ON LOCALLY MEROMORPHIC FUNCTIONS
WITH SINGLE-VALUED MODULI

LEo SARIO

1. A meromorphic function of bounded characteristic in a disk
is the quotient of two bounded analytic functions. This classical
theorem can be extended to open Riemann surfaces W as follows.
Consider the class MB of meromorphic functions w of bounded
characteristic on W, defined in terms of capacity functions on sub-
regions. Let L be the class of harmonic functions on W, regular except
for logarithmic singularities with integral coefficients. Then we MB
if and only if log |w| is the difference of two positive functions in L.
We shall construct these functions directly on W, without making use
of uniformization.

The proof offers no essential difficulties. If log |w]| is regular
at the singularity of the capacity functions, then the classical reasoning
carries over almost verbatim. In the general case we introduce the
extended class M, of locally meromorphic functions e****, u e L, with
single-valued moduli. This class seems to offer some interest in its
own right.

2. The class Oy, of Riemann surfaces not admitting nonconstant
M,B-functions coincides with the class O, of parabolic surfaces.
Regarding the subclass MBc M,B and the strict inclusion relations
Oup < Oys < Oy, we refer to the pioneering work on Lindelofian
maps by M. Heins [2, 3] and M. Parreau [4], and the doctoral dis-
sertation of K. V. R. Rao [5].

§ 1. Definitions.

3. Let W be an arbitrary open Riemann surface. Given (e W
let 2,e 2, be a relatively compact subregion of W whose boundary
B, consists of a finite number of analytic Jordan curves. The Green’s
function on 2 with pole at { is denoted by g.(z, {). For 2,2 we
have g, =< go in 2, and lim,_, g.(, {) either = or else = the Green’s
function g(z, {) of W. By definition, the class O, of parabolic Riemann
surfaces consists of those W on which no g(z, {) exists. An equivalent
definition of O, is that there are no nonconstant nonnegative super-
harmonic functions on W.
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4. The capacity function p.(z,{) on 2 with pole at { is defined
as the harmonic function with singularity

po(2, () — log |z — (| —0
as z — { and such that
o2, () = k, = const. on B, .

It is known [1] that k., = k, and the limit kg = limk, is thus well-
defined. A necessary and sufficient condition for We Oq4 is ks = .

5. Let M be the class of meromorphic functions w on W. The
proximity function of w is defined [7] as
M m(@, w) = m(@, =) = —L-| log|w|dp; .
21 Jee

If B, is the level line p, = h, — < h < k,, and n(h, o) signifies the
number of poles of w in 2,: p, < h, counted with multiplicities, then
the counting function is defined as

(2) N2, w) = NQ, )
= |, ) — n(—co, )l + n(—co, <o)k,

The characteristic function is, by definition,
T) = T2, w) = m(2, w) + N2, w) .
The function w has at ¢ the Laurent expansion
3) W) = exE — O + Canalz — OM A o+
¢x # 0, and the Jensen formula reads [7, 8]

(4) T2, w)y = TR, w?) + log|ca| -

6. We shall need a class M, more comprehensive than M. We
introduce:

DEFINITIONS. The class L consists of functions u on W, harmonic
except for logarithmic singularities ; log|z — 2;| at z;, 1=1,2, ---,
with integral coefficients N;. The subclass of nonnegative functions
wn L will be denoted by LP.

The class M, is defined to consist of (multiple-valued) functions
of the form

(5) w = e¥+ivt uel.
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The conjugate function u* has periods around z; and along some
cycles in W. Every branch of w is locally meromorphic, the branches
differing by multiplicative constants ¢ with |¢| = 1. The modulus
| w| is single-valued throughout W.

The quantities m(Q, w), N(2, w), T(2, w), and the Jensen formula
carry over to M, without modifications [7]. We further introduce:

DEFINITION. The class MB(or M,B) consists of functions w in
M (or M,) with bounded characteristics,

(6) T()=0Q).

Explicitly, one requires the existence of a bound C < o« inde-
pendent of 2 such that 7'(2) < C for all 2 < W. That (6) is inde-
pendent of { will be a consequence of a decomposition theorem which
we proceed to establish.

§2. The decomposition theorem.
7. We continue considering arbitrary open Riemann surfaces W.

THEOREM. A necessary and sufficient condition for we M,B on
W is that

(7) log|w|=u—v,

where w, ve LP.

The proof will be given in nos. 8-18. As a corollary we observe
that we MB on W if and only if (7) holds.

8. First we shall discuss in nos. 8-11 the case w({) = 0 or oo.

Suppose we M,B. We begin by showing that W¢ O,. If w(l) =
oo, then

T(2) = N2, w) = n(— oo, o)y = k., .

From WeO, it would follow that k, — o as 2 — W and consequently
T(Q2) — o, a contradiction. We conclude that We¢ O, If w() =0,
then in Jensen’s formula

T(Q, w) = T(.Q 1 >+ o)

, —
w

we have
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and arrive at the same conclusion W¢ O,.

On the other hand, if condition (7) is true, the existence of
nonnegative superharmonic functions u, v implies We O,. Thus either
condition of the theorem gives the hyperbolicity of W, and we may
henceforth assume the existence of ¢(z,{) on W if w({) =0 or co.

9. The funections

) P(z) = erolz OHiTz )
®) wi(z) = wE)P()

belong to M,. We shall show:

LeEMMA. A mnecessary and suffictent condition for we M,B is
that w, e M,B.

Proof. By definition,
(10) TR, ) =N&,¢) + m(2, ) .

For A >0 we have trivially N(Q, ™) =0, m(2, ™) =0, hence
T2, =0, and it follows from Jensen’s formula that 7'(2, ) =
0@1). If A< 0, then N2, ®) = m(Q,®) =0, and T(2, ») = 0, hence
T2, ™) = O(1). In both cases

(11) T2, 9)=0@1), T, ™) =0Q).
The inequalities

T@Q,w) = T, w) + TR, ¢7) = T2, w) + 0Q),
7@, w) = T2, w) + T2, 9) = T(Q, w) + O(1)

yield
12) TR, w) = T(2, w,) + O(1)

and the lemma follows.
10. The following intermediate result can now be established:

LEMMA. A mnecessary and sufficient condition for
13) log|lw|=u—7v
with w, ve LP s that
(14) log |w,| = u, — v,

with u,, v, € LP,
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Proof. We know that
(15) log |w:| =log |w]| + \g =log |w]| + (n, — nw)g ,

where n,, n., are the multiplicities of the zero or pole of w(z) at {. If
(18) is true, then

(16) log|w,| = (4 + mg) — (v + n.9)
and (14) follows. Conversely, (14) implies
17 log | w]| = (U + n.g) — (v, + neg) .

This proves the lemma.,

11. We conclude that Theorem 7 will be proved for w with
w(l) =0 or o if we establish it for w,. Since w,({) # 0, =, the
proof for w, will also apply to w with this property. Explicitly, we
are to show that w,e M,B if and only if log|w,| = w, — vy, %,, v,€ LP.

12. Let p.. be the capacity function in 2 with pole at z. For
a harmonic function 2 on 2 it is known [7] that

(18) h(z) = -1—_§ h dps. .
2w Jeo

Denote by a,, b, the zeros and poles of win W. Thosein W —
are the zeros and poles of w, in W. Suppose first there is no a,, b,
on B,. Then the function

(19) h@) = log |0,@)| + 3% ga(z, @) — 3 0ulz, b)

is harmonic on 2. Throughout this paper the zeros and poles are
counted with their multiplicities. We set

(20) wale w) = —— | log |, dpi ,

(21) Yol2, wy) ﬁvg_gyp(z, b)) ,

and

(22) Uo(2, Wy) = Bo(z, W) + Yaol?, W) .

Then

(23) log | w,(2) | = wo(2, wy) — uo(2, wi™) .

Since all terms are continuous in a,, b,, the equation remains
valid if there are zeros or poles of w on £,.
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We observe that

(24) xﬂ(Cv wl) = m(Qi wl) »
(25) yD(C; wl) = N(‘Q: wl) .
Here we shall only make use of the consequence
(26) uo(C, wy) = T(2, wy) .

13. We next show:

LEMMA. For 2,C 2,
27) %aa(z, W) < Uz, wy) ,
(27)’ uﬂo(zy wl_l) é ua(z: wl—l) .

Proof. By (23),

(28) log | w,(2) | < wa(z, ;)
for every 2. It follows that

xﬂo(z’ wl) g _1__5 uﬂ(t’ wl)dpggz
21 Jeg,

=~ (ualt, w) — vt w)dps,
2 Jag,
= uﬂ(z’ wl) - yﬂo(z, wl) ’

because this difference is regular harmonic in 2,, We have reached
statement (27),

Bo(2y W1) + Yo (2, w1) = Ue(2, wy) ,

and inequality (27)" follows in the same fashion.

14. From (26) and (27) we infer that T'(Q, w,) increases with
2. We can set

(29) T(W, wy) = lim T(2, wy)
—W
and use alternatively the notations 7'(2) = 0(1) and T(W) < oo,
15. The convergence of u#, can now be established:

LeEMMA. If T(W,w) < oo, then the functions

(30) u(zy wl) = lim uﬂ(zr wl) i)
9-w
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(30) w(z, wit) = lim uy(z, ;™)
Q-w

are positive harmonic on W except for logarithmic poles of wu(z, w,)
at the b,e W — { and those of u(z, wi*) at the a,e¢ W — (.

Proof. By Harnack’s principle the limit in (80) is either identi-
cally infinite or else harmonic on W — {b,}. That the latter alterna-
tive occurs is a consequence of

}}1’%%9(@, wl) = T( W, wl) .
The statement for wu.(z, wr*) follows similarly from wu.({, wi?) =
T2, w™ = T(Q, w) + O(1).
16. On combining the lemma with (23) we see that w,e M,B
has the asserted representation
(31) log | w,(2) | = u(z, w;) — w(z, wi’)

with the u-functions in LP. It remains to establish the converse.

17. Suppose
(32) log | w,(2) | = w,(2) — v,(2)

where u,, v, € LP. The positive logarithmic poles of u,(z, w,) are those
of log | w.(2) | in 2, hence among those of u,(z). Consequently u,(z) —

Ug(z, w,) is superharmonic in £ and its minimum on { is reached on
n
Bo, where u(2) — Uz, wy) = u,(z) — log |w,(z)| = 0. One infers that

u,(2) = ug(z, wy) in £. At { this means
(33) TR, w) = ug(l, w) = u(Q) .
If u,(0) < oo, the proof is complete.

18. If u,({) = o, then
34) uy(2) + N log |2 — (|
is harmonic at ¢ for some positive integer ),. We set
(35) w, = w,-e~ M e Jf
where g = g(z, {), and obtain
(36) log |w,| = log |w,| — Mg = (U, — Ng) — v, .

The function %, — \,g, with g, = g.(2, {) is superharmonic on 2, hence
its minimum on £ is taken on S,, where
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37) U — MG =u; = 0.
From u, = Mg, on 2 it follows that

(38) Uy — NG = })ir{ng (u — N00) = 0

on W. On setting

(39) Uy = Uy — MG, Vs = ¥y
one gets
(40) log | w,| = 4, — v,

with u,, v,€ LP.

The positive logarithmic poles of wu,(z, w,) are those of log | w, |
on 2, hence among those of #,., The minimum of the superharmonic
function wu,(z) — us(2, w;) on 2 is taken on B, where it is

min (x, —log|w,) = 0.
One infers that
(41) T2, wy) = ug(C, wy) = () < o0,
_that is, T(Q, w,) = O(1). The reasoning leading to (12) yields
(42) T2, w) = T(2, w,) + 01) ,

and consequently 7'(2, w,) = OQ).
We have shown that (32) implies T(W, w,) < . The proof of
Theorem 7 is complete.

19. As an immediate consequence we see that the property
T(2, w) = O(1) and thus the class M,B is independent of (.

§3. Extremal decompositions.

20. Consider an arbitrary we M,. In contrast with no. 12 we
now make no restrictive assumptions on w(¢) and form

(43) 2z, w) = ——| log|w]|dpt,
2 JBa

(44) Yolz, w) :b% 942, b,) ,

(45) U2, W) = xo(2, W) + Yoz, W) .

It is seen as in no. 13 that u, increases with 2 and that
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(46) u(z, w) = lim uy(z, w)
Q0-W

is either identically infinite or else positive harmonic on W except
for logarithmic poles b,. The same is true of

47) w(z, w) = lim uy(z, w™)
2-W

with singularities a,.
The functions (46) and (47) will now be shown to be extremal
in all decompositions (7):

THEOREM. If there is a decomposition
(48) log [w(z) | = u.(2) — ux(2)

with u,, u, € LP, then also

(49) log | w(z) | = u(z, w) — u(z, w™)
and
(50) Wz, w) = Uy (?)

Wz, w) = uy(2) .

Proof. One observes that the positive logarithmic poles of
uo(z, w) are those of log |w(z)| in 2, hence among those of u,(z) in
2. The superharmonic function u,(z) — uy(2, w) in 2 dominates

min (u,() — log |w(2) ) = 0

and we find that u,(2) — u(z, w) = limy_;,(u,(2) — uy(2, w)) = 0 in W.
Similarly, the superharmonic function u,(z) — u.(z, w™) = 0 on 2, and
uy(2) = u(z, w™) on W. By virtue of Harnack’s principle, equality
(49) then follows on letting 2 — W in

(51) log | w(z) | = uo(z, w) — ux(z, w™) .

21. The extremal functions wu(z, w), u(z, w™) can in turn be
decomposed:

THEOREM. A function w on W belongs to M,B if and only if
(52) log [w]| = (x(z, w) + y(z, w)) — (@(z, w™) + Yz, w™)),

where the functions x = 0 are regular harmonic and the Sunctions
Y = 0 have the representations
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Y(z, w) = 2 g(z, b))

53
%) Y(z, w™) = 39(z, a,) .

Here the sums are extended over all poles b, and all zeros a, of w
on W respectively, each counted with its multiplicity.

22. Suppose indeed that we M,B. It is evident from the maxi-
mum principle that

(54) Yo (2, W) = Yol2, w)
for 2, 2. We know that
(55) log |w|=u, —u,,

U, u, € LP, and the superharmonic function u,(2) — y.(z, w) on £
cannot exceed mingu, = 0. Hence y.(z, w) = u(z) on 2 and, by
Harnack’s principle,

(56) Yz, w) = !}irvr; Yol2, W)

is positive harmonic on W except for logarithmic poles b,. Analogous
reasoning shows that

(57 Y(z, w™) = lim y,(z, w™)
QoW

is positive harmonic on W — {a,}.

23, To prove (563) we must show that
(58) lim 5 ya(z b,) = Z 9(z, b,)

2-W by€

and similarly for 3 g(z, a,). First,

(59) Z gﬂ(z’ bv) -—<-. Z g(z’ bv) é Z g(z, bv) ’
byen byER byEW

and we have

(60) hm Z g!)(z’ ) éb %:'Wg(z’ bv) .

0-W bye

Second, for 2,C 2,
(61) b% 9(z, b,) = lim Zga(z b)) = lim 3 g,(z, b,)
v 0

a-w by€

and a fortiori

(62) 5_‘. 9(2, b)) = hm S_‘. g(z b,) < lim Z 942, by) .

2-w b€
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Statement (58) follows.

24, The convergence of x,(z, w) is obtained at once from
(63) To(2, W) = Uo(2, W) — Yol2, W) ,
and the limiting function is
(64) z(z, w) = w(z, w) — Yz, w) .

The limit z(z, w™) of z,(z, w™') is obtained in the same way. Both
limits are obviously positive and regular harmonic on W.

Necessity of (52) for we M,B has thus been established. Suf-
ficiency is a corollary of the main Theorem 7.

§4. Consequences.

25. If only the z-terms in (52) are considered, the following
corollary of Theorem 21 is obtained:

THEOREM. If we M,B on W, then
(65) lim | [log|w|dp; < oo
2-W JBg
Jor any C.

Here p, signifies, as before, the capaity function on £ with
pole at {. For the proof we have

@) | oglwiips = | loglwldp: + | tog|-L-|dp
= 2m(wo(C, w) + 2o, w™) ,

and this quantity tends to

(67) 2r(2(C, w) + 2({, w™) < o .

The limit (65) thus exists.

26. A consideration of the y-terms in (52) gives:

THEOREM. Suppose we M,B. Then the sum 2Xg(z, z;), with z;
ranging over all poles and zeros of w, is harmonic on W — {a,} —
{b,}.

In fact,
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(68) 2.9(z, z;) = lim 3 g(z, 2;)
Z,EW 2-w z;€Q
= lim (X 9(2, a,) + > 9(z, b,))
9-W ap€Q by€Q

= >0, a,) + 3. 9(2,b,) .
auEW by EW

27. For a sufficient condition the first terms of both z- and y-
parts in (52) must be taken into account:

THEOREM. If for some (e W

+
(69) |, log | dp3 = 0()
Ba
and
(70) 3 9(2,b) < o in W—{b},
byew
then we M,B and hence
(T1) limg llog | w || dpk < oo
2-W JBg
and
(72) Z g(z: a#) < o on W — {aﬂ-}
ap,GW'
as well,

Indeed, the characteristic

T(Q) = u!)(C’ ’1/0) = xﬂ(c’ w) + yﬂ(C9 w)

+
= ——1——5 log |w|dp} + > 94, b,)
2r Jeo vy€2
is O@1) if (69), (70) hold. Properties (71), (72) then follow from

w e M,B.
Another sufficient condition for we M,B is, of course, that

Sﬂ l;g |w™|dp, is bounded and Xg({, a.) < o in W — {a,}.
2 .

28. For “entire” functions in M,B the conditions simplify. Let
E,B be the class of such functions, characterized by w(z) = « on W.

THEOREM. A mnecessary and sufficient condition for we E,B on
W is that

(73) Sﬂa log [w | dp, = O(1) .
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The proof is evident.

29. Consider the class H of regular harmonic functions # on W

and let HP be the subeclass of nonnegative functions. Set ;oz
max (0, ).

THEOREM. A harmonic function h on W has a decomposition
(74) h=u —u,, Uy, U, € HP
if and only if, for some (,
(75) [, haps = o,
or, equivalently,

(76) lim gs (bl dps < o .
2

QW

Proof. The multiple-valued function w = ¢***" is in M,, and
w0, o on W. If (74) is given, then log |w| = %, — %, and we M,B.
This implies

limS ]10g|w}|dp’5’:limg | dpi < oo
0w JBo 0w Jpg

and consequently S ;Ldp;f = ((1). Conversely, suppose the latter con-
dition holds, !

g log | w| dpj = O(1) .
Bo
Then we M,B and
ho=log |w| = w(z, w) — w(z, w)

the y-terms vanishing because of the absence of zeros and poles of w.

It is known that functions u harmonic in the interior W of a
compact bordered Riemann surface and with property (76) have a
Poisson-Stieltjes representation (e.g., Rodin [6]). For further in-
teresting results see Rao [5].

30. It is clear that theorems on log|w| can also be expressed
directly in terms of |w/|. Theorem 7, e.g., takes the following form:

THEOREM, we M,B if and only if
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_ | 7, w)
(77) Jw| =k

where Ne M,B and || <1 on W.

Proof. Suppose we M,B, hence

(78) log |w| = u(z, w) — u(z, w'),
ueLP. Set
(79) N(z, w) = exp [—u(z, w™) — wu(z, w)*],

and (77) follows. Conversely, if (77) is given, then
(80) log |w| = log [7(z, w) | — log [7(z, w™)|

is a difference of two functions in LP, and we have we M, B.
31. The counterpart of Theorem 21 is as follows:

THEOREM. w € M,B vf and only if

(81) |w)| = P(z, W)y(z, w)
Pz, w )Yz, w) |’

where @, ve M,B and o 0 on W, || <1, |¢|<1.

If we M,B, choose

P(z, w) = exp [— x(z, w™) — 1w(z, w)*],

82
62) v(z, w) = exp [— y(z, w) — 1y(z, w)*],

and we have (81). Conversely, (81) gives log |w| = u, — 4, with u,,

u, € LP, hence we M,B.

32. We introduce the classes O,5 and Oy, of Riemann surfaces
on which there are no nonconstant functions in MB and M,B re-
spectively. Similarly, let Oz; and Op,; be the subclasses determined
by entire functions w(z) #+ © on W in MB and M,B. The problem
here is to arrange these four classes in the general classification

scheme of Riemann surfaces [1].
The inclusion relations

Ou,s €Oy Ops

(83)
Ou,5 C Op,s C Ogs

are immediately verified.
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33. The smallest class in (83) is easily identified:

THEOREM. All functions in M,B on W reduce to constants if
and only if W is parabolic,

(84) 0, = OMeB .

Proof. If WeO, there is a Green’s function g(z, {), and
(85) w=-¢e¢"""ecMB.

In fact, g is bounded above in any W — 2, hence m(2, w) = 0(1),
and N(2, w) = 0 gives T(2) = O(1). Conversely, if there is a non-
constant we M,B on W, then log|w| = 4, — u, where at least one
u; € LP is nonconstant superharmonic. This means that W¢ O,. The
same proof gives Oy = Op,5.

34, By the preceding theorem, every M,-function on a parabolic
W has unbounded characteristic. Even more can be said of M-functions
on the larger class Oy; by comparing T(2) with &k, (no. 4):

THEOREM. On We Oy, the characteristic T(2) of any weM
tends so rapidly to infinity that

(86) lim L&) > q .

G-w 2

Proof. Let w({) = a. The counting function of w for a is, by
denfinition,

N@, @) = | (ulh, &) — n(—<o, a)dh + n(— <o, )k,

where n(h, a) is the number of a-points of w in the set Z,:p, < h <
k,. We obtain from the first fundamental theorem [7] that

(87) T(Q) + 0(1) = N(©, a) = (— o, a)k, ,

and (86) follows.
Thus (86) is obviously a property of every we M, w¢ MB, on
every W.

35. We also observe:

THEOREM. A function we M on WeOyy cannot omit a set of
values of positive capacity.
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More accurately, the counting function N(2,a) of we M on Oy,
is unbounded on any set E of positive capacity. To see this we dis-
tribute mass dgp(e) >0 at a € E, with S dpe =1, and integrate
E

Jensen’s formula

©8)  loglw(®) —al = —gﬂﬁ log|w — a|dpf + N(2, ) — N(2, a)

(w({) # ) over E with respect to du¢(a). We obtain Frostman’s
formula on W:

B N@ )= =] uwdps = | N, a)dpa) — u(w(@) ,
T JBy B

where uw(w) = g log|w — a|'dg(a). For equilibrium distribution d¢
B

it is known from the classical theory that w(w) = — lgg |w]| + O(),

and a fortiori S w(w)dpi = — 2x m(2, ) + O(1), where O(1) depends
Bg

on E only. Substitution into (89) gives

(90) T(Q) = S N(Q, a)du(a) + O1).
B

This proves our assertion.

36. A comprehensive study of the role played by O,, in the
classification theory of Riemann surfaces is contained in the doctoral
dissertation of K. V. R. Rao [5].
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