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1* Introduction* In [3], J. M. Irwin has introduced the concept
of a high subgroup of an abelian group (A is high in G if A is maximal
in G with respect to the property Af\{(\nnG) = 0). Irwin and,
subsequently, Irwin and Walker [4] have also considered iNΓ-high
subgroups A of G (A is maximal in G with respect to Af]N— 0).
Among the properties of high subgroups is their purity in G ([I], [3]
for p-groups, [3] for torsion groups and [4] for arbitrary abelian groups).
In [5], S. Khabbaz has given a short proof of a theorem which implies
the purity of high subgroups of a p-group. Irwin [3] raises the question
of characterizing subgroups H of a group G for which every ϋΓ-high
subgroup is pure in G.

In this paper we consider pairs (H, M) of subgroups of an abelian
group G with M maximal disjoint from H in G and ask what happens
if M is not pure in G. The resulting information allows us to answer
Irwin's question in various special cases. In particular we obtain the
purity of high subgroups of arbitrary abelian groups and a generalization
of the theorem of Khabbaz referred to above. We then consider various
related questions and obtain a generalization of a theorem of Zuravskiϊ
[7] on the splitting of mixed abelian groups.

Throughout the paper, G will denote an abelian group, ί ί a subgroup
of G and M a subgroup of G maximal with respect to Mf]H = 0.
Following Irwin [3] we say that M is H-hίgh in G. For any subgroup
K of G and prime p, Kp denotes the set of all elements of K whose
orders are a power of p, and K[p] is the set of elements of Kp whose
orders are ^p. The torsion subgroup of a group K will oc-
casionally be denoted by Kt. For xeG we denote by hp(x) =
max [n \ x e pnG] the height of the element x at p in G. Curly brackets
denote the subgroup generated by the sets and elements inside. In
particular, if M is a subgroup of G and xeG then {M, x} is the subgroup
of G generated by M and x. The set of rational integers will be
denoted by Z, direct sums by φ and not necessarily direct sums by +.

2. The main theorem* We remark first that if M is iϊ-high in
G then M is neat in G (cf. [2, pp. 91-92]); i.e, Mf]pG = pM for each
prime p. It is also easy to see that G[p] = M[p] 0 H[p] for any p.
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THEOREM 2.1. Let M be an H-high subgroup of G. Then either
M is pure in G or there exists a prime p and elements m e Mr

h e H[p] such that

hp(m) = hp(h) < hp(h — m) .

Proof. Suppose that M is not pure in G. Then there exist
equations nw = v with ne Z, w eG, ve M which have no solution w e M.
Among all such equations, let nx = y(x eG,ye M) be one for which
n is least positive. It is not hard to see that minimality of n implies-
that n is a power of some prime p, say n — pr. By neatness of
M, r > 1 and prx — pmlf m1e M so that p(pr~1x — mλ) = 0. Thus pr~xx —
mγ e G[p] and since G[p] — M[p] 0 H[p], we have

(1) pr~λx — m1 = m + h (me M[p], he H[p\) .

Suppose now t h a t hp(h) ^ r — 1. Then h = pr~τz for some zeG which,

from (1) and minimality of r yields mx + m = pr~ι(x — z) •=• pr~1m2 for

some m2 e M. But this gives pr~xx — pr~1m2 + h or, prx = prm2 — y
contrary to the choice of r. Thus hp(h) < r — 1 and pr~ιx — (m + mλ) —
h. With m = — (m + mλ) we now have

Λp(m) = hp(h) < fep(^ — m)

and the theorem follows.

COROLLARY 2.2. //, /or eαc/t p, either M ̂  pG or Hp is divisible,
then M is pure in G.

Proof. Neatness of M and M s pG give M = pM. Thus, for each
prime p,me M and h e Hp, either hp(m) — co or hp(h) = co.

The author is indebted to the referee for the proof of Theorem
2.1 given above a proof which is shorter and less complicated than
the author's original. The original proof, however, had a corollary
which, at the suggestion of the referee, we include here. The proof
requires that we outline the proof of Theorem 2.1 given originally.
Therefore we state the result as

PROPOSITION 2.3. Let H be a subgroup of G such that Ht = Gt

and let M be H-high in G. If M is not pure in G then there exists
a prime p and elements me M, he H[p] such that

0 = hp(m) — hp(h) < hp(h — m) .

Proof (in outline). Let pr, x and y be as in the proof of Theorem
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2.1. Then {M, x}f]H φ 0 so there exist nonzero elements of H of the
form u + nx with ue M and n a positive integer. Let c be the least
positive integer such that m + ex e H, m + ex Φ 0 for some me M.
Then one can show that c = pk for some k < r, and with h ~ m + pkx
we have feeiί[p] and

(*) hp(m) — hp{h) < A,p(λ, — m) ~ k

At this point we have a proof of Theorem 2.1, since we have not
yet used the hypothesis Ht — Gt. Now, pr~L(px) = y so that by choice
of y there exists ve Msuch that 3/~^ = y = prx. Hence pr~\px — v) =
0 and r — 1 > 0. Using Gt = Jϊt we conclude that px — ve H. It is
clear that p# — v ^ 0 so that k = 1. Thus (*) gives fep(m) = fep(fe) = 0
as required.

3. Centers of purity.

DEFINITION 3.1. A subgroup iϊof an abelian group G will be called
a Center of Purity in G if every iϊ-high subgroup of G is pure in G.

Several classes of centers of purity can be obtained from the
following proposition which is a corollary to Theorem 2.1.

PROPOSITION 3.2. If there exists a homomorphism / defined on G
such that

(i) Htdkernel /
(ii) hp(m) = hp(f(m)) for all me M and primes p then M is pure

in G.

Proof. For any prime p, me M and he Hp we have

hp(m) = hp(f(m)) = hp(f(m — h)) ^ hp(m — h) = /&,(& — m)

so that the condition in Theorem 1 alternative to purity of M cannot
hold. Hence M is pure.

The following corollary generalizes the theorem of Khabbaz [4]
referred to in the introduction.

COROLLARY 3.3. Let G be a p-group and put p°°G — Π^ VnG,
p°°{ΛG = 0. Then any subgroup H of G such that psG 3 H 3 ps'rlG
for some s, 0 g s fS oo, is α center of purity in G.

Proof. Let / be the canonical homomorphism f:G-+ GjH. Then
psil(GlH) = 0 (by definition if s = oo) so hp(f(x)) ^ s for all XGG,
x&H. Suppose puf(y) ~ f(x) for some ue Z and x g if. Then pu^/ +
λ = x for some he H. Since if <Ξ psG, u ^ s and u < «D there exists



660 J. D. REID

weG such that puw = h. Hence, pu(y + w) = x. Thus Λp(α?) ̂  hp(f(x)).
The other inequality being obvious we have hp(x) = hp(f(x)) for all
xeG, x£ H and the corollary follows.

COROLLARY 3.4. For any abelίan group G and subgroup H of G,
if Ht C Γ\n nG, then H is a center of purity in G. In particular,
high subgroups are pure and torsion free subgroups are centers of
purity. If the maximal torsion subgroup of G is divisible, every
subgroup of G is a center of purity in G.

Proof. As in Corollary 3.3 with / the canonical homomorphism
f:G-+GIHt.

One can ask with Irwin [3] for necessary and sufficient conditions
on a subgroup H of a group G in order that H be a center of purity
in G. We have not been able to find such conditions. In particular,
we know of no centers of purity in a p-group other than those listed
in Corollary 3.3 above but have not been able to show that there are
no others. In one case, however, a decisive answer is readily obtained,.
We denote by T, in what follows, the maximal torsion subgroup of G.

LEMMA 3.5. If T S H then H is a center of purity in G if and
only if for all geG and primes p, the conditions {g}DH — 0 and
hv{g) - 0 imply hp{g + t) = 0 for all t e T.

Proof. If the condition is satisfied, then H is a center of purity
by Proposition 2.3. Conversely, if H is a center of purity in G and
geG such that {g}ΠH = 0 and hp(g) — 0 for some p then there exists
a subgroup M of G maximal disjoint from H and containing g. For
t e T, if hp(t) > 0 it is clear that hp(g + t) = hp(g) — 0. Suppose then
that te T and hp(t) = 0. We can write t = tp + V where tp has order
pι for some I ̂  0 and the order of V is prime to p. Then hp(t') = co
so that hp(t) = hp(tp) == 0. Clearly also hp(g + t) = hp(g + tp) ^ k say.
Let xeG such that pkx = g + tp. Then, with e = k + I, we have
pe# = pιg. By purity of M there exists me M such that p'm — pι£.
Hence pι(pkm — g) = 0. Now since T ̂  H and Mf)H — 0 we have
pfcm = # so that k = 0 by hypothesis on #. Thus, fep(sr + tp) = hp(g + t) =
0 as required.

DEFINITION 3.6. A subgroup H of G containing T will be called
a special center of purity if if is a center of purity and there exists
xeG such that x Φ 0, {x}ΓιH = 0. A mixed group G is said to be
properly mixed if 0 Φ T Φ G.

THEOREM 3.7. For a properly mixed group G the following are
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equivalent:
( i ) T is divisible.
(ii) Every subgroup of G is a center of purity in G.
(iii) G contains a special center of purity.

Proof, (i) implies (ii) by Corollary 3.4. (ii) implies (iii) since if
(ii) holds and G is properly mixed, then T is a special center of purity.
To show that (iii) implies (i), let H be a special center of purity in
G. If T is not divisible then Tp is not divisible for some p so that
there exists teTp such that hp(t) = 0. Let x e G, {x} Π H — 0 and
x Φ 0 and put g — px + t. Clearly {g} Π H = 0 and /&p(#) = 0. However.
/£p(<7 — £) ̂  1. This contradicts Lemma 3.5 and completes the proof.

4 Reduction theorems. If M is maximal disjoint from H in G,
we consider here circumstances under which we can reduce the problem
of the purity of M in G to an analogous problem in a subgroup of G
or in a factor group of G. Again, the location of T with respect to
H plays a role.

THEOREM 4.1. Let M and R be 'subgroups of G such that G =
M + R. Then

(i) M is maximal disjoint in G from a subgroup H £Ξ R if and
only if Mf]R is maximal disjoint from H in R.

(ii) If MΓ\R is pure in R then M is pure in G. Conversely
ifTξΞ=R and M is pure in G then Mf]R is pure in R.

Proof, (i) If M is maximal disjoint in G from H <Ξ R and r e R,
rgMΠR then {ikf, r }nHΦ 0. Hence there exist me M,aeZ such
that m + ar e H, m + ar Φ 0. Since H ξΞ= R, we have m + αr e i? so
that me i l ίn#. Thus { M n ί , r } n ί f ^ 0 .

Conversely, if Mil iϋ is maximal disjoint from H in R and # e Gf

g£ Mwe have </ = m + r for some me M, re R by hypothesis. Now,
g#M implies that rgMΠi2 so that {Mf]R, r}f]HΦθ. Let m1eM,
be Z such that & = mx + br e H, h Φ 0. Then mλ + bg — h + bm so
m2 — 6m + bg = h e H, h Φ 0, mλ — bm e M; i.e. {M, g) Π H Φ 0. Now
since 0 = ilίfl Rf) H = Mfl Jϊ, Λf is maximal disjoint from H as required.

(ii) If ilίΠ R is pure in R and w# = m e M, let # = mλ + r, mx e M,
reR. Then m = ng — nmx + nr so m — nmx — nre ilίn iϋ. By purity
of ikΓn -B in i? there exists m2 e Mf) R such that nm2 — m — nm±. Hence
n(mx + m2) = m with mx + m2 6 ilf as required.

Conversely, if ϊ 7 g i2 and Λf is pure in G, suppose nr = me Mf)R
for some neZ,reR. By purity of M in G there exists mx e M such
that nmx = m. Then w(mx — r) = 0 so that m1 — reT ^ R; i.e.
m x e M n i ? . Thus MΠ-R is pure in i2.
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THEOREM 4.2. Suppose T £ H and let M be maximal disjoint
from H in G. Then the following are equivalent:

( i ) M is pure in G
(ii) (M+ T)jT is pure in G\T
(iii) (M + T)IT is maximal disjoint from H/T in G/T.

Proof. It is well known (cf. [2, p. 94]) that if M is pure in G
then {M, T} is pure in G and in our case the converse is true since
{M, T} = M@T. Now, since T is pure in G, M+ T is pure in G if
and only if M + TjT is pure in GjT so that (i) and (ii) are equivalent.
Also, since GjT is torsion free, if M+ T\T is maximal disjoint from
H/T then M + Γ/Γ is pure in GjT so that (iii) implies (ii). Finally
assume that M is pure in G and let g + TeG/T, g+ T&M+ T/T.
Then 0 g Λf so there exist meM,aeZ such that m + ag e H, m + ag Φ
0. If m + αg - £ € T say δί = 0. Then bm = -δαg and by purity of
Λf in G there exists mλeM such that δαm2 = δm. Then b(amλ — m) = 0
so ami = m since ilίn T = 0. Now we have t = m + ag = α(mx + g)eT
whence mt + geT. But this contradicts g+ T&M+ TjT. We conclude
that (m + αp) + Te H/T, m + αp + T ^ T so that, disjointness of
MΛ- T\T from if/T being clear, M+ TjT is maximal disjoint from
HIT in G/Γ.

5 On the splitting of mixed groups. As an immediate consequence
of Theorem 4.2 and Proposition 3.2 we have

PROPOSITION 5.1. Let T be the maximal torsion subgroup of the
mixed group G. Then the following are equivalent:

( i ) G = M@T.
(ii) M is maximal disjoint from T in G and pure in G.
(iii) M is maximal disjoint from T in G and the natural mapping

V:Q^G/T is height preserving on M; i.e. λp(m) = hp{v{m)) for all
me M, and all primes p.

As a result, there exist groups at the opposite end of the spectrum
from centers of purity; i.e. since there exist nonsplitting mixed groups,
we have

COROLLARY 5.2. There exist groups G containing subgroups H
such that, if M is maximal disjoint from H in G then M is not pure.

One is tempted to try to use Proposition 5.1 to obtain splitting
criteria for mixed groups in terms of the structure of the groups.
If, for example, G contains a subgroup M maximal disjoint from T
and ^-divisible for all p for which Tp Φ 0 then M is pure by Theorem
2.1 and hence G splits. A necessary condition for such a situation is
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•of course that G/T be p-di visible for all p for which Tp Φ 0. Just
this condition has recently been considered by V. S. Zuravskiϊ ([6], [7]).

Although we fail to apply Proposition 5.1 we can point out a
generalization of the result of Zuravskiϊ and, since the proof is quite
short, it may be worthwhile to include this here. First, we observe

LEMMA 5.3. Let G be a mixed group and R the subgroup of G
generated by a complete system of representatives of G mod T. If
R splits, R = S φ RΠ T, then G splits, G = S © T.

The proof is immediate. Now, for a mixed group G, we say that
G satisfies the maximal element condition if each coset of T in G
contains an element x such that hp(x) = hp(x + T) for all p. Evidently
(either directly or by Proposition 5.1) this is a necessary condition for
the splitting of G. Let π be the set of primes p for which Tp Φ 0.

THEOREM 5.4. Let G be a mixed group and T its maximal torsion
.subgroup. Suppose that

( i) G satisfies the maximal element condition.
(ii) GIT is p-divisible for all peπ.
(iii) ΓίpeπΓin VnT is bounded.

Then G splits.

Proof. In each coset of T in G select an element x such that
hp(x) = hp(x + T) for all p. Then, by (ii) hp(x) = oo for all peπ. Let
R be the subgroup of G generated by the elements so selected. Then
it is clear that RΓ\ T £ f]peπ f\n pnT and hence, by (iii) RΓ\ Tis bounded.
Thus R splits, so G splits also.

The case treated by Zuravskiϊ is that in which T is p-primary
and G\T is rank one. He also constructs an example [7, p. 380, Theorem
3.4] of a nonsplitting mixed group G satisfying (i) and (ii) (with T a
primary group and G/T of rank one) but not (iii) so in this sense,
condition (iii) is necessary. We remark that, as stated, [7, p, 380,
Theorem 3.4] seems to say that given conditions (i) and (ii), the condition
(iii) is necessary and sufficient for the splitting of G, but this is
obviously false and, equally obviously (from the proof of the theorem)
not what the author intended.
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