomorphic to an α-regular subalgebra of a quotient algebra F / I, where F is an α-field of sets and I is an α-ideal of F. If B is α-complete, then this definition reduces to: B is α-representable if and only if it is an α homomorph of an α-field of sets. There are α-complete (even complete) Boolean algebras which are not α-representable for $\alpha \geqq 2^{\aleph_{0}}$ ([9], § 29). However, for the case $\alpha=\boldsymbol{K}_{0}$, we have the Loomis-Sikorski theorem ([9], § 29): Every Boolean algebra is σ-representable.

2. Free α-extensions.

Definition 2.1. An α-complete Boolean algebra B^{*} is called a free α-extension of the Boolean algebra B if B^{*} is α-generated by a subalgebra B_{0} isomorphic to B such that every homomorphism of B_{0} into an α-complete Boolean algebra C can be extended to an α-homomorphism of B^{*} into C.

We shall show in this section that for every Boolean algebra B and every infinite cardinal number α, the free α-extension of B exists and is unique up to isomorphisms. We denote the free α-extension of B by B_{α}, and we shall consider B as a subalgebra of B_{α}, thus identifying it with the subalgebra B_{0} of Definition 2.1.

The following lemma follows immediately from Definition 2.1,

Lemma 2.1. Let A_{m} be the free Boolean algebra on m generators and A_{m}^{α} the free α-complete Boolean algebra on m generators. Then A_{m}^{α} is the free α-extension of A_{m}.

Lemma 2.2. Let I be an ideal of A_{m} and I^{*} the smallest α-ideal of A_{m}^{α} containing I. Then $I^{*} \cap A_{m}=I$.

Proof. Let h be the canonical homomorphism of A_{m} onto A_{m} / I and let i be an isomorphism of A_{m} / I onto $F_{0}\left(A_{m} / I\right)$. Then the homomorphism ih can be extended to an α-homomorphism h^{*} of A_{m}^{α} into $F_{\alpha}\left(A_{m} / I\right)$. And the kernel of h^{*} is an α-ideal which contains I^{*} and intersects A_{m} in I. Hence $I^{*} \cap A_{m}=I$.

Theorem 2.1. For every Boolean algebra B and every infinite cardinal number α, the free α-extension of B exists and is unique up to isomorphisms.

Proof. Let $|B|=m$. Then there exists an ideal I of A_{m} such that A_{m} / I is isomorphic to B. Let I^{*} be the smallest α-ideal of A_{m}^{α} containing I. We shall show that A_{m}^{α} / I^{*} is a free α-extension of B.

Lemma 2.2 shows that the subalgebra A_{m} / I^{*} of A_{m}^{α} / I^{*} is isomorphic to B. And since A_{m}^{α} is α-generated by A_{m}, it follows that A_{m} / I^{*} α-generates A_{m}^{α} / I^{*}. Thus it only remains to show that homomorphisms of A_{m} / I^{*} can be extended to A_{m}^{α} / I^{*}. Let h be a homomorphism of A_{m} / I^{*} into an α-complete Boolean algebra C. Let f be the canonical α-homomorphism of A_{m}^{α} onto A_{m}^{α} / I^{*} and denote the restriction of f to A_{m} by f^{\prime}. Then the homomorphism $g=h f^{\prime}$ has an extension g^{*} which is an α-homomorphism of A_{m}^{α} into C. Since both I^{*} and the kernel of g^{*} are α-complete ideals containing I, it follows that I^{*} is contained in the kernel of g^{*}. We now define the mapping h^{*} by:

$$
h^{*}(f(x))=g^{*}(x), x \in A_{m}^{\alpha} .
$$

Then h^{*} is the desired extension of h; hence A_{m}^{α} / I^{*} is a free α-extension of B.

The uniqueness of the free α-extension of B follows from the standard argument used to show that all free Boolean algebras on the same number of generators are isomorphic. Indeed, suppose that B has two free α-extensions B_{1} and B_{2}. Let i be an isomorphism of the subalgebra B of B_{1} onto the subalgebra B of B_{2}. Then i can be extended to an α-homomorphism of B_{1} onto B_{2} and the isomorphism i^{-1} can be extended to an α-homomorphism i_{2} of B_{2} onto B_{1}. Let $B^{*}=$ $\left\{x \in B_{1}: i_{2}\left(i_{1}(x)\right)=x\right\}$. Then B^{*} is an α-complete, α-regular subalgebra of B_{1} containing B. Hence $B^{*}=B_{1}$, and i_{1} is an isomorphism of B_{1} onto B_{2}.

Lemma 2.3. Let h be a homomorphism of a Boolean algebra B into an α-complete Boolean algebra C. Then the extension of h to an α-homomorphism of B_{α} into C is unique.

Proof. Suppose h has two extensions h_{1} and h_{2}. Let $B^{*}=$ $\left\{x \in B_{\alpha}: h_{1}(x)=h_{2}(x)\right\}$. Then B^{*} is an α-complete, α-regular subalgebra of B_{α} containing B. Hence $B^{*}=B_{\alpha}$, and $h_{1}=h_{2}$.

A slight modification of the proof of Theorem 2.1 yields the following result.

Lemma 2.4. If I is an ideal of B, then the free α-extension of B / I is isomorphic to B_{α} / I^{*}, where I^{*}, is the smallest α-ideal of B_{α} containing I.

Lemma 2.5. If A is a subalgebra of B, then A_{α} is isomorphic to the α-complete, α-regular subalgebra A^{*} of $B_{\alpha} \alpha$-generated by A.

Proof. We only need to show that if h is a homomorphism of A into an α-complete Boolean algebra C, then h can be extended to an α-homomorphism of A^{*} into C. Thus, we imbed C into its normal completion C^{∞}. Then, by a known result ([9], §33.1), h can be extended to a homomorphism h_{1} of B into C^{∞}. Furthermore, h_{1} can be extended to an α-homomorphism h_{2} of B_{α} into C^{∞}. Let h^{*} be the restriction of h_{2} to A^{*}. Then, since A^{*} is an α-regular subalgebra of B_{α}, h^{*} is an α-homomorphism of A^{*} into C^{∞}, and the proof will be complete once we show that $h^{*}\left(A^{*}\right)$ is contained entirely in C. Since both $h^{*}\left(A^{*}\right)$ and C are α-complete, α-regular subalgebras of C^{∞}, their intersection $h^{*}\left(A^{*}\right) \cap C$ is also an α-complete, α-regular subalgebra of C^{∞}. And since $h^{*}\left(A^{*}\right)$ is α-generated by $h(A)$, it follows that $h^{*}\left(A^{*}\right)=h^{*}\left(A^{*}\right) \cap C$. Hence $h^{*}\left(A^{*}\right) \subset C$, and the proof is now complete.
3. Representability by α-field of sets. In investigating the representability problem of the free α-extensions of Boolean algebras, the following two natural questions arise: When is the free α-extension B_{α} of a Boolean algebra B isomorphic to an α-field of sets? And, when is $B_{\alpha} \alpha$-representable? The following theorem shows that these two questions are equivalent.

Theorem 3.1. For every Boolean algebra B and every infinite cardinal number α, there is an α-homomorphism j^{*} of B_{α} onto $F_{\alpha}(B)$ whose restriction to B is the canonical imbedding of B in $F_{0}(B)$. Moreover, j^{*} is one-to-one if and only if B_{α} is α-representable.

Proof. ${ }^{1}$ Let j be the canonical isomorphism of B onto $F_{0}(B)$ and

[^1]extend j to an α-homomorphism j^{*} of B_{α} into $F_{\alpha}(B)$. Since $F_{\alpha}(B)$ is α-generated by $F_{0}(B), j^{*}$ is onto. Since B is a subalgebra of B_{α}, there is a continuous mapping λ of $S\left(B_{\alpha}\right)$ onto $S(B)$ such that for every $x \in B, \lambda^{-1}(j(x))=i(x)$, where i is the canonical isomorphism of B_{x} onto $F_{0}\left(B_{\alpha}\right)$. Let k denote the homomorphism $E \rightarrow \lambda^{-1}(E)$, mapping the subsets of $S(B)$ to subsets of $S\left(B_{\alpha}\right)$. Then k is an α-isomorphism which maps $F_{0}(B)$ into $F_{0}\left(B_{\alpha}\right)$, since $k(j(x))=i(x)$ for every $x \in B$. Consequently, k maps $F_{\alpha}(B)$ into $F_{\alpha}\left(B_{\alpha}\right)$. If B_{α} is α-representable, then $F_{0}\left(B_{\alpha}\right)$ is an α-retract of $F_{\alpha}\left(B_{\alpha}\right)$; that is, there is an α-homomorphism h of $F_{\alpha}\left(B_{\alpha}\right)$ onto $F_{0}\left(B_{\alpha}\right)$ whose restriction to B_{α} is the identity mapping. Then $i^{-1} h k j^{*}$ is an α-homomorphism of B_{α} onto itself which is an extension of the identity mapping on B. Thus, it follows from Lemma 2.3 that $i^{-1} h k j^{*}(x)=x$ for all $x \in B_{\alpha}$. Thus j^{*} is an α-isomorphism.

Since every Boolean algebra is σ-representable (the Loomis-Sikorski Theorem), the last theorem yields the following corollary which answers the representability question for the free σ-extensions of Boolean algebras.

Corollary 3.1. For every Boolean algebra B, B_{σ} is isomorphic to the σ-field of sets $F_{\sigma}(B)$.

The next theorem gives a strong necessary condition that a Boolean algebra B must satisfy in order for B_{α} to be α-representable when $\alpha \geqq 2^{\aleph_{0}}$.

Lemma 3.1. If B_{α} is α-representable, then so is every subalgebra and every homomorphic image of B.

Proof. Let h be a homomorphism of B onto a Boolean algebra C. Imbed C into its normal α-completion C^{α} and extend h to an α homomorphism of B_{α} onto C^{α}. Since B_{α} is α-representable, so is C^{α}. And since C is an α-regular subalgebra of C^{α}, C itself is α-representable. On the other hand, if A is a subalgebra of B, then it follows from Lemma 2.5 that A_{α} is α-representable. Hence A is α representable.

Definition 3.1. A Boolean algebra B is called super-atomic if every subalgebra and every homomorphic image of B is atomic.

Theorem 3.2. Let B be a Boolean algebra and $\alpha \geqq 2^{\aleph_{0}}$. If B_{α} is α-representable, then B is super-atomic.

Proof. We shall first show that if B_{α} is α-representable, $\alpha \geqq 2^{\aleph_{0}}$, then B is atomic. Suppose B is not atomic. Then B has an element
x such that the principal ideal (x), when considered as a Boolean algebra, is atomless. Now the Boolean algebra (x) is isomorphic to a subalgebra A of B. For let P be a prime ideal of (x) and let $P^{*}=$ $\{\bar{x}: x \in P\}$. Then it is not difficult to show that $A=P \cup P^{*}$ is a subalgebra of B isomorphic to the Boolean algebra (x). Since A is atomless, it has a subalgebra A^{\prime} isomorphic to the free Boolean algebra on \aleph_{0} generators ([1], § 1.7). And since B_{α} is α-representable, Lemmas 2.5 and 3.1 show that A^{\prime} is α-representable also. This contradicts the fact that the free Boolean algebra on $\boldsymbol{\aleph i}_{0}$ generators is not α representable if $\alpha \geqq 2^{\aleph_{0}}$. Thus we conclude that B is atomic.

The proof of the theorem now follows immediately. If C is a subalgebra of B, then, by Lemma 2.5, C_{α} is α-representable. Hence C is atomic. On the other hand, if C is a homomorphic image of B, then C_{α} is an α-homomorph of B_{α}. Thus C_{α} is α-representable, hence C is atomic.

Super-atomic Boolean algebras were discussed briefly in [4] and more recently in more detail by G. W. Day [1]. In particular, Day proved ([1], Theorem 16) the converse of Theorem 3.2. Day also gave the following characterization of super-atomic Boolean algebras: A Boolean algebra B is super-atomic if and only if every subalgebra of B is atomic if and only if every homomorph of B is atomic. A characterization of super-atomic Boolean algebras with ordered basis is given by Theorem 3.3 of [4].

Combining Day's result ([1], Theorem 16) with Theorem 3.2, we obtain:

Theorem 3.3. Let B be a Boolean algebra and $\alpha \geqq 2^{\aleph_{0}}$. Then B_{α} is α-representable if and only if B is super-atomic.

If B is not super-atomic and $\alpha \geqq 2^{\kappa_{0}}$, then $F_{\alpha}(B)$ is not isomorphic to B_{α}; however; we shall now show that $F_{\alpha}(B)$ is the free α extension of B "over the class of α-representable Boolean algebras." An α-complete, α-representable Boolean algebra B^{*} is called the free α-representable extension of B if B^{*} is α-generated by a subalgebra B_{0} isomorphic to B such that every homomorphism of B_{0} into an α complete, α-representable Boolean algebra C can be extended to an α-homomorphism of B^{*} into C. We need the following result of Sikorski ([9], 31.1):

Lemma 3.2. Let A_{m} be the free Boolean algebra on m generators and α an infinite cardinal number. Then $F_{\alpha}\left(A_{m}\right)$ is the free α representable extension of A_{m}.

A slight modification of the proof of Theorem 2.1 shows the following:

Theorem 3.4. For every Boolean algebra B and every infinite cardinal number α, the free α-representable extension of B exists and is unique up to isomorphisms.

The following theorem can be proved by an argument similar to the one used in the proof of Theorem 3.1.

Theorem 3.5. For every Boolean algebra B and every infinite cardinal number $\alpha, F_{\alpha}(B)$ is the free α-representable extension of B.

4. Free α-regular extensions.

Definition 4.1. An α-complete Boolean algebra B^{*} is called an α-regular extension of the Boolean algebra B if B^{*} is α-generated by an α-regular subalgebra B_{0} isomorphic to B. If, in addition, every α-complete homomorphism of B_{0} into an α-complete Boolean algebra C can be extended to an α-homomorphism of B^{*} into C, then B^{*} is called a free α-regular extension of B.
σ-regular extensions of Boolean algebras were investigated by Sikorski [7]. In this section we investigate the α-regular extensions of Boolean algebras for an arbitrary infinite cardinal number α. We denote the free α-regular extension of B by B_{α}^{*} (its existence and uniqueness are proved in Theorem 4.1). Also, for every Boolean algebra B and every infinite cardinal number α, we define the two ideals I_{α} and J_{α} as follows: I_{α} is the smallest α-ideal of B_{α} containing all elements u such that $u=\prod_{t \in T}^{B_{\alpha}} x_{t}$, where $|T| \leqq \alpha$, each $x_{t} \in B$, and $\prod_{t \in T}^{B} x_{t}=0$. The elements u will be called the generators of I_{α}. J_{α} is the smallest α-ideal of $F_{\alpha}(B)$ containing all the nowhere dense α closed subsets of the Stone space of B. (A subset E of a topological space X is called α-closed if E is the intersection of at most α open-and-closed subsets of X.)

Lemma 4.1. Let B be a Boolean algebra and I an α-ideal of B_{α} such that: (a) $I \supset I_{\alpha}$, (b) $I \cap B=(0)$. Then B_{α} / I is an α-regular extension of B.

Proof. Let h be the canonical α-homomorphism of B_{α} onto B_{α} / I and observe that h is an isomorphism of B onto the subalgebra B / I. Suppose that $|T| \leqq \alpha$ and, for each $t \in T, h\left(x_{t}\right) \in B / I$ such that $\prod_{t \in T}^{B / I} h\left(x_{t}\right)=0$. Then

$$
\prod_{t \in T}^{B_{\alpha} / I} h\left(x_{t}\right)=h\left(\prod_{t \in T}^{B_{\alpha}} x_{t}\right)=0,
$$

where the last equality follows from the fact that $\prod_{t \in T}^{B \alpha} x_{t} \in I_{\alpha}$ and condition (a) of the hypothesis. Thus B / I is an α-regular subalgebra of B_{a} / I. Furthermore, since B_{α} is α-generated by B and h is an α homomorphism, it follows that $B / I \alpha$-generates B_{α} / I. Hence B_{α} / I is an α-regular extension of B.

Theorem 4.1. Let B be a Boolean algebra and α an infinite cardinal number. Then the free α-regular extension B_{α}^{*} of B exists and is unique up to isomorphisms. Moreover, B_{α}^{*} is isomorphic to B_{α} / I_{α}.

Proof. We shall first show that $I_{\alpha} \cap B=(0)$. Let B^{α} be the normal α-completion of B; thus B^{α} is α-generated by a regular subalgebra B_{1} isomorphic to B. Let i be an isomorphism of B onto B_{1} and observe that i is a complete isomorphism of B into B^{α}. Extend i to an α-homomorphism i^{*} of B_{α} into B^{α} and let u be a generator of I_{α}. Then $u=\prod_{t \in T}^{B_{\alpha}} x_{t}$, where $|T| \leqq \alpha$, and $\prod_{t \in T}^{B} x_{t}=0$. And

$$
i^{*}(u)=\prod_{t \in T}^{B^{\alpha}} i^{*}\left(x_{t}\right)=\prod_{t \in T}^{B^{\alpha}} i\left(x_{t}\right)=\prod_{t \in T}^{B_{1}} i\left(x_{t}\right)=i\left(\prod_{t \in T}^{B} x_{t}\right)=0 .
$$

It follows from this that I_{α} is contained in the kernel J of i^{*}. And since $J \cap B=(0)$, we have $I_{a} \cap B=(0)$ also.

Now, it follows from Lemma 4.1 that B_{α} / I_{α} is an α-regular extension of B. Let h be an α-homomorphism of B / I_{α} into an α-complete Boolean algebra C. We wish to extend h to B_{α} / I_{α}. Let f be the canonical α-homomorphism of B_{α} onto B_{α} / I_{α} and let $g=h f_{1}$, where f_{1} is the restriction of f to B. Then g can be extended to an α-homomorphism g^{*} of B_{α} into C. And, if $u=\prod_{t \in T}^{B_{\alpha}} x_{t}$ is a generator of I_{α}, then

$$
g^{*}(u)=\prod_{t \in T} g^{*}\left(x_{t}\right)=\prod_{t \in T} g\left(x_{t}\right)=\prod_{t \in T} h f\left(x_{t}\right)=h f\left(\prod_{t \in T}^{B} x_{t}\right)=0 .
$$

Therefore I_{α} is contained in the kernel of g^{*}. We now define the mapping h^{*} by

$$
h^{*}(f(x))=g^{\dot{*}}(x), \quad x \in B_{\infty} .
$$

Then h^{*} is the desired extension of h, and B_{α} / I_{α} is a free α-regular extension of B. The uniqueness of B_{α}^{*} can be proved easily by an argument similar to the one used in proving that B_{α} is unique. (See the proof of Theorem 2.1.)

Corollary 4.1. (Sikorski). For every Boolean algebra B, B_{σ}^{*} is isomorphic to $F_{\sigma}(B) / J_{\sigma}$.

Proof. By Corollary 3.1, B_{σ} is isomorphic to $F_{\sigma}(B)$, and the ideal I_{σ}, when considered as a σ-ideal of $F_{\sigma}(B)$, coincides with J_{σ}. Thus the conclusion follows from Theorem 4.1.

Theorem 4.2. An α-complete Boolean algebra B^{*} is an α-regular extension of B if and only if B^{*} is isomorphic to B_{α} / I, where I is an α-ideal of B_{α} satisfying the following two conditions: (a) $I \supset I_{\alpha}$; (b) $I \cap B=(0)$.

Proof. Suppose B^{*} is an α-regular extension of B. Then B^{*} is α-generated by an α-regular subalgebra B_{0} isomorphic to B. Let i be an isomorphism of B / I_{α} onto B_{0}. Then i is an α-isomorphism of B / I_{α} into B^{*}, hence it can be extended to an α-homomorphism i^{*} of B_{α} / I_{α} onto B^{*}. Let $I=\left\{x \in B_{\alpha}: i^{*}\left([x]_{I_{\alpha}}\right)=0\right\}$. Then B^{*} is isomorphic to B_{α} / I and I satisfies conditions (a) and (b). The converse was proved in Lemma 4.1.

Theorem 4.2 and Corollary 3.1 yield the following result of Sikorski [7].

Corollary 4.2. A σ-complete Boolean algebra B^{*} is a σ-regular extension of B if and only if B^{*} is isomorphic to $F_{\sigma}(B) / I$, where I is a σ-ideal of $F_{\sigma}(B)$ satisfying the conditions: (a) $I \supset J_{\sigma}$; (b) $I \cap F_{0}(B)=\phi$.

The following result is well known ([9], § 35 and 23.2).
Theorem 4.3. The normal completion B^{∞} of a Boolean algebra B is isomorphic to B_{∞}^{*}. That is, B^{∞} has the property that every complete homomorphism of B into a complete Boolean algebra C can be extended to a complete homomorphism of B^{∞} into C.

Using Theorem 3.5 and arguments similar to the ones used in the proofs of Theorems 4.1 and 4.2, we obtain the following two theorems which also can be proved by using Sikorski's methods for the σ-case (see [9], §36).

Theorem 4.4. For every Boolean algebra B and every infinite cardinal number α, B_{α}^{*} is isomorphic to $F_{\alpha}(B) / J_{\infty}$ if and only if B_{α}^{*} is α-representable.

Theorem 4.5. Let B be a Boolean algebra for which B_{α}^{*} is α representable. Then an α-complete Boolean algelra B^{*} is an α-regular extension of B if and only if B^{*} is isomorphic to $F_{\alpha}(B) / I$, where I is an α-ideal of $F_{a}(B)$ satisfying the conditions: (a) $I \supset J_{\alpha}$; (b) $I \cap F_{0}(B)=\phi$.

References

1. G. W. Day, Super-atomic Boolean algebras, Purdue University doctoral thesis (1962).
2. Ph. Dwinger, Introduction to Boolean algebras, Wurzburg, 1961.
3. Kerstan, Tensorielle Erweiterungen distributiver Verbande, Math. Nachrichten, 22 (1960), 1-20.
4. R. D. Mayer and R. S. Pierce, Boolean algebras with ordered bases, Pacific J. Math., 10 (1960), 925-942.
5. L. Rieger, On free $\boldsymbol{\aleph}_{\xi}$-complete Boolean algebras, Fund. Math., 38 (1951), 35-52.
6. R. Sikorski, On the representation of Boolean algebras as fields of sets, Fund. Math., 35 (1948), 247-256.
7. ——, Cartesian products of Boolean algebras, Fund. Math., 37 (1950), 25-54.
8. ——, A note on Rieger's paper: On free $\boldsymbol{\aleph}_{\xi}$-complete Boolean algebras, Fund. Math., 38 (1951), 53-54.
9. —, Boolean algebras, Berlin, 1960.
10. On extensions and products of Boolean algebras, Fund. Math. (to appear).

University of California, Davis

[^0]: Received December 14, 1962. This work consists of the main results contained in the author's thesis which was submitted to the faculty of Purdue University in January, 1962. The author gratefully acknowledges the financial support of the National Science Foundation and the International Business Machines Corporation during the preparation of this work.

[^1]: ${ }^{1}$ This proof, which is considerably shorter than the one intended, is due to the referee.

