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1# Introduction. If / is a mapping of a product space X x Y
into a space Z, then the image of (x,y)eXx Y under / is denoted
by xy. A continuous flow j^~ on a metric space X is a continuous
mapping / of the product space X x R, where R is the space of real
numbers, onto X such that (1) for each r e R, xr is a homeomorphism
of X onto X and (2) for each x e X and r,seR, (xr)s = a?(r + s).

For each a e l the sets O(x) = {xr \ r e R}, O+(x) = {xr\r ^ 0},
O-(x) — {xr I r ^ 0} are called the orbit, positive semi-orbit and nega-
tive semi-orbit of x under ^~, respectively. The orbit O(x) is either
(1) a point, (2) a simple closed curve, or (3) a one-to-one and con-
tinuous image of R. In general one can not replace (3) by (3') a
homeomorphic image of R.

Bebutoff [1] has given necessary and sufficient conditions that the
entire collection of orbits of a continuous flow be homeomorphic to a
family of parallel lines in Hubert space. In the second section of
this paper we solve the simpler problem of describing those points
of an arbitrary metric space with orbits homeomorphic to R. These
will be the points which are neither positively nor negatively re-
current.

In the last section we discuss the structure of the orbit family
of continuous flows on a 2-cell, with special attention being given to
the a and ω limit sets of an orbit [5; 6; 7]. The author wishes to
acknowledge the referee's assistance in condensing the original paper.

2* The topological nature of the orbits under a continuous flow.
Consider a metric space {X, p} and a continuous flow ^ on X. The
following definitions are well-known in Topological Dynamics:

DEFINITION 1. A point xeX is said to be a rest point under
j r if

xr — x

for each r e R.
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DEFINITION 2. A point xe X is said to be periodic under JΓ and
J^~ is said to be periodic at x if there is a teR,tΦQ, for which
xt = x. If ^ is periodic at a non-rest point x, then the smallest
positive number w e R for which #w = x is called the primitive
period of #.

DEFINITION 3. A point x e X is said to be positively (negatively)
recurrent under JF if for each ε > 0 there exists a strictly increas-
ing (decreasing) sequence {rj of points of R such that l i m ^ r4 =
+ co(— oo) and

/ofari, a?)< ε

for all i.

THEOREM 1. The point x is neither positively nor negatively
recurrent if and only if Φ: R—>0(x) defined by Φ(t) = xt, teR, is a
homeomorphism.

Proof. Since the mapping /: X x R —> X is continuous, it follows
that Φ is continuous. Assume that x is neither positively nor nega-
tively recurrent. It follows that x is not periodic and thus Φ is a
one-to-one map of R onto O(x). Let {xt{ \ i = 1, 2, •} be a sequence
of points of 0{x) converging to xt0. To prove that Φ~x is continuous it
is sufficient to prove that l i m ^ ί* = ί0. If this is not the case, either
the sequence {£J contains a subsequence which is unbounded and x is
either positively or negatively recurrent or the sequence {£;} contains
a subsequence converging to s Φ ί0, and a? is a periodic point. We
conclude that Φ~x is continuous and Φ is a homeomorphism.

Now suppose Φ is a homeomorphism and suppose x is positively
recurrent. Then there exists a sequence {t{ \ ti e 22, i = 1, 2, •} with
lim^oo U — + co and such that lim ôo xt{ — x. But then, since Φ~ι is
continuous,

oo = lim U = lim φ-\xU) = Φ~\x) = 0 .
i—»oo i—>oo

Thus a? is not positively recurrent. Similarly, x is not negatively
recurrent.

The proof is completed.

THEOREM 2. Let xe X and let O(x) be homeomorphic to R. Then
x is neither positively nor negatively recurrent.

Proof. By assumption there exists a homeomorphism h of R
onto 0{x). Then x is not a periodic point. For if x is a periodic
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point, 0(x) is either a point or a simple closed curve which is homeo-
morphic to a circle. It follows that xtλ = xt2 implies tx = ί2.

Let reR and let h(r) = #£. Then £ is uniquely determined. Let
ψ: R-+ R be defined by ψ(r) = ί. Since fe is an onto homeomorphism,
^ is an onto map and ψ is one-to-one. Let φ:R-^O(x) be defined
by Φ(t) = xt, te R. Then φ is continuous, onto and one-to-one, and
ψ~x — h~λφ and thus ψ~τ is continuous. Now ψ~x is a continuous,
one-to-one, onto map of R onto i? and hence is a homeomorphism.
Since ψ — hψ'1, it follows that Φ is a homeomorphism and from
Theorem 1 we infer that x is neither positively nor negatively re-
current.

3 The stucture of the ct*a.nd 0)-limit sets in a continuous flow
on a 2-celU Let X be an open or closed 2-cell, that is, a homeomorphic
image of the interior of the unit circle or of the unit disk. Let j^~
be a continuous flow on X and let A c X be the set of rest points
under ^~.

We recall the following definition due to Whitney [9] (cf., also,
[8]).

DEFINITION 4. A closed set S c X is a local section of J^ if
there exists a τ e R, τ > 0, such that for each x e S

{xt\\t\^τ} n s = x .

If x e S, then S is called a iocαϊ section through x.
Whitney [9] (cf., also, [5]) proved, for the spaces under discussion,

that for each xe X — A there is an arc S c X such that S forms a
local section of ^ through x. Using this Whitney [9] (cf., also, [5])
proved the following:

LEMMA 1. If x e X — A, then there exists a local section S of
J?~ through x such that the set

E={yt\yeS,\t\^τ}

can be mapped homeomorphically onto the closed rectangle \u\ ̂ 1 ,
I v I ̂  1 in such a way that the arcs {yt | 11 \ ̂  τ}, for yeS, become
the lines v = constant of the rectangle while S has image u = 0,

The local section S of Lemma 1 divides the interior of the set
E into two disjoint subregions.

DEFINITION 5. Let x, S, and E be as in Lemma 1. That one of
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the two regions into which S separates E> which the orbit O(x) of x
enters under increasing values of r, will be termed (after Bendixson
[3]) the positive side S f of S. The other region will be termed the
negative side S~~ of S.

LEMMA 2. Let x, S, and E be as in Definition 5. Then each orbit
which enters E crosses S from S~ to S+ under increasing values of r.

Proof. Suppose the contrary. Then there exists a sequence {y{}
of distinct points of S converging to y e S such that the orbit O(y^
of each y{ enters one of the two regions S+ or S~ under increasing
values of r, while the orbit O(y) of y enters the other region under
increasing values of r. Thus for any t such that 0 < t < τ the points
y{t and yt lie in disjoint subregions of E. This is impossible since
lim^oo y{t = yt.

Let S be any local section of j^~ and let yeS. Let S~ and S+

be as in Definition 5, it follows from Lemma 2 that S~ and S+ are
independent of y. Thus if O(x) is any orbit such that O(x) Γ\ S Φ 0,
then each crossing of S by O(x) is from S~ to S f under increasing
values of r. Let the orbit O(x) meet S in successive points xf and
%" in the positive direction on 0{x), then x is an interior point of
X and (x'x") U Slf where (x'x") and Si denote the subarcs joining
x' and x" of O(x) and S, respectively, is a simple closed curve lying
in the interior of X. Let C = {x'x") U Slf it follows that X - C
consists of exactly two components. Denote by C+ that component
of X— C which lies on the positive side S+ of S along S± and by C~ the
other component of X — C. Any simple closed curve C determined
in this manner will be termed a harbor [7].

LEMMA 3. If C is a harbor, then the positive semi-orbit O + (y)
of each y£C+ lies in C +

 y and the negative semi-orbit O^(y) of each
y e C~ lies in C~.

Proof. If yeC+ and 0+{y)f] C~ Φ 0y then O+(y) must first
cross S on Sλ and hence cross S from S+ to S~~ under increasing
values of r which is impossible. If yeC~ and 0-{y) Π C+ Φ 0, then
O-(y) must first enter C+ on S1 crossing from S~ to S+ under de-
creasing values of r which is also impossible.

Using Lemma 3 one can construct a very short proof of the
following result proved by Bohr and Fenchel ([4], Vol. II, C38).

If x is a positively or negatively recurrent point of X under
^ r , then x is periodic under ^ .

Since the only points of X with orbits not homeomorphic to R
are those which are either positively or negatively recurrent, it follows



THE STRUCTURE OF THE ORBITS AND THEIR LIMIT 567

that (3) may be replaced by (3') for continuous flows on 2-cell. Thus
if xe X, then the orbit O(x) is either a point, a simple closed curve,
or a homeomorphic image of R.

DEFINITION 6. A point y e X is said to be an ω-limit (a-limit)
point of an orbit 0(x) c X if there exists a strictly increasing (de-
creasing) sequence {rj of points of R such that l i m ^ r< = +co(—co)
and lim^oo xr{ = y. The set of all ω-limit (tf-limit) points of an orbit
Ό(x) will be denoted by w(x) (a(x)).

THEOREM 3. If x is a nonperiodic point of X under ^ , then
<o(x) Π oc(x) c A.

Proof. Suppose there exists a point y in the set ω(x) Π oc(x) — A.
Choose a local section S of ^ through y. Then, since y e ω(x) f] a{x),
O+(x) and O-(x) must both cross S an infinite number of times near
y. Thus an arc {x'x") of O(x) and a subarc Sx of S form a harbor
C. Let p and g denote the end-points of S and assume the labeling
so that the order p, x\ x", q holds on S. Then the half-open subarc
{pxf) — xf of S lies in C" while the half-open subarc (x"q) — x" of
S lies in C+. Now 2/gSi since O(x) can not cross S on Si. If
y € (p#'), then ?/ ί ω(ίc) since the positive semi-orbit 0+{x") from x"
on lies in C+. Thus y£{pxr). If ye{x"q), then ί / ? φ ) since the
negative semi-orbit O_(#') from a?' on lies in C~. Thus y£(x"q).
This is a contradiction of the fact that # e S and y e ω(x) Π a(x).
Hence the theorem is proved.

Throughout the remainder of this section X shall denote a closed
2-cell. Then X contains at least one point a such that a is a rest
point under the continuous flow J^" [2]. Thus A Φ 0. Let F denote
the family of orbits {O(x) \ x e X — A}. Then each member of F is
either an open arc or a simple closed curve. Since X is compact
each of the sets ω(x), a{x) for any x e X is a non-null closed and con-
nected subset of X and is the union of points of A and curves of F
;[8]. It follows from a theorem due to Kaplan [5] that ω(x){a(x)) is
identical with any nondegenerate periodic orbit contained in ω(x)
(a{x)). Thus the set ω(x)(a(x)) is either the union of points of A
and open arcs of F or a simple closed curve of F.

THEOREM 4. Let A be a totally disconnected set. If z is a non-
periodic point in O(x) — 0{x), then O(z) is an open arc whose closure,
0{z), is either a closed arc with end-points in A or a simple closed
curve consisting of the orbit O(z) together with a point of A.
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Proof. The theorem will be proved when it is shown that a)(z)
c A and a(z) c A, since each of the sets ω(z), a(z) is connected and
A is totally disconnected.

Thus suppose y e ω(z) — A and let S be a local section of J^~
through y. Then O+(z) must cross S an infinite number of times
near y. Thus there exists successive points z\ z" in the positive
direction on O+(z) such that z e O-(z') — z' and z\ z" e S. Let C be
the harbor formed by the arc (z'z") of O(z) and the subarc Si of S
between z' and z". As in the proof of Theorem 3, y and 0+{z") — 2"
lie together in C+ while O_(«) c C~. Since O(a?) — O(cc) Φ 0, α? is a
non-periodic point. Thus, by Theorem 3, z is in exactly one of the
sets Q)(x), a(x). z e ω(x) implies O(z) c ω(x) and z e a(x) implies O(z) c
a(x). If z e ω{x), then O+(x) must cross S entering C+ under increas-
ing values of r. By Lemma 3, O+(x), from where it enters C+ on,
lies in C+. Then α>($)cC+ which is impossible since 0(z)aω(x)f

0-{z)aC~ and a(z) φ 0. Thus 2 6 φ ) . Let U(z) be a neighborhood
of z such that Z7(z) c C~, and let α?' be a point on O(a?) in U{z).
Then, by Lemma 3, 0-{xr)aC~. This together with yeC+ implies
y ί α:(ίc) which is a contradiction of O(z) c α($). Hence 2; g α(aj). But
2 is in one or the other of the sets Q)(x), a(x). Thus the assumption
that ω(z) — A Φ 0 is false and ω(z) a A. In a like manner a(z) c A.
It follows that lim^+oo zt = ω(2;) e A and lim -̂βo zt = a(«) G A. Thus
O(js) = O(«) U o)(z) U α(«) is a closed arc with end-points in A or a
simple closed curve consisting of O(z) and a point of A according as
ω(z) Φ a(z) or ω{z) — a(z).

The proof of the theorem is completed.

THEOREM 5. Let A be a totally disconnected set and let xe X —
A be such that 0{x) ί l A ^ O . Let a e ω(x) n A (a(x) f] A), and suppose
ω{x) Φ a (a(x) Φ a). Let G(a) = {O(z) \0{z) = O(z) Ua,ze O(x) - 0{x),
z Φ a}. Then G(a) is an at most countable set of open arcs, and if
G(a) = \Jn=iDn ^ infinite, and if {yn} is any sequence of points with
yn e Dn, then l i m ^ yn = a.

Proof. Let DeG(a). It follows that D is the orbit of a point

z e 0{x) — O(x) — A, and D = D U a is a simple closed curve. For
each DeG(a), let JO* denote the interior of D. Then if D3 and Dfc

are distinct members of G(α), the sets D) and Z)̂  are either disjoint
or one is a proper subset of the other. If Ό) c Dι

k9 then Dfc must
contain G(a) — Dk, since then 0{x) c Z>ί. Such a member of G(a) will
be termed a boundary arc of G(a). Clearly G(a) can contain at most
one boundary arc. Also, if Όά and Dk are distinct members of G(a),
neither of which is a boundary arc of G(a), then D) and Dι

k are
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disjoint. It follows that G(a) consists of an at most countable set
of open arcs.

Suppose that G(a) = \Jζ=1 Dn is an infinite set of open arcs. Let
{yn} fce any sequence of points with yn e DnJ and let lim%_co yn = z.
The proof of the theorem is completed by showing z — a. In order
to show z — a, it is first shown that zeA. If z g A, let S be a local
section of j ^ ~ through z. If Dk is not a boundary arc of G(α), then
z ί Dl. Since G(a) has at most one boundary arc, the removal of a
boundary are will not alter lim^^y^ Thus suppose G(a) has no
boundary arc. Then zeX — H, where H = U~=iD%

n. No Dn can
cross S more than once, since Dn is an orbit and Dn is a simple closed
curve. For each n, let Z^ denote the exterior of Dn. Then if S
crosses Dn, S must pass from Dι

n to Dp

n. But then S can cross at
most two Dn$. Hence ze A, for limπ_oo yn — z implies that an infinite
number of O(yn) = Dn intersect S. That z — a is shown next. Con-
sider the subarcs of Dn joining yn and a. From this sequence of arcs
we can choose a converging snbfequence converging to a set B. I t
follows that both z and a are in B. If be B, a Φ b Φ z, then b is
the limit of a sequence {^ J with y'njc e Dnjc. Thus, by the same
argument used to show ze A, it can be shown that be A. But the
set B is connected [10] and A is totally disconnected, hence z =
α = B.

This theorem is a generalization of a theorem due to Kaplan [7],

THEOREM 6. Let Abe a totally disconnected set and let xe X — A
be such that ω(x) Π A = UίUi °̂  iaix) n i = UίUi °O. T ^ w ω(x) (a(x))
consists of a finite number of open arcs, each of which is an orbit
joining distinct elements of \Jl=1 an together with |J^=i G(an)

Proof. Consider the sets G{an), n = 1, 2, ••-,&. Let G*(an) de-
note the point set union of all open arcs in G(an). One can easily
show that the point set closure of G*(an) is G*(an) U an and that
G*(a,i) Π G*(αy) = 0 for α, Φ αy. The set w(x) (a(x)) is connected. By
Theorem 4, the orbit of any point in ω(x) — Uί-i G(αw) ( φ ) — UίUi
G(an)) is an open arc terminating at distinct points of Un=i ctw. Thus
each α* must be joined to some a5 (i Φ j) by the orbit of some point
in o)(x) (a(x)). Clearly, no two an's are connected by more than two
such arcs. Hence, w(x) (a(x)) contains only a finite number of arcs
joining distinct αn 's. Thus the theorem is proved.
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