COMBINATORIAL FUNCTIONS AND REGRESSIVE ISOLS

F. J. SANSONE

1. Introduction. It is assumed that the reader is familiar with the notions: regressive function, regressive set, regressive isol, cosimple isol, combinatorial function and its canonical extension. The first four are defined in [2], the last two in [3]. Denote the set of all numbers (nonnegative integers) by ε , the collection of all isols by Λ , the collection of all regressive isols by Λ_R and the collection of all cosimple isols by Λ_1 . The following four propositions will be used.

(1) $\begin{cases} \text{Let } \tau = \rho t \text{ and } \tau^* = \rho t^*, \text{ where } t_n \text{ and } t_n^* \text{ are regressive functions.} & \text{Then } \tau \cong \tau^* \longleftrightarrow t_n \cong t_n^* \end{cases}$

$$(2) B \leq A \& A \in \Lambda_R \Longrightarrow B \in \Lambda_R.$$

(3) {Let F(T) be the canonical extension to Λ of the recursive, combinatorial function f(n). Then $T \in \Lambda_R \longrightarrow F(T) \in \Lambda_R$.

$$(4) B \leq A \& A \in \Lambda_1 \Longrightarrow B \in \Lambda_1.$$

The first three are Propositions 3, 9(b) and Theorem 3(a) of [2] respectively. The fourth is Theorem 56(b) of [1].

DEFINITION. Let f(n) be a one-to-one function from ε into ε and let $T \in \Lambda_R - \varepsilon$. Then

$$\phi_f(T) = \operatorname{Reg} \rho t_{f(n)}$$
 ,

where t_n is any regressive function ranging over any set in T.

Using (1) it is readily seen that ϕ_f is a well defined function from $\Lambda_R - \varepsilon$ into $\Lambda - \varepsilon$. The main result of this paper is as follows: Let f(n) be a strictly increasing, recursive, combinatorial function; let F(X) be its canonical extension to Λ , and let $T \in \Lambda_R - \varepsilon$; then $\phi_f(F(T)) = T$.

2. The operation ϕ_f .

PROPOSITION 1. Let f(n) be a strictly increasing, recursive function and let $T \in \Lambda_R - \varepsilon$. Then

$$\phi_f(T) \leq T \quad and \quad \phi_f(T) \in \Lambda_R$$
.

February 15, 1963. This paper was written while the author was a National Defense Graduate Fellow at Rutgers University and is a portion of a thesis directed by Professor J. C. E. Dekker to submitted as partial fulfillment of the requirements for the degree of Doctor of Philosophy.

F. J. SANSONE

If in addition $T \in \Lambda_1$, then $\phi_f(T) \in \Lambda_R \cdot \Lambda_1$.

Proof. In view of (2) and (4), it suffices to show only that $\phi_f(T) \leq T$. Let t_n be a regressive function such that $\rho t = \tau \in T$. Put $\alpha = \rho f$ and suppose p(x) is a regressing function of t_n . Define

$$p^*(x) = (\mu y)[p^{y+1}(x) = p^y(x)] \text{ for } x \in \delta p$$
 .

Then $p^*(t_n) = n$ and

$$ho t_{f} \subset \{x \in \delta p^{*} \mid p^{*}(x) \in \alpha\},\ au = -\rho t_{f} \subset \{x \in \delta p^{*} \mid p^{*}(x) \notin \alpha\}.$$

Since α is recursive it follows that ρt_f is separable from $\tau - \rho t_f$. Hence $\phi_f(T) \leq T$.

It is known (by an unpublished result of Dekker) that Λ_R is neither closed under addition nor under multiplication. We do, however, have some closure properties for isols of the type $\phi_f(T)$, where $T \in \Lambda_R - \varepsilon$ and f(n) is a strictly increasing, recursive function.

PROPOSITION 2. Let f(n) and g(n) be strictly increasing, recursive function and let $T \in A_R - \varepsilon$. Then

- (a) $\phi_f(\phi_g(T)) \in \Lambda_R \varepsilon$,
- (b) $\phi_f(T) \cdot \phi_g(T) \in \Lambda_R \varepsilon$,
- (c) $\phi_f(T) + \phi_g(T) \in \Lambda_R \varepsilon$.

Proof. In view of Proposition 1,

$$\phi_f(\phi_g(T)) \leq \phi_g(T) \leq T$$
.

This implies (a). To verify (a) one could also observe that $\phi_f(\phi_g(T)) = \phi_{gf}(T)$. Combining $\phi_f(T) \leq T$ and $\phi_g(T) \leq T$, we obtain by [1, Cor. of Thm. 77]

$$\phi_f(T) \cdot \phi_g(T) \leq T^2$$
.

However, $T^2 \in A_R - \varepsilon$ by (3). Hence (b) follows by (2). Finally, it is readily seen that

$$\phi_f(T) + \phi_g(T) \leq \phi_f(T) \cdot \phi_g(T)$$
 ,

since $\phi_f(T)$ and $\phi_g(T)$ are ≥ 2 (in fact, infinite). Thus (c) follows from (2) and (b).

3. The main result. We first state and prove two lemmas which might be of interest for their own sake. Let ρ_0, ρ_1, \cdots be the canonical enumeration of the class Q of all finite sets defined by

704

$$ho_0 = o$$

 $ho_{x+1} = \begin{cases} (y_1, \cdots, y_k) ext{ where } y_1, \cdots, y_k ext{ are the distinct numbers} \\ ext{such that } x+1 = 2^{y_1} + \cdots + 2^{y_k} \end{cases}.$

We denote the cardinality of ρ_x by r_x .

LEMMA 1. Let f(n) be any combinatorial function and let C_i be the function from ε into ε such that $f(n) = \sum_{i=0}^{n} c_i \binom{n}{i}$. Then

$$f(n) = \sum_{x=0}^{2^{n-1}} c_{r(x)}$$
.

Proof. Since every *n*-element set has $\binom{n}{i}$ subsets of cardinality *i*, we have

(5)
$$f(n) = \operatorname{card} \{ j(x, y) | \rho_x \subset (0, 1, \dots, n-1) \& y < c_{r(x)} \}.$$

It follows from the definition of ρ_x that

$$egin{aligned} &
ho_x \subset (0,\,1,\,\cdots,\,n-1) & \Longleftrightarrow x &\leq 2^0+2^1+\,\cdots\,+2^{n-1} \ & & \Longleftrightarrow x &\leq 2^n-1 \ . \end{aligned}$$

Combining this with (5) we obtain

$$f(n) = \operatorname{card} \left\{ j(x, y) \, | \, x \leq 2^n - 1 \, \& \, y < c_{r(x)} \right\} = \sum_{x=0}^{2^n - 1} c_{r(x)} \; .$$

DEFINITION. Let a(n) be a one-to-one function from ε into ε . Then

$$a'(n) = l_{n0} \cdot 2^{a(0)} + \cdots + l_{nn} \cdot 2^{a(n)}$$

where l_{n0}, \dots, l_{nn} is the sequence of zeros and ones such that

$$n=l_{\scriptscriptstyle n0}{\boldsymbol{\cdot}}2^{\scriptscriptstyle 0}+{\boldsymbol{\cdot}}{\boldsymbol{\cdot}}+l_{\scriptscriptstyle nn}{\boldsymbol{\cdot}}2^n$$
 .

LEMMA 2. (Dekker) Let a(n) be a one-to-one function from ε into ε with range α and let $A = \text{Req}(\alpha)$. Then a'(n) is also a one-to-one function from ε into ε . Moreover,

$$a'(2^n) = 2^{a(n)}$$
 , $ho_{a'(n)} = a(
ho_n)$ and $ho a' \in 2^A$.

Finally, if a(n) is regressive, so is a'(n).

Proof. It is clear that a'(n) is a one-to-one function such that $a'(2^n) = 2^{a(n)}$. We have $\rho_{a'(0)} = \rho_0 = o$ while $a(\rho_0) = a(o) = o$; for $n \ge 1$

$$\rho_n = \{i \, | \, 0 \leq i \leq n \& l_{ni} = 1\}$$

Hence for every number n

F. J. SANSONE

$$egin{array}{ll}
ho_{a'(n)} &= \{a(i) \, | \, 0 \leq i \leq n \ \& \ l_{ni} = 1\} \ &= a\{i \, | \, 0 \leq i \leq n \ \& \ l_{ni} = 1\} = a(
ho_n) \;. \end{array}$$

Thus, if *n* ranges over ε , ρ_n ranges over the class *Q* of all finite sets, $\rho_{a'(n)} = a(\rho_n)$ over the class of all finite subsets of α . We conclude that $\rho a' \in 2^4$. Finally, assume that a(n) is a regressive function. Using the three facts that

$$egin{array}{ll} a'(n+1) = l_{n+1,0} \cdot 2^{a(0)} + \cdots + l_{n+1,n+1} \cdot 2^{a(n+1)} \ , \ a'(n) = l_{n0} \cdot 2^{a(0)} + \cdots + l_{nn} \cdot 2^{a(n)} \ , \ \max\left\{i \mid l_{ni} = 1\right\} \leq \max\left\{i \mid l_{n+1,i} = 1\right\} \ , \end{array}$$

we infer that a'(n) is a regressive function.

THEOREM. Let f(n) be a strictly increasing, recursive combinatorial function, let F(X) be its canonical extension to Δ and let $T \in \Lambda_R - \varepsilon$. Then $\phi_j(F(T)) = T$.

Proof. Let $f(n) = \sum_{i=0}^{n} c_i\binom{n}{i}$ be the strictly increasing, recursive, combinatorial function. Then $c_1 > 0$ since f(n) is strictly increasing, and c_i is a recursive function of i, since f(n) is recursive. Let $\tau \in T \in A_R - \varepsilon$ and assume that t_n is a regressive function ranging over τ . Put g(n) = t'(n). By Lemma 2 we have $\rho_{g(n)} = t(\rho_n)$; thus, if n assumes successively the values 0, 1, 2, 3, 4, 5, 6, 7, \cdots , $\rho_{g(n)}$ assumes successively the "values"

 $o, (t_0), (t_1), (t_0, t_1), (t_2), (t_0, t_2), (t_1, t_2), (t_0, t_1, t_2), \cdots$

We have by definition

$$F(T) = \operatorname{Req} \left\{ j(x, y) \, | \,
ho_x \subset au \, \& \, y < c_{r(x)}
ight\} \, .$$

Since g(n) ranges without repetitions over $\{n \mid \rho_n \subset \tau\}$, it follows that

(6) $F(T) = \operatorname{Req} \{ j(g(x), y) \, | \, y < c_{r(x)} \} .$

We shall use w_n to denote the function which for $0, 1, \cdots$ takes on the values of the array

$$egin{aligned} j(g(0),\,0),\,\cdots,\,j(g(0),\,c_{r(0)}-1)\ j(g(1),\,0),\,\cdots,\,j(g(1),\,c_{r(1)}-1)\ j(g(2),\,0),\,\cdots,\,j(g(2),\,c_{r(2)}-1)\ dots\ do$$

reading from the left to the right in each row and from the top row down; it is understood that every row which starts with j(g(k), 0) for

some k with $c_{r(k)}=0$ is to be deleted. From the definitions of ho_k and r(k) we see that

$$k \in (2^{\circ},\,2^{\scriptscriptstyle 1},\,2^{\scriptscriptstyle 2},\,\cdots) \Longrightarrow r(k) = 1 \Longrightarrow c_{r(k)} = c_{\scriptscriptstyle 1} > 0$$
 .

The function g(n) = t'(n) is regressive by Lemma 2. Taking into account that c_i is a recursive function, it readily follows that w_n is a regressive function. In view of (6) we have $\rho w_n \in F(T)$ it therefore suffices to prove that $\rho w_{f(n)} \in T$. By Lemma 1

$$f(n) = \sum_{x=0}^{2^{n}-1} c_{r(x)}$$
 ,

hence

$$f(0)=c_{r(0)}$$
 , $f(1)=c_{r(0)}+c_{r(1)}$, $f(2)=c_{r(0)}+c_{r(1)}+c_{r(2)}+c_{r(3)}$, \cdots

and

$$w_{f(0)}=j(g(1),\,0)\;,\;\;\;w_{f(1)}=j(g(2),\,0),\;\cdots\;,\;\;\;w_{f(n)}=j(g(2^n),\,0),\;\cdots\;.$$

We conclude that $w_{f(n)} \cong g(2^n)$. However, by Lemma 2

$$g(2^n) = t'(2^n) \cong t(n)$$
.

Thus $w_{f(n)} \cong t_n$ and $\rho w_{f(n)} \in T$. This completes the proof.

References

1. J.C.E. Dekker and J. Myhill, *Recursive Equivalence Types*, University of California Publications in Mathematics (New Series), 3, No. 3 (1960), 67-214.

2. _____, Infinite Series of Isols, Proc. of the Symp. on Recursive Function Theory, Amer. Math. Soc., Providence, R. I., (1962), 77-96.

3. J. Myhill, Recursive Equivalence Types and Combinatorial Functions, Bull. Amer. Math. Soc., **64** (1958), 373-376.

4. _____, Recursive Equivalence Types and Combinatorial Functions, Pooc. of the Symp. on Logic, Methodology and Philosophy of Science, Stanford, 1962, pp. 46-55.

RUTGERS, THE STATE UNIVERSITY