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Let S3 = {V, I V<z = (a,z + δ,)/(c<s + dt); a A - he, = 1, i = 1,2, . •}
be a group of linear fractional transformations, where aiy b{, ci9 dι (i =
1,2, •••) denote complex numbers. As indicated we use V{ and F;£
to denote transformations and we use (linear) transformation in short
for linear fractional transformation. A point z of the plane (by plane
we mean, of course, plane of complex numbers) is called a limit point
of 25 if there exists a point z0 and an infinite sequence of distinct
transformations of 23, say, {Ϊ7J such that Ufa —> z as i —• co. A point
of the plane which is not a limit point is called an ordinary point of
the group. A discontinuous group is one for which there exists an
ordinary point. If c{ Φ 0, we define I(Vi) = {z\\CiZ + dt\ = 1} and
K(Vi) — {z\\CiZ + di\ < 1}, called the isometric circle and isometric
disk of Vi9 respectively. The main result is contained in the follow-
ing theorem which is proved in Part I of this paper.

THEOREM 1. Let S3 be a group of linear fractional transfor-
mations all of whose elements (except the identity) possess isometric
circles whose radii are bounded. Then S3 is discontinuous if and
only if there exists an open set of points in the plane that is exterior
to the union of all isometric circles.

According to the theorem discontinuity for the class of groups in
question could be defined in terms of the geometry of the isometric
circles. In addition, it will be shown that the set of points exterior
to the union of all isometric circles could be used to construct a
fundamental region for these groups. This last result removes certain
restrictions on a known result which is found in [1] (p. 39-49). There
Ford shows that if a group is discontinuous and if infinity is an
ordinary point, then the radii of all isometric circles are bounded
and some neighborhood of infinity is exterior to the union of all iso-
metric circles. The set of points exterior to the isometric circles he
uses to construct a fundamental region for the group. In Ford's
proof the fact that infinity is an ordinary point is crucial. For the
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class of discontinuous groups characterized by Theorem 1 we remove
that distinguished role of infinity. We would like to mention that
Ford uses the concept of 'proper discontinuity' rather than disconti-
nuity as defined here. However the results carry over, since the two
concepts are equivalent ([2]).

In Part II of this paper we give an example for a group 33 of
linear transformations for which the closed disks K(Vi) (ΐ = 1, 2, •)
cover the plane. By Theorem 1 it follows that 33 is not discontinuous.
This shows that the set of groups of linear transformations which
satisfy the hypotheses of Theorem 1 and whose isometric circles cover
the plane is not empty. This group is also discrete; it is therefore,
like the Picard group, an example of a discrete group which is not
discontinuous.

PART I

We say that the plane is almost covered by closed disks if the
points that are exterior to the union of all the disks do not comprise
an open set of the plane. In the following for cover or almost cover
we write in short 'cover'. First we prove

THEOREM 2. Let 33 be a group of linear transformations all of
whose elements save the identity possess isometric circles. If the
isometric disks K 'cover' the plane and if their radii are bounded,
then 33 is not discontinuous.

It is no restriction to assume that the number of transformations
in 33 is denumerable, since this is a necessary condition for disconti-
nuity of 33. First we prove six lemmas about the group S3. We as-
sume throughout that the hypotheses of Theorem 2 hold.

LEMMA 1. If z0 is an elliptic fixed point of order n > 1, then
every point z equivalent to z0 under 93 is an elliptic fixed point of
order n.

The proof is easy and we omit it here.

LEMMA 2. Let {In} be a sequence of isometric circles of infinitely
many distinct transformations of 53 with radii rn (n = 1, 2, •). If
the centers of the In converge to the finite point d, then the sequence
{rn} is a nullsequence.

Proof. Let Unz = (anz + bn)j{cnz + dn) be the elements of 33 for
which I{Un) = In {n — 1, 2, •••). Since the radii are bounded, the
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sequence of positive constants {rj has at least one limit point. Let
r be a limit point, and let us assume that r > 0. Then, on a subse-
quence, we have lim,--*, ri — lim^oo (1/| cά1) = r. The sequence {cQ },
where c3- = (l/r^e^j, has a finite limit point c Φ 0; and, on a subse-
quence, Yvca^n ck — c. To every ck of the last subsequence corresponds
a Uk whose isometric circle has center —dk/ck. By hypothesis we have
lim^oo (—dklck) — 8. On noting that UtU^ Φ I and that the matrix
of the transformation UkUζlλ is of the form ί -, x „ , Ί , where

KCkUjc+i ~ ck+i&k x/

the x stands for certain complex numbers, we deduce that for
sufficiently large k \ckdk+1 - ck+1dk | = | (dk+1/ck+1 - djck)ckck+1 \ < ε, where

ε is arbitrarily small and positive. But this is impossible, since all
elements of 53 (except I) possess isometric circles whose radii are bounded.

LEMMA 3. If zQ lies within infinitely many isometric circles,
then it is a limit point of 53.

Proof. Since the radii of the isometric circles are bounded, every
neighborhood of infinity contains centers of isometric circles. Thus
infinity as an accumulation point of such centers is a limit point of
53. This in turn implies that the centers of all isometric circles are
limit points of the group.

Let gn denote the center of In (n = 1, 2, •). Let K be a positive
real number such that rn < K for n = 1, 2, , and let {g3} be a
sequence of centers of those isometric circles that satisfy the hypo-
theses of the lemma. Since \z0 — g3r| < K or | g3-1 < K + \zo\, the
sequence {g^} is bounded. We pick a limit point δ. Then, on a subse-
quence, we have limfc_ββ gk = δ. Let the sequence {Ik} correspond to
the last subsequence. Since | z0 — gk | < rk and since by Lemma 2
lim^oo rk — 0, we deduce lim^oo gk = z0. Thus z0 as accumulation point
of limit points of 53 is itself a limit point.

LEMMA 4. // every neighborhood of a point z0 contains arcs of
infinitely many isometric circles, then z0 is a limit point of 53.

Proof. Since the lemma certainly holds when z0 is an accumulation
point of centers of isometric circles, we assume that these centers
are bounded away from z0. Let C be a circle with center z0 and of
radius p so that the centers of all isometric circles lie outside C; let
C" be a circle with center z0 and of radius p/2. We consider the infi-
nite set of isometric circles φ — {In | In Π C" Φ Λ; n = 1> 2, •}, where
A denotes the empty set. Their radii rn > p/2 (n — 1, 2, •). The
sequence {gn} consisting of the centers of the isometric circles in φ
is bounded (see proof of Lemma 3). If δ denotes a limit point of {gn}
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then I δ — z0| i> p, and, on a subsequence, we have lim^oo gk = <5. To
this subsequence corresponds the sequence of isometric circles {Ik}
whose centers accumulate at δ only. By Lemma 2 the sequence {rk}
is a null sequence, which contradicts rn > p/2 for all w.

When every neighborhood of a point z0 contains arcs of isometric-
circles we say that z0 is an accumulation point of arcs of isometric
circles. We observe that Lemma 4 includes the case where infinitely
many of the circles pass through z0. In view of the hypothesis that
the isometric circles 'cover' the plane, a consequence of Lemma 4 is

LEMMA 5. If zQ is exterior to all isometric circles, then it is a
limit point of 33.

LEMMA 6. If z0 is not an accumulation point of arcs of isometric-
circles and if it does not lie within an isometric circle, then z0 lies
on at least three isometric circles.

Proof. Clearly, z0 cannot be exterior to all isometric circles. Thus
it lies on at least one isometric circle. If only one or two circles
were to pass through z0 we could construct a neighborhood of zQ

sufficiently small so that all other isometric circles lie outside thia
neighborhood. In either case the neighborhood contains an open set
that is exterior to all isometric circles. Observing that three circles
passing through z0 can be arranged so that all points in a sufficiently
small deleted neighborhood of z0 lie within a circle the lemma follows.

These preliminary results we use now in the proof of Theorem 2.
Let Jίf be the set of limit points of 33 on the Riemann sphere. Then
jSf, which is a closed set ([1], p. 43), contains

( i ) the centers of all isometric circles (see proof of Lemma 3),
(ii) the nonelliptic fixed points of all transformations of 33 (we

assume that 93 contains elliptic transformations of finite order only,
since, if that were not the case, the theorem would be trivial),

(iii) the points that lie outside all isometric circles (see Lemma 5),
(iv) the points which are accumulation points of arcs of isometric

circles (see Lemma 4).
Suppose that there is a point zί^f. Since then every point in

a sufficiently small neighborhood of z is an ordinary point of S3 (the
set of ordinary points on the Riemann sphere is open, since £f is
closed) and since the number of elliptic fixed points is at most denu-
merable, it is no restriction to assume that z lies within an isometric
circle and that z is not an elliptic fixed point. The isometric circle
within which z lies we denote by /(C/Ί). Ux carries z into zu where
zx φ z and where zt lies outside /(J7Γ1). Furthermore, zxi Sif, since^
an ordinary point is not mapped on a limit point. Either zx lies within
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isometric circles, in which case we pick one of them and call it I(U2),
or, according to Lemma 6, it lies on at least three isometric circles.
In the latter case I(U2) denotes any one of them. Certainly U2 Φ Ur1.
In the same manner we proceed with z2 = Ό2zx — (U2 U^)z. Again, be-
cause of Lemma 1 z2Φ z19 and z2g^f. If z2 does not lie within an
isometric circle and if z1 lies on I(U2), then z2 lies on /(ZT^1). By
Lemma 6, it is then possible to pick I(U3) Φ IiUf1), and hence U3 Φ
Uf1. Continuing in this manner we obtain an infinite number of
transformations Wn = ΌnTJn-x £7ί (w = 1, 2, •), where t/iETi-i Φ I
(i — 2, 3, •)• Because of Lemma 3 the proof of Theorem 2 will be
complete if we can show that z lies within I(Wn) for n — 1, 2, •••.

Let UiZ = (dp + bi)l(CiZ + d{), and let δ(Uif z) = \ctZ + dt \~\ called
the deformation of Ut ([2]). Then δ(Ui9z) is greater than, equal to,
or less than one according as z lies within, on, or outside I(Ui). It
is readily verified that

<1) δ(UjUi,z) = δ(Uj, U^(Uifz),

and by an induction argument the formula can be extended to a
product of any number of transformations. For w M we have
$(Wn, z) = δ(Un . . Ul9z) = δ(Ulf z)δ(U2, Uxz). δ(Un, Un^ Uxz) > 1,
since δ(Ult z) > 1 and every other factor δ(Uk, Uk-X Uλz) ̂  l(fc = 2,
• , n). This implies that z lies within I(Wn) (n — 1,2, •). Hence
ze£f\ a contradiction.

If, however, the isometric disks K of 33 do not 'cover' the plane
we have the following theorem.

THEOREM 3. Let 35 be a group of linear fractional transfor-
mations all of whose elements {except the identity) possess isometric
circles. If there exists an open set of points that is exterior to all
isometric circles, then 35 is discontinuous.

Proof. Let & be the open set in the hypothesis. Pick z0 in &,
where z0 is finite. There exists a ε-neighborhood NΈ of z0 such that
zeNs implies ze&. For any transformation V in 35 (Vφ I) Vz0

lies within I(V~λ), or | Vz0 — zQ\ > ε. Thus zQ is a standard point of
35 ([3], p. 38). Since every standard point is an ordinary point ([3],
p. 47), 35 is discontinuous.

This completes the proof of Theorem 1, since Theorems 2 and 3
imply the former.

Next, the remark about the fundamental region in the introduction
calls for further elucidation. Let 35 be a discontinuous group that
satisfies the hypothesis of Theorem 1 and for which infinity is a limit
point (for the case in which infinity is an ordinary point the follow-
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ing is well known). Let K{ (i = 1, 2, •) be the isometric disks of
93, let έ? be the set of points exterior to the set U; Ki9 and let ^
denote the set of ordinary points of 93. Then έΌ and ^// are open
sets. Furthermore, έ? c t ^ is an immediate consequence of the proof
of Theorem 3. Here, we do not intend to give a definition for a
fundamental region. However, we want to show that ^ has the two
properties that are customarily used in any definition; namely,

( i ) no two points of ό9 are equivalent under 93 and
(ii) every point in ^/Z is equivalent to some point in 0\ the

closure of the set <5ϋ.
As for (i) we note that if ze ^ and Fe93 (V φ 1), then Vz lies

within /(F"1) and hence is exterior to ^ \
The gist of our proof of (ii) is the same as that of the corres-

ponding proof in [2], where infinity is considered to be an ordinary
point of the group. In our proof we make use of the following lemma,,
where we use primes to denote derivatives.

LEMMA 7. Let f{(z) (i = 1, , k), where k is an integer greater
than 1, he nonvanishing holomorphic functions in a domain &, and
let for j Φ i fi(zo)fj(zo) - f}{z0) f{{z0) Φ 0 and \UzQ) | = \fj(z0) | (i, j =
1, , k) for some point z0 in J3? . Then every neighborhood of z0 in
2$ contains a point z* such that |/;(z*) | Φ \fj(z*) | for j Φ i(i, j =•
1, - , fc).

Proof. For i, j = 1, , k and i < j we define the functions
fiAz)=fi(z)lfAz) We observe that \fM\ = 1 and f;,(z0) Φ 0. We
choose the (circular) neighborhood N(z0) of z0 so small that the map-
pings fij(z) are one-to-one. For each function fij(z) the level curve
\fij(z) I — 1 consists of a finite number of disjoint analytic arcs in N(zQ).
If we pick a point z* in N(z0) that does not lie on any level curve
the conclusion of the lemma holds.

Let z0 e „///? and zQ & έ?. In view of Lemma 3 zQ lies within or on
a finite number of isometric circles. Let Ui (i = 1, , n) denote the
transformations in S3 whose isometric circles /(Ui) have this property.
Since every element of 93 (save the identity) possesses an isometric
circle, no two of the /(ίJ^'s coincide.

We divide the proof into two parts.
( i ) We assume δ(U19 z0) > 3(17̂  zQ)(i = 2, , n). Then Uλz0 lie&

in &. For suppose that Uλzύ lies within or on some isometric circle
I(V). Using (1) for the deformation of the transformation VUλ we
deduce δ(VUlf z0) - δ(V, U&) δ(U19 z0) ^ δ(Ul9 z0). This would imply
that z0 lies within or on I{VU^). Hence VUX = U{ for some i with
1 < i <^ n; which contradicts the maximum property of δ(Ulf zQ). We
remark that the proof still holds for n = 1.
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(i i) We assume δ( Ulf z0) = δ( C/2, z0) = . - - - δ( Uk, z0) > δ( Uif z0) for

k < i S n(l< k ^n). Let N(z0) be a neighborhood of z0 containing
only ordinary points of 33 and being so small that 8(Ujf z) > δ(Ui9 z)
(j — 1, , k; i — k + 1, , n) holds for all z in N(z0) and that N(z0)
does not intersect any isometric disk other than the K(Ui) (i = 1, , n).
As one readily verifies the functions U (z) (j = 1, •••, k), where the
prime denotes the derivative, satisfy the hypothesis of Lemma 7 with
N(z0) in place of &. Thus we conclude that every neighborhood of
z0 contains a point z* having the property that, for some integer m
with 1 ^ m ^ fc, δ(Um, z*) > δ(Ujf z*) (j = 1, - , k; j Φ m). By part
(i) of this proof it follows that Um(z*) e έ?\ and by continuity we have
Um<(z0) e £?' for some suitable m* with 1 fg m"β ^ /c. This completes
the proof about the two properties of έ?.

We conclude this part with a remark. Let sΰ be a nondiscontinu-
ous group of linear transformations satisfying the hypotheses of Theorem
2. For Fe23 we denote by 7* the 2 x 2 matrix that can be associ-
ated with Vz. Then 55* = {± V \ Ve 33} is a group under matrix
multiplication. Since every element of 2̂ ~ (save the identity) possesses
an isometric circle and since all the radii are bounded, in every matrix

(a 7 j of S3* (save the two identity matrices) c Φ 0 and all the c's are

bounded away from 0. This implies that 93* is discrete; that is, 33*
does not contain a sequence of distinct matrices {Fπ*} such that Fw* —*/*
as n-+tt>, where f = L Λ Thus all the nondiscontinuous groups
characterized in Theorem 2 are such that the corresponding groups
of matrices are discrete. That nondiscontinuous groups, as considered
here, exist is not a trivial fact. We dovote the second part of this
paper to the construction of a group of this type.

PART II

Here we give an example of a group of linear transformations
that contains only elements with isometric circles which have the
property that the closed isometric disks cover the plane. We divide
the construction into three parts.

1. We construct a covering of the plane by closed disks K such
that the open disks K are mutually disjoint. To begin with, we draw
circles of radius unity and with centers at the points with coordinates
(2m + 1, 2n + 1) (m, n = 0, ± 1 , ±2, •). After drawing circles of
radius (l/ΊΓ— 1) units and with centers (2m, 2n) (m, n = 0, ± 1 , ±2, •),
there remain the interiors of congruent triangles whose sides are
circular arcs uncovered. Within every triangle we construct a circle
touching all three sides, and we continue in this manner. The follow-
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ing proof1 shows that by this construction every point of the plane
lies within or on a circle.

Diagram 1 shows a triangle we encounter in our construction,

Diagram 1.

Diagram 2.

1 This proof I owe to F. Herzog.
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where Ilf J2 and J3 denote the circles whose arcs form the sides of
triangle ABC. Let z0 be any point in the interior of the triangle,
and let S be a linear fractional transformation such that SzQ = oo.
Depending on the relative sizes of the image circles Γk of Ik under
S(k = 1, 2, 3), we distinguish two cases. Either, (i) we can construct
a circle Γ such that the Γk (k = 1, 2, 3) are tangent internally to Γ as
indicated in Diagram 2. Then S"1 maps Γ on a circle 7 that touches
the three sides of triangle ABC and contains z0 in its interior.

Or (ii) no circle Γ as assumed in (i) exists. Then the configuration
of the circles Γk (k — 1, 2, 3) resembles the one in Diagram 3, where
triangle A'B'C is the image of triangle ABC under S.

Let tx be the common tangent to I[ and J3' through J3', and let
t2 be the common tangent to Ii and I3' through C. Clearly, the two
tangents intersect in a point that lies within triangle A'B'C. Let t
be that common tangent to I{ and Ii which is shown in Diagram 3.
We construct the circle K[ which is tangent externally to the II

Diagram 3.
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(k — 1, 2, 3) and which lies outside triangle A'B'C Next we construct
the circle K2' which is tangent externally to //, /2' and K(. We con-
tinue this process until we come across the first circle, say, K's that
is tangent externally to //, // and iζf-i and that intersects or touches
the line t. That the K[ exists follows from the fact that the radii
of successive circles K{ (i = 1, -, s) increase. Rigorous arguments
for this we omit, in order not to lengthen the paper unduly. Finally
we construct the circle /' which contains the circles //, /2' and Kf

s in
its interior and which is tangent with each of them. In the case
when Ks touches the tangent line t, Γ is the degenerate circle t.
Under the mapping S^1 we obtain a chain of circles within triangle
ABC, each Kif where K{ = S~xKί9 being tangent externally to I19 I2

and Ki-r (i = 2, , s). S"1/' = / is the circle that is tangent ex-
ternally to Ilf I2 and Ks and that contains z0 in its interior. In the
degenerate case / will pass through z0. This completes the proof.

2 In order to associate linear transformations with the covering
circles we group them in pairs of circles of equal radii. The circles
with centers (2n, 0) (n = 0, ± 1 , ±2, •) and with radii (l/ΊΓ— 1) units
we pair in some way so that all are used up. The remaining circles
whose interiors intersect the y-axis are mapped under reflection in
the £-axis on congruent circles. Each circle we pίair with its image
under this reflection. Under reflection in the τ/-axis all the remaining
circles are mapped on congruent circles, and we pair them accordingly.

With every pair of circles I and /', with centers a and β, re-
spectively, and with radii r, we associate a linear fractional transfor-
mation V such that / is the isometric circle of V and /' that of V"1.
It is readily verified that V is of the form

Vz = [{βjτ)eiφz - ((aβ/r)eiφ + re-iφ)]l[(l/r)eiφz - (a/r)eiφ] ,

where φ may be chosen arbitrarily and where we used the normali-
sation det. V = 1.

Since every circle contains a point with rational coordinates, the
number of transformations is denumerable. We denote them by Vl9

Vr\V2,Vr\-- . Let G< = {V?|fc = 0 , ± l > •-.} {V? ^ I) and let
33 = * JJ. Gif the free product of the cyclic groups G> If U; G% "denotes
the union of the Gίf then U G* = S3 ([2]).

3 There remains to be shown that each element (Φ I) of 53 has
an isometric circle and that the radii of all circles are bounded. These
properties are consequences of the following lemma.

LEMMA 8. Let {Tn} be an infinite sequence of linear transfor-
mations which with every Tn contains T"1, and all of whose elements
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possess isometric circles. Let Kn denote the isometric disk K(TV)
and let A denote the empty set. If K{ Π Kk = A for k Φ i {%, k =
1,2, •••), then Kniz> K, the isometric disk ofW= T^T^ Tn±,
where n1} , ns are arbitrary positive integers, not necessarily dis-
tinct, except that Tn.+iTn. Φ I.

Proof. For i = 1, • -, s we put Tn% = Si9 J< = I(S{), H -

and K[ = KiSr1)' Let z be any point outside Ix. Then Sλz lies in
Kl, and hence outside I2. S2{Sλz) lies in Kiy and hence outside /3.
By an induction argument it follows that Wz lies in K'9. Since at
each step lengths in the neighborhood of z or its images are decreased
the lemma follows.

Let {Un} be a sequence comprising the transformations Vlf Vr\
V2, Vf\ •••. Then {Un} satisfies the hypotheses of Lemma 8 and, in
addition, the radii of the isometric circles of the Un do not exceed
unity. Hence we conclude that the radii of all elements of the cyclic
groups Gi (i = 1, 2, •) as well as those of 35 do not exceed unity.

We close with a remark. That the free product *Πi£r; is &n

isomorphic image of U; Gi is ^ n easy consequence of Lemma 8.
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