
ON LOCALLY MEROMORPHIC FUNCTIONS
WITH SINGLE-VALUED MODULI

LEO SARIO

1. A meromorphic function of bounded characteristic in a disk
is the quotient of two bounded analytic functions. This classical
theorem can be extended to open Riemann surfaces W as follows.
Consider the class MB of meromorphic functions w of bounded
characteristic on W, defined in terms of capacity functions on sub-
regions. Let L be the class of harmonic functions on W, regular except
for logarithmic singularities with integral coefficients. Then w e MB
if and only if log \w\ is the difference of two positive functions in L.
We shall construct these functions directly on W, without making use
of uniformization.

The proof offers no essential difficulties. If log \w\ is regular
at the singularity of the capacity functions, then the classical reasoning
carries over almost verbatim. In the general case we introduce the
extended class Me of locally meromorphic functions eu+iu*, ueL, with
single-valued moduli. This class seems to offer some interest in its
own right.

2. The class OMeB of Riemann surfaces not admitting noneonstant
MeB-ΐunctions coincides with the class Oσ of parabolic surfaces.
Regarding the subclass MB c MeB and the strict inclusion relations
OHB < OMB < OAB, we refer to the pioneering work on Lίndelofian
maps by M. Heins [2, 3] and M. Parreau [4], and the doctoral dis-
sertation of K. V. R. Rao [5].

§ 1. Definitions •

3. Let W be an arbitrary open Riemann surface. Given ζ e W
let Ω, ζ G Ω, be a relatively compact subregion of W whose boundary
βΩ consists of a finite number of analytic Jordan curves. The Green's
function on Ω with pole at ζ is denoted by gΩ{z, ζ). For ΩoczΩ we
have gΩo g gΩ in Ωo and l im^^ gΩ(z, ζ) either = co or else = the Green's
function g{z, ζ) of W. By definition, the class OG of parabolic Riemann
surfaces consists of those W on which no g(z, ζ) exists. An equivalent
definition of 0^ is that there are no noneonstant nonnegative super-
harmonic functions on W.
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4. The capacity function pQ(zf ζ) on Ω with pole at ζ is defined
as the harmonic function with singularity

po(z, ζ) - log I z - ζ I -> 0

as z —> ζ and such that

Pχ?(z, 0 = &fl = const, on βΩ .

It is known [1] that kUQ ^ kΩ and the limit kβ = lim jfcβ is thus well-
defined. A necessary and sufficient condition for WeOG is kβ — oo.

5 Let M be the class of meromorphic functions w on W. The
proximity function of w is defined [7] as

1 Γ f

(1) m(Ω, w) = m(β, oo) = I log | w \ dpi .
2π ho

If /Sλ is the level line pΩ = h, —<*> <L h ^ kΩ, and w(ft, oo) signifies the
number of poles of w in Ωh: pΩ ^ h, counted with multiplicities, then
the counting function is defined as

(2) N(Ω, w) - N(Ω, oo)

S ka
(n(h, oo) — ^ ( - o o , co))dh + n{ — oo, oo)fcβ .

— oo

The characteristic function is, by definition,

T(Ω) = T(Ω, w) = m(Ω, w) + N(Ωy w) .

The function w has at ζ the Laurent expansion

(3) w(z) - cλ(z - Qλ + cλ+1(z - ζ ) λ + 1 + • ,

cλ ^ 0, and the Jensen formula reads [7, 8]

(4) T(Ω,w)=

6» We shall need a class Me more comprehensive than M. We
introduce:

DEFINITIONS. The class L consists of functions u on W, harmonic
except for logarithmic singularities λ* log \z — z{\ at zi} i = 1, 2, ,
tϋiίλ integral coefficients \. The subclass of nonnegative functions
in L will be denoted by LP.

The class Me is defined to consist of (multiple-valued) functions
of the form

(5) w = eu+iu* , ueL .
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The conjugate function u* has periods around Zι and along some
cycles in W. Every branch of w is locally meromorphic, the branches
differing by multiplicative constants c with | c | = 1. The modulus
I w I is single-valued throughout W.

The quantities m(Ω, w), N(Ω, w), T(Ω, w), and the Jensen formula
carry over to Me without modifications [7], We further introduce:

DEFINITION. The class MB (or MeB) consists of functions w in
M (or Me) with bounded characteristics,

(6) T(Ω) = 0(1) .

Explicitly, one requires the existence of a bound C < co inde-
pendent of Ω such that T(Ω) < C for all Ω cz W. That (6) is inde-
pendent of ζ will be a consequence of a decomposition theorem which
we proceed to establish.

§ 2 The decomposition theorem,

7. We continue considering arbitrary open Riemann surfaces W.

THEOREM. A necessary and sufficient condition for w e MeB on
W is that

(7) log \w\=u — v,

where u, v e LP.

The proof will be given in nos. 8-18. As a corollary we observe
that w e MB on W if and only if (7) holds.

8 First we shall discuss in nos. 8-11 the case w(ζ) = 0 or oo.
Suppose weMeB. We begin by showing that W$0Q. If w(ζ) =

co, then

T(Ω) ^ N(Ω, w) ^ n(-oo, oo)kΩ ^ kΩ .

From WeOG it would follow that ka—>co as Ω —• TFand consequently
T(Ω)-+coy a contradiction. We conclude that WίOQ. If w(ζ) = 0,
then in Jensen's formula

T(Ω,w) = T[Ω,—) + 0(1)
w

we have

TlΩ,—) ^ ( ,
w / V w
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and arrive at the same conclusion Wί OQ.
On the other hand, if condition (7) is true, the existence of

nonnegative superharmonic functions uf v implies W$ OG. Thus either
condition of the theorem gives the hyperbolicity of W, and we may
henceforth assume the existence of g{z, ζ) on W if w(ζ) = 0 or co.

9. The functions

(8) φ{z) = eWζ)+Wζ» f

(9) Wx{z) = W(z)φ(z)

belong to Me. We shall show:

LEMMA. A necessary and sufficient condition for w e MeB is
that wx e MeB.

Proof. By definition,

(10) T(Ω, φ) = N(Ω, φ) + m(Ω, φ) .

For λ > 0 we have trivially N(Ω, φ~Ύ) = 0, m(Ω, φ~x) = 0, hence
T{Ω, φ-1) = 0, and it follows from Jensen's formula that T(Ω, φ) —
0(1). If λ < 0, then N(Ω, φ) = m(Ω, φ) = 0, and T(Ω, φ) = 0, hence
T(Ω, φ-1) = 0(1). In both cases

(11) T(Ω, φ) = 0(1), T(Ω, φ-1) = 0(1) .

The inequalities

T(Ω, w) ^ Γ(β, wx) + T(Ω, φ-1) = T(Ω, wx) + 0(1) ,

T(Ω, wx) g T(Ω, w) + T(Ω, φ) = T(Ω, w) + 0(1)

yield

(12) T(Ω, w) = T(Ω, wx) + 0(1)

and the lemma follows.

10* The following intermediate result can now be established:

LEMMA. A necessary and sufficient condition for

(13) log I w I = u — v

with u, v G LP is that

(14) log \w1\=u1 — v1

with u19 vx e LP.
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Proof. We know that

(15) log I w11 = log I w I + Xg = log | w | + (nQ — nj)g ,

where n0, n^ are the multiplicities of the zero or pole of w(z) at ζ. If
(13) is true, then

(16) Zog I wx I = (u + nog) — (v + Wooflr)

and (14) follows. Conversely, (14) implies

(17) log I w I = (u, + n^g) - (v, + nog) .

This proves the lemma.

11 We conclude that Theorem 7 will be proved for w with
w(ζ) = 0 or co if we establish it for wx. Since w^ζ) Φ 0, oo, the
proof for wx will also apply to w with this property. Explicitly, we
are to show that wλ e MeB if and only if log | w1 \ =u1 — vlf ulf vx e LP.

12. Let p£Z be the capacity function in Ω with pole at z. For
a harmonic function h on Ω it is known [7] that

(18) h(z) = - ί - ί h dp% .

Denote by aM bv the zeros and poles of w in W. Those in W — ζ
are the zeros and poles of w1 in W. Suppose first there is no aμ, bv

on βQ. Then the function

(19) h(z) = log I wx(z) I + Σ 9o(z9 αμ) - Σ flr^, &v)

is harmonic on £?. Throughout this paper the zeros and poles are
counted with their multiplicities. We set

(20)

(21)

and

(22)

Then

(23)

/y» (/y sijj \ —

uΩ(z, wj =

log 1 wλ{z) | =

1
2π

Σ_.

xΩ{z

uΩ(z

• log wx | dptz ,

, w,) + ya{z, Wl) .

, Wi) — UO(Z, Wιl)

Since all terms are continuous in aμf bv, the equation remains
valid if there are zeros or poles of w on βΩ.
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We observe that

(24) xo(ζ, wx) = m(Ω, wx) ,

(25) yo(ζ, wx) = N(Ω, wx) .

Here we shall only make use of the consequence

ί26) uo(ζ, wx) = T(Ω, wx) .

13* We next show:

LEMMA. For ΩQaΩ,

(Φ7\ 01 (% fit) \ <C OL (% 01) \

/Ό7\' oi (v on—^~\ "^ oi i'Φ on—^\

Proof. By (23),

(28) log I W&) I g ua(z, w,)

for every Ω. It follows that

χo(Z w)£-±-\ Ua(t W

because this difference is regular harmonic in Ωo. We have reached
statement (27),

%φ, ^1) + y0o(zf wx) ^ uo(z, wx) ,

and inequality (27)' follows in the same fashion.

14 From (26) and (27) we infer that T(Ω, wλ) increases with
Ω. We can set

(29) T(W, wx) = lim T(Ω, wx)
Ω-*W

and use alternatively the notations T(Ω) = 0(1) and T(W) < 00.

15 The convergence of uΩ can now be established:

LEMMA. // T(W, wx)< 00, then the functions

(30) u(z, wx) — lim uo(z, wx) ,
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(30) u(z, W[x) = lim uΩ(z, wr1)

are positive harmonic on W except for logarithmic poles of u(z> w^}
at the bve W — ζ and those of u(z, w^1) at the a^e W — ζ.

Proof, By Harnack's principle the limit in (30) is either identi-
cally infinite or else harmonic on W — {bv}. That the latter alterna-
tive occurs is a consequence of

limuΩ(ζ, wx) = T(W, wx) .
ΩWΩ-+W

The statement for uΩ(z, wΐ1) follows similarly from uQ(ζf wΐ1) =
T(Ω, wΐ1) = T(Ω, wj + 0(1).

16. On combining the lemma with (23) we see that w1 e MeB
has the asserted representation

(31) log I wλ(z) I = u(z, wλ) - u(zf wτι)

with the ^-functions in LP. It remains to establish the converse.

17. Suppose

(32) log I wx(z) I = ux{z) — vx(z)

where uu vt e LP. The positive logarithmic poles of uΩ(z, wλ) are those

of log I wλ(z) I in Ω, hence among those of ux(z). Consequently uλ(z) —

uΩ(z, wj is superharmonic in Ω and its minimum on Ω is reached on

βΩ, where uL(z) — uΩ(z, w^ — ux(z) — log | wλ(z) | ^ 0. One infers that

uλ(z) ^ uΩ(z, wλ) in β. At ζ this means

(33) T(Ω, wλ) - uo(ζ, wx) ̂  11,(0 .

If uλ{ζ) < co, the proof is complete.

18. If ux{ζ) = oo, then

(34) u^z) + λx log I z - ζ I

is harmonic at ζ for some positive integer λlβ We set

(35) w, = wre-^'+w e Me ,

where g — g(z, ζ), and obtain

(36) log I w21 = log I w11 - λ ^ = (ux — λ^) — vx .

The function ux — λ^^ with gΩ — 9Ω(ZJ ζ) is superharmonic on Ω, hence
its minimum on Ω is taken on βΩ, where
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(37) ux - \g0 = uλ ^ 0

From ux ^ XλgΩ on Ω it follows that

(38) ux — \g = lim (^ — λ

on W. On setting

(39) u2 = Mi — λ ^ , v, =

one gets

(40) log I w21 = u 2 — v2

with w2, i;a

The positive logarithmic poles of uo(z, w2) are those of log | w21
on Ω, hence among those of u2. The minimum of the superharmonic
function u2(z) — uΩ(z, w2) on Ω is taken on βΩy where it is

+
min (u2 — log | w21) ^ 0 .

One infers that

(41) T(0, wa) - uo(ζ, w2) S u2{ζ) < co ,

that is, T(Ω, w2) = 0(1). The reasoning leading to (12) yields

(42) T(Ω, wλ) = T{Ω, w2) + 0(1) ,

and consequently T{Ω, w±) = 0(1).

We have shown that (32) implies T( W, wx) < α>. The proof of
Theorem 7 is complete.

19 As an immediate consequence we see that the property
T(Ω, w) ~ 0(1) and thus the class MeB is independent of ζ.

§ 3 Extremal decompositions,

20. Consider an arbitrary we Me. In contrast with no. 12 we
now make no restrictive assumptions on w(ζ) and form

w
1 Γ +

(43) xo(z, W) = log
2π ha

(44) yo(z, w) = Σ ί/i?(«, W ,
ί>v€i2

(45) wβ(«, w) = a?fl(j2, w) + yo(z, w) .

It is seen as in no. 13 that uΩ increases with Ω and that
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(46) u(z, w) = lim uΩ(z, w)

is either identically infinite or else positive harmonic on W except
for logarithmic poles 6V. The same is true of

(47) u(z, w~τ) — lim uΩ(z, w~τ)
Ω-*W

with singularities αμ.
The functions (46) and (47) will now be shown to be extremal

in all decompositions (7):

THEOREM. If there is a decomposition

(48) log I w(z) I = ux(z) — u.2(z)

with uu u2 e LP, then also

(49) log I w(z) I = u(z, w) — u(z, w~τ)

and

(50) u{z, w) tί ux(z)

u(z, w~λ) g u2(z) .

Proof. One observes that the positive logarithmic poles of
uo(z, w) are those of log | w(z) | in Ω, hence among those of ux{z) in
Ω. The superharmonic function ux(z) — uo(z, w) in Ω dominates

+
min (uτ(z) — log | w(z) |) ^ 0

βQ

and we find that u^z) — u(z, w) — MmQ^u^z) — uβ(z, w)) ^ 0 in W.
Similarly, the superharmonic function u2(z) — uΩ(z, w~λ) ^ 0 on fl, and
u2(z) ^ u(z, w-1) on W. By virtue of Harnack's principle, equality
(49) then follows on letting Ω —+ W in

(51) log i w(z) I = uΩ{z, W) — uo(z, W~Ύ) .

21 The extremal functions u(z, w), u(z, w1) can in turn be
decomposed:

THEOREM. A function w on W belongs to MeB if and only if

(52) log I w I = (x(z, w) + y(z, w)) - (x(z, w~λ) + y(z9 w~x)) ,

where the functions x ^ 0 are regular harmonic and the function®
y ^ 0 have the representations
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y(z, w-1) =

the sums are extended over all poles 6V and all zeros αμ of w
on W respectively, each counted with its multiplicity.

22. Suppose indeed that w e MeB. It is evident from the maxi-
mum principle that

(54) yΰQ(z, w) g yo(z, w)

for β o c β . We know that

(55) log I w I = ux - u2,

uu u2 e LP, and the superharmonic function ux{z) — yΩ(z, w) on Ω
cannot exceed m i n ^ ^ ^ 0. Hence yΩ(z, w) <* ux{z) on Ω and, by
Harnack's principle,

(56) y(z, w) = lim yΩ(z, w)

is positive harmonic on W except for logarithmic poles bv. Analogous
reasoning shows that

(57) y(z, w1) = lim yΩ(z, w~x)
Ω-+W

is positive harmonic on W — {aμ}.

23. To prove (53) we must show that

(58) l imΣΛ>(*A) = Σ 0 ( * Λ )

and similarly for Σ g(z, αμ). First,

(59) Σ go(*, K) ^ Σ g(z, K) ^ Σ g(*> K),
bβΩ by,βΩ b^βW

and we have

(60) Him Σ ft>(s, W ^ Σ »(«, 6v) .

Second, for ΩoaΩ,

(61) Σ g(*f δv) = lim Σ ^ ( ^ , δv) g lim
byeΩQ Ω-*Wby€ΩQ ~Z

and a fortiori

(62) Σ g(z, 6v) = lim Σ ff(«, &v) ^ lim Σ ^ ( ^ , 6V) .
bew Ω0-+wbyeΩ0 -Q^wb^Ω
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Statement (58) follows.

24. The convergence of xΩ(zf w) is obtained at once from

(63) xΩ(zf w) = uΩ(z, w) - yΩ(z, w) ,

and the limiting function is

(64) x(z, w) = u(z, w) — y(z, w) .

The limit x(z9 w1) of xΩ(z, w~λ) is obtained in the same way. Both
limits are obviously positive and regular harmonic on W.

Necessity of (52) for w e MeB has thus been established. Suf-
ficiency is a corollary of the main Theorem 7.

§ 4. Consequences.

25. If only the #-terms in (52) are considered, the following
corollary of Theorem 21 is obtained:

THEOREM. If we MeB on Wy then

(65) lim \ \\og\w\\dpt < o^

for any ζ.

Here pΩ signifies, as before, the capaity function on Ω with
pole at ζ. For the proof we have

(66) ( (log I w II dpi = ί log I w | dpi + ί log — dpi
JβΩ Jβa JβQ W

= 2π(xΩ(ζ, w) + xΩ(ζ, w-1)) ,

and this quantity tends to

(67) 2π(x(ζ, w) + x(ζ, w1)) < oβ .

The limit (65) thus exists.

26. A consideration of the y'-terms in (52) gives:

THEOREM. Suppose w e MeB. Then the sum Σg(z, zj, with zi

ranging over all poles and zeros of w, is harmonic on W — {αμ} —

In fact,
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(68) Σ »(*,«<) = Km Σ </(*,«<)
GW ΩW ΩΩ->W

aμ€W byeW

27. For a sufficient condition the first terms of both x- and y-
parts in (52) must be taken into account:

THEOREM. / / for some ζ e W

(69) j log I w I dpS = 0(1)

and

(70) & Σ/(z, δ v ) < oo in W - {6V} ,

then w e MeB and hence

(71) limί \log\w\\dpS < «

(72) . ? / ^ α^ < ^ °̂  ^ - Kl

as well.

Indeed, the characteristic

T(Ω) = wΛ(ζ, w) = α?Λ(ζ, w) -

1 f +

= —— log I w I dpt
2ττ JβΛ o v ^ w

is 0(1) if (69), (70) hold. Properties (71), (72) then follow from
w G MeB.

Another sufficient condition for w e MeB is, of course, that

\ log I w'11 dpo is bounded and Σg(ζ, aμ) < oo in W — {aμ}.
JβΩ

28 For "entire" functions in MeB the conditions simplify. Let
EeB be the class of such functions, characterized by w(z) Φ oo on W.

THEOREM. A necessary and sufficient condition for weEeB on
W is that

(73) ( log I w I dp* = 0(1) ,
JβQ
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The proof is evident.

29, Consider the class H of regular harmonic functions h on W
+

and let HP be the subclass of nonnegative functions. Set h =
max (0, h).

THEOREM. A harmonic function h on W has a decomposition

(74) h = uL — u, , ul9 u2 e HP

if and only if, for some ζ,

(75) f h dpi - 0(1) ,

or, equivalently,

(76) lim \ \h\ dpi < oo .
Ω-+W JβQ

Proof. The multiple-valued function w = eh+ih* is in Me, and
w Φ 0, oo on TF". If (74) is given, then log | w \ = uλ — u2 and ^ e ikfeβ.
This implies

Γ Γ
lim \ I log I w 11 dpj = lim \ \h\ dp% < oo

Γ 4

and consequently \ fe^ί = 0(1). Conversely, suppose the latter con-

dition holds,

ί log I w I dpi = 0(1) .
Jβ.Q

Then w e MeB and

h = log | ^ | = x(z, w) — x(z, w^1) ,

the ?/-terms vanishing because of the absence of zeros and poles of w.
It is known that functions u harmonic in the interior W of a

compact bordered Riemann surface and with property (76) have a
Poisson-Stieltjes representation (e.g., Rodin [6]). For further in-
teresting results see Rao [5].

30. It is clear that theorems on log | w \ can also be expressed
directly in terms of \w\. Theorem 7, e.g., takes the following form:

THEOREM, W eMeB if and only if
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(77)

where η e MeB and \ η | < 1 on W.

Proof. Suppose w e MeB9 hence

(78) log I w I = u(z, w) — u(z, w~x) ,

u e LP. Set

(79) Ύ]{z, w) = exp [—u(z, w~x) — ίu(z, w~ψ] ,

and (77) follows. Conversely, if (77) is given, then

(80) log I w I = log \η(z, w) | - log | η(z, w~λ) \

is a difference of two functions in LP, and we have w e MeB.

31 The counterpart of Theorem 21 is as follows:

THEOREM, W G MeB if and only if

φ(z, W)ψ(z, W)
(81) I w

φ(z, W~1)ψ(z1 W~ι)

where φ, ψ e MeB and φ Φ 0 on W, \ φ \ < 1, | ψ | < 1.

If w e MeB> choose

<P(z, w) = exp [- x(z, w-1) - ίx(z, w~ψ] ,

φ(z, w) = exp [— y(z, w1) — iy(z, w~ψ] ,

and we have (81). Conversely, (81) gives log | w | = ux — u2 with uu

u2 € LP, hence w e MeB.

32. We introduce the classes OMB and OMβB of Riemann surfaces
on which there are no nonconstant functions in MB and MeB re-
spectively. Similarly, let OEB and OEeB be the subclasses determined
by entire functions w(z) Φ oo on W in MB and MeB. The problem
here is to arrange these four classes in the general classification
scheme of Riemann surfaces [1],

The inclusion relations

OMφBc:OMBczOBB,

OMeBc:OEeBczOEB

are immediately verified.
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33 The smallest class in (83) is easily identified:

THEOREM. All functions in MeB on W reduce to constants if
and only if W is parabolic,

(84) OG = OMeB .

Proof. If W& OQy there is a Green's function g{z, ζ), and

(85) w = e~g-ig* e MeB .

In fact, g is bounded above in any W — Ω, hence m(Ω, w) — 0(1),
and N(Ω, w) = 0 gives T(Ω) = 0(1). Conversely, if there is a non-
constant w e MeB on W, then log | w \ = ^ — w2 where at least one
Ui e LP is nonconstant superharmonic. This means that TF^O^. The
same proof gives 0G = 0EeB.

34* By the preceding theorem, every ikfe-function on a parabolic
TFhas unbounded characteristic. Even more can be said of M-ΐunctions
on the larger class 0MB by comparing T(Ω) with kΩ (no. 4):

THEOREM. On WeOMB, the characteristic T{Ω) of any weM
tends so rapidly to infinity that

(86) limlim ^ i .
ir^w kΩ

Proof. Let w(ζ) = a. The counting function of w for a is, by
denfinition,

S kQ
(n(hf a) — n( — co, a))dh + n(— c», a)kΩ ,

— oo

where n(h, a) is the number of α-points of w in the set Ωh: pΩ ^ h ^
fcβ. We obtain from the first fundamental theorem [7] that

(87) T(Ω) + 0(1) ̂  iV(β, α) ^ rc(- oo, α)fcΛ ,

and (86) follows.
Thus (86) is obviously a property of every we M, w $ MB, on

every W.

35* We also observe:

THEOREM. A function weM on WeOMB cannot omit a set of
values of positive capacity.
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More accurately, the counting function N(Ω, a) of w e M on OMB

is unbounded on any set E of positive capacity. To see this we dis-

tribute mass dμ(a) > 0 at a e Ey with I dμ = 1, and integrate

Jensen's formula

(88) log I MO - α | = — ( log\w-a\dpξ + N(Ω, oo) - iV(β, α)

(w(ζ) =£ oo) over E with respect to dμ(a). We obtain Frostman's
formula on W:

(89) JV(fl, oo) - _L \ u(w)dpΐ = ( JV(β, α)dμ(α) - w(«;(C)) ,

where u(w) = log \w — α |~J dμ(a). For equilibrium distribution dμ
JB +

it is known from the classical theory that u(w) — — log | w \ + 0(1),

and a fortiori 1 u(w)dpt= — 2πm(Ω, oo) + 0(1), where 0(1) depends

on E only. Substitution into (89) gives

(90) T(Ω) - ( N(Ω, a)dβ{a) + 0(1).

This proves our assertion.

36, A comprehensive study of the role played by 0MB m the
classification theory of Riemann surfaces is contained in the doctoral
dissertation of K. V. R. Rao [5].
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