COMBINATORIAL FUNCTIONS AND REGRESSIVE ISOLS

F. J. Sansone

1. Introduction. It is assumed that the reader is familiar with the notions: regressive function, regressive set, regressive isol, cosimple isol, combinatorial function and its canonical extension. The first four are defined in [2], the last two in [3]. Denote the set of all numbers (nonnegative integers) by ε, the collection of all isols by Λ, the collection of all regressive isols by Λ_{R} and the collection of all cosimple isols by Λ_{1}. The following four propositions will be used.
(1) \quad Let $\tau=\rho t$ and $\tau^{*}=\rho t^{*}$, where t_{n} and t_{n}^{*} are regressive functions. Then $\tau \cong \tau^{*} \Longleftrightarrow t_{n} \cong t_{n}^{*}$.

$$
\begin{equation*}
B \leqq A \& A \in \Lambda_{R} \Longrightarrow B \in \Lambda_{R} . \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
B \leqq A \& A \in \Lambda_{1} \Longrightarrow B \in \Lambda_{1} . \tag{4}
\end{equation*}
$$

The first three are Propositions 3, 9(b) and Theorem 3(a) of [2] respectively. The fourth is Theorem 56(b) of [1].

Definition. Let $f(n)$ be a one-to-one function from ε into ε and let $T \in \Lambda_{R}-\varepsilon$. Then

$$
\phi_{f}(T)=\operatorname{Req} \rho t_{f(n)},
$$

where t_{n} is any regressive function ranging over any set in T.
Using (1) it is readily seen that ϕ_{f} is a well defined function from $A_{R}-\varepsilon$ into $\Lambda-\varepsilon$. The main result of this paper is as follows: Let $f(n)$ be a strictly increasing, recursive, combinatorial function; let $F(X)$ be its canonical extension to Λ, and let $T \in \Lambda_{R}-\varepsilon$; then $\phi_{J}(F(T))=T$.

2. The operation ϕ_{f}.

Proposition 1. Let $f(n)$ be a strictly increasing, recursive function and let $T \in \Lambda_{R}-\varepsilon$. Then

$$
\phi_{f}(T) \leqq T \quad \text { and } \quad \phi_{f}(T) \in \Lambda_{R} .
$$

February 15, 1963. This paper was written while the author was a National Defense Graduate Fellow at Rutgers University and is a portion of a thesis directed by Professor J. C. E. Dekker to submitted as partial fulfillment of the requirements for the degree of Doctor of Philosophy.

If in addition $T \in \Lambda_{1}$, then $\phi_{f}(T) \in \Lambda_{R} \cdot \Lambda_{1}$.
Proof. In view of (2) and (4), it suffices to show only that $\phi_{f}(T) \leqq$ T. Let t_{n} be a regressive function such that $\rho t=\tau \in T$. Put $\alpha=\rho f$ and suppose $p(x)$ is a regressing function of t_{n}. Define

$$
p^{*}(x)=(\mu y)\left[p^{y+1}(x)=p^{y}(x)\right] \quad \text { for } x \in \delta p .
$$

Then $p^{*}\left(t_{n}\right)=n$ and

$$
\begin{array}{r}
\rho t_{f} \subset\left\{x \in \delta p^{*} \mid p^{*}(x) \in \alpha\right\}, \\
\tau-\rho t_{f} \subset\left\{x \in \delta p^{*} \mid p^{*}(x) \notin \alpha\right\} .
\end{array}
$$

Since α is recursive it follows that ρt_{f} is separable from $\tau-\rho t_{f}$. Hence $\phi_{f}(T) \leqq T$.

It is known (by an unpublished result of Dekker) that Λ_{R} is neither closed under addition nor under multiplication. We do, however, have some closure properties for isols of the type $\phi_{f}(T)$, where $T \in \Lambda_{R}-\varepsilon$ and $f(n)$ is a strictly increasing, recursive function.

Proposition 2. Let $f(n)$ and $g(n)$ be strictly increasing, recursive function and let $T \in \Lambda_{R}-\varepsilon$. Then
(a) $\phi_{f}\left(\phi_{g}(T)\right) \in \Lambda_{R}-\varepsilon$,
(b) $\phi_{f}(T) \cdot \phi_{g}(T) \in \Lambda_{R}-\varepsilon$,
(c) $\phi_{f}(T)+\phi_{g}(T) \in \Lambda_{R}-\varepsilon$.

Proof. In view of Proposition 1,

$$
\phi_{f}\left(\phi_{g}(T)\right) \leqq \phi_{g}(T) \leqq T
$$

This implies (a). To verify (a) one could also observe that $\phi_{f}\left(\phi_{g}(T)\right)=$ $\phi_{g f}(T)$. Combining $\phi_{f}(T) \leqq T$ and $\phi_{g}(T) \leqq T$, we obtain by [1, Cor. of Thm. 77]

$$
\phi_{f}(T) \cdot \phi_{g}(T) \leqq T^{2} .
$$

However, $T^{2} \in \Lambda_{R}-\varepsilon$ by (3). Hence (b) follows by (2). Finally, it is readily seen that

$$
\phi_{f}(T)+\phi_{g}(T) \leqq \phi_{f}(T) \cdot \phi_{g}(T),
$$

since $\phi_{f}(T)$ and $\phi_{g}(T)$ are $\geqq 2$ (in fact, infinite). Thus (c) follows from (2) and (b).
3. The main result. We first state and prove two lemmas which might be of interest for their own sake. Let $\rho_{0}, \rho_{1}, \cdots$ be the canonical enumeration of the class Q of all finite sets defined by

$$
\begin{aligned}
\rho_{0} & =o \\
\rho_{x+1} & =\left\{\begin{array}{l}
\left(y_{1}, \cdots, y_{k}\right) \text { where } y_{1}, \cdots, y_{k} \text { are the distinct numbers } \\
\text { such that } x+1=2^{y_{1}}+\cdots+2^{y_{k}}
\end{array}\right.
\end{aligned}
$$

We denote the cardinality of ρ_{x} by r_{x}.
Lemma 1. Let $f(n)$ be any combinatorial function and let C_{i} be the function from ε into ε such that $f(n)=\sum_{n=0}^{n} c_{i}\binom{n}{i}$. Then

$$
f(n)=\sum_{x=0}^{2^{n}-1} c_{r(x)}
$$

Proof. Since every n-element set has $\binom{n}{i}$ subsets of cardinality i, we have
(5) $\quad f(n)=\operatorname{card}\left\{j(x, y) \mid \rho_{x} \subset(0,1, \cdots, n-1) \& y<c_{r(x)}\right\}$.

It follows from the definition of ρ_{x} that

$$
\begin{aligned}
\rho_{x} \subset(0,1, \cdots, n-1) & \Longleftrightarrow x \leqq 2^{0}+2^{1}+\cdots+2^{n-1} \\
& \Longleftrightarrow x \leqq 2^{n}-1 .
\end{aligned}
$$

Combining this with (5) we obtain

$$
f(n)=\operatorname{card}\left\{j(x, y) \mid x \leqq 2^{n}-1 \& y<c_{r(x)}\right\}=\sum_{x=0}^{2^{n}-1} c_{r(x)}
$$

Definition. Let $a(n)$ be a one-to-one function from ε into ε. Then

$$
a^{\prime}(n)=l_{n 0} \cdot 2^{a(0)}+\cdots+l_{n n} \cdot 2^{a(n)}
$$

where $l_{n 0}, \cdots, l_{n n}$ is the sequence of zeros and ones such that

$$
n=l_{n 0} \cdot 2^{0}+\cdots+l_{n n} \cdot 2^{n}
$$

Lemma 2. (Dekker) Let $a(n)$ be a one-to-one function from ε into ε with range α and let $A=\operatorname{Req}(\alpha)$. Then $a^{\prime}(n)$ is also a one-to-one function from ε into ε. Moreover,

$$
a^{\prime}\left(2^{n}\right)=2^{a(n)}, \quad \rho_{a^{\prime}(n)}=a\left(\rho_{n}\right) \text { and } \rho a^{\prime} \in 2^{A}
$$

Finally, if $a(n)$ is regressive, so is $a^{\prime}(n)$.
Proof. It is clear that $a^{\prime}(n)$ is a one-to-one function such that $a^{\prime}\left(2^{n}\right)=2^{a(n)}$. We have $\rho_{a^{\prime}(0)}=\rho_{0}=o$ while $a\left(\rho_{0}\right)=a(o)=o$; for $n \geqq 1$

$$
\rho_{n}=\left\{i \mid 0 \leqq i \leqq n \& l_{n i}=1\right\}
$$

Hence for every number n

$$
\begin{aligned}
\rho_{a^{\prime}(n)} & =\left\{a(i) \mid 0 \leqq i \leqq n \& l_{n i}=1\right\} \\
& =a\left\{i \mid 0 \leqq i \leqq n \& l_{n i}=1\right\}=a\left(\rho_{n}\right) .
\end{aligned}
$$

Thus, if n ranges over ε, ρ_{n} ranges over the class Q of all finite sets, $\rho_{a^{\prime}(n)}=a\left(\rho_{n}\right)$ over the class of all finite subsets of α. We conclude that $\rho a^{\prime} \in 2^{4}$. Finally, assume that $a(n)$ is a regressive function. Using the three facts that

$$
\begin{aligned}
& a^{\prime}(n+1)=l_{n+1,0} \cdot 2^{a(0)}+\cdots+l_{n+1, n+1} \cdot 2^{a(n+1)} \\
& a^{\prime}(n)=l_{n 0} \cdot 2^{a(0)}+\cdots+l_{n n} \cdot 2^{a(n)} \\
& \max \left\{i \mid l_{n i}=1\right\} \leqq \max \left\{i \mid l_{n+1, i}=1\right\},
\end{aligned}
$$

we infer that $a^{\prime}(n)$ is a regressive function.

Theorem. Let $f(n)$ be a strictly increasing, recursive combinatorial function, let $F(X)$ be its canonical extension to 4 and let $T \in \Lambda_{R}-\varepsilon$. Then $\phi_{f}(F(T))=T$.

Proof. Let $f(n)=\sum_{i=0}^{n} c_{i}\binom{n}{i}$ be the strictly increasing, recursive, combinatorial function. Then $c_{1}>0$ since $f(n)$ is strictly increasing, and c_{i} is a recursive function of i, since $f(n)$ is recursive. Let $\tau \in T \in \Lambda_{R}-\varepsilon$ and assume that t_{n} is a regressive function ranging over τ. Put $g(n)=t^{\prime}(n)$. By Lemma 2 we have $\rho_{o(n)}=t\left(\rho_{n}\right)$; thus, if n assumes successively the values $0,1,2,3,4,5,6,7, \cdots, \rho_{g(n)}$ assumes successively the "values"

$$
o,\left(t_{0}\right),\left(t_{1}\right),\left(t_{0}, t_{1}\right),\left(t_{2}\right),\left(t_{0}, t_{2}\right),\left(t_{1}, t_{2}\right),\left(t_{0}, t_{1}, t_{2}\right), \cdots
$$

We have by definition

$$
F(T)=\operatorname{Req}\left\{j(x, y) \mid \rho_{x} \subset \tau \& y<c_{r(x)}\right\}
$$

Since $g(n)$ ranges without repetitions over $\left\{n \mid \rho_{n} \subset \tau\right\}$, it follows that

$$
\begin{equation*}
F(T)=\operatorname{Req}\left\{j(g(x), y) \mid y<c_{r(x)}\right\} \tag{6}
\end{equation*}
$$

We shall use w_{n} to denote the function which for $0,1, \cdots$ takes on the values of the array

$$
\begin{aligned}
& j(g(0), 0), \cdots, j\left(g(0), c_{r(0)}-1\right) \\
& j(g(1), 0), \cdots, j\left(g(1), c_{r(1)}-1\right) \\
& j(g(2), 0), \cdots, j\left(g(2), c_{r(2)}-1\right)
\end{aligned}
$$

reading from the left to the right in each row and from the top row down; it is understood that every row which starts with $j(g(k), 0)$ for
some k with $c_{r(k)}=0$ is to be deleted. From the definitions of ρ_{k} and $r(k)$ we see that

$$
k \in\left(2^{0}, 2^{1}, 2^{2}, \cdots\right) \Longrightarrow r(k)=1 \Longrightarrow c_{r(k)}=c_{1}>0 .
$$

The function $g(n)=t^{\prime}(n)$ is regressive by Lemma 2. Taking into account that c_{i} is a recursive function, it readily follows that w_{n} is a regressive function. In view of (6) we have $\rho w_{n} \in F(T)$ it therefore suffices to prove that $\rho w_{f(n)} \in T$. By Lemma 1

$$
f(n)=\sum_{x=0}^{2^{n}-1} c_{r(x)}
$$

hence

$$
f(0)=c_{r(0)}, \quad f(1)=c_{r(0)}+c_{r(1)}, \quad f(2)=c_{r(0)}+c_{r(1)}+c_{r(2)}+c_{r(3)}, \cdots
$$

and

$$
w_{f(0)}=j(g(1), 0), \quad w_{f(1)}=j(g(2), 0), \cdots, \quad w_{f(n)}=j\left(g\left(2^{n}\right), 0\right), \cdots
$$

We conclude that $w_{f(n)} \cong g\left(2^{n}\right)$. However, by Lemma 2

$$
g\left(2^{n}\right)=t^{\prime}\left(2^{n}\right) \cong t(n)
$$

Thus $w_{f(n)} \cong t_{n}$ and $\rho w_{f(n)} \in T$. This completes the proof.

References

1. J. C. E. Dekker and J. Myhill, Recursive Equivalence Types, University of California Publications in Mathematics (New Series), 3, No. 3 (1960), 67-214.
2. -, Infinite Series of Isols, Proc. of the Symp. on Recursive Function Theory, Amer. Math. Soc., Providence, R. I., (1962), 77-96.
3. J. Myhill, Recursive Equivalence Types and Combinatorial Functions, Bull. Amer. Math. Soc., 64 (1958), 373-376.
4. , Recursive Equivalence Types and Combinatorial Functions, Pooc. of the Symp. on Logic, Methodology and Philosophy of Science, Stanford, 1962, pp. 46-55.

Rutgers, The State University

