SOME DEGENERATE CAUCHY PROBLEMS WITH
OPERATOR COEFFICIENTS

ROBERT CARROLL

1. Motivated in part by connections with problems in transonic
gas dynamics there has been considerable interest in equations of
the form

1.1) u,, — K(t)w,, + dbu, + eu, + du — h =0

where d, b, e and h are functions of (x,t) (see here Bers [4] for a
bibliography and discussion). In particular there arises the Cauchy
problem for (1.1) in the hyperbolic region with data given on the
parabolic line ¢ = 0 (see in particular Protter [20], Conti [9], Bers [3],
Berezin [2], Hellwig [12;13], Frankl [10], Weinstein [25], Krasnov
[15; 16], Carroll [8], Germain and Bader [11], and Barancev [1]). Protter
assumes that K(t) is a monotone increasing function of ¢, K(0) = 0, and
shows that the Cauchy problem for (1.1) with initial data wu(x, 0) and
(%, 0) prescribed on a finite x-interval, is correctly set (under suitable
regularity assumptions) if tb(x, t)/V'K(f) — 0 ast — 0. Thus in particular
if b = 0 the condition is automatically true. Krasnov considers generalized
solutions and the equation

(1.2) _3 0 <

M g —h.
= >+2b +e %oy du

"ox i

Again the presence of first order terms b, complicates the matter and

(as with Protter for K(t) ~ t*) it is assumed that b, = O(t***B(t))

where 8(t) — 0 (additional assumptions are also made). Krasnov supposes
a—1+8,

Ya,;,EE, = ct*IE with b/t T e L? (0, >0 is a number for which bounds

+1+8¢

are determined in the proof) and finds solutions « such that u,/tw 7

e L? and u”/tl—?ﬂ e L*. Thus the growth of h appears to play an im-
portant role in determining a solution in this more general equation
(1.2). Slightly more general degeneracies for Ja,.££, are mentioned
by Krasnov but always in some comparison to a power of t.

It is one of the aims of the present paper to give a more precise
estimate of the allowable degeneracy in relation to the growth of &
and to give estimates for the solution. In particular we will not require
that K(t) be monotone. For simplicity we omit here first order terms
in 0u/ox;; this will be dealt with, in an abstract framework, in a
subsequent article. A summary of some of the present work was

Received March 26, 1962,

471



472 ROBERT CARROLL

given in [8]. We remark that an operational treatment of the type
of degenerate problems considered by Tersenov [24] and Hu Hsien
Sun [14] is also contemplated (this involves an equation of the form
K(t)u,, — u,, + bu, + eu, + du — h = 0 with data given for t = 0). As
indicated above our results generalize in certain respects those of
Krasnov, however the methods employed here are quite different; for
example Krasnov relies heavily on a Galerkin type method for existence
whereas we employ an energy method based on work of Lions [17].
Further generalizations in our framework are clearly possible (see [16]).

2. Following Lions (see [18] for an extensive bibliography and
treatment of operational differential equations) we reformulate (1.2)
as follows. Let V and H, VCH, be Hilbert spaces, V dense in H,
with the topology of V being finer than that induced by H.* The
norms in V and H are denoted by || || and | | respectively. Let
(u, v) — a(t, u, v) be a continuous sesquilinear form on V x V for ¢ fixed,
0<t<b< o, with a(t, u, v)=a(t, v, u). Assume that t—a(t, u, v) € C'[0, b]
for (u, v) fixed. We recall (see [18]) that the form a(t, u, v) defines an
unbounded operator A(t): D(A(t)) — H by defining D(A(t)) to be the
set of € V such that v —a(t,u,v) is continuous on V in the topology
of H. Then we can write for w € D(A(%)), (A(t)u, v)=a(t, u, v) forve V.
Now let {B(t)} be a family of bounded Hermitian operators in H with
t—B(t) e £ (Z(H, H)) (here £™(G) is the space of m-times continuously
differentiable functions of ¢ with values in G and <I(H, H) is the
space of continuous linear maps H— H with the topology of simple
convergence—see [5]).

Let now + >0 be a numerical function with + 1 as t—0,
+ € C%0, b]. Here + does not necessarily approach . We assume ¢
is another numerical function such that ¢ > 0 on (0, b] with ¢ — 0 as
t— 0 (in what follows all limits such as ¢ — 0 will refer to ¢t — 0).
Let f be given such that +.fe L*(H) (for the spaces L*(H) and the
integration of vector valued functions see [6;7]). We assume g € C*(0, b].
Let # be the Hilbert space of functions w on [0, s] such that «(0) =
0, vu' e L*(H), and wue L*(V) with

2.) iy, = | Uoully + 1w dt

(w is a numerical function to be determined, @ >0, @ — ). Here
all derivatives are taken in the sense of vector valued distributions in
'(H)(see [23]) and . %, may be proved complete by standard arguments.
Let now 57, be the space of functions h which satisfy h(s) =0,
hiy € L*(H), b'[+ € LX(H), and ghlwe L*(V). Set

* H is also assumed to be separable for simplicity in a later argument; this condi-
tion is not necessary however.
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@2 b=ttt u b + BOW, B - @, W)t
and define
2.3) (k) = S( £, hydt .

We note that (2.2) and (2.8) are well defined for ue &,, he 57, and
f as deseribed. Thus assume @ as indicated has been given; then we pose

Problem 1. Find s and u e & such that for all he 57,
(2.4) E(u, h) = L) .

Naturally we wish to find the best @ in some sense when posing
problem 1. Here best will be left vague for the present in remarking
only that @ furnishes a measure of how rapidly the solution # tends
to 0 as t—0. We define now .9, to be the space of functions %k

such that k = Stgohdej— for h e 57, where @ is a numerical function to
0

be determined (in general @€ C’[0,s],® >0 on (0,s], and  — 0 as

t—0). Clearly k' = @h and thus k'/py = k/y € L*(H). For suitable

choice of the numerical function 6 > 0,0 — o, we define 5%, as a
prehilbert space with norm

2 . 8 . kl 2
(2.5) Iellg, = § {uowlr + | 2| ot
LeMMA 1. Define v = @/q and assume
(i) py*e L~
(ii) o <8

(iii) w*v*e L*
t
(iv) o* S wdEe L' with @, q, w, ¥, 6 € C°0, s] all positive on (0, s].
[1]
Then .%%,C %, algebraically and topologically.

Proof. The following estimates are straightforward

1= 22 <4 2

(2.7) [|0k|* = | ’BS:% wvhd“g‘l |2 = 32S:a)2'v2dfgz

s
w

Thus by (2.7) for ke 9 and ¢ satisfying the hypotheses we have
g ||0k|PdE < oo; also by (2.6) and the fact @ < 9 it follows that Ikl g, =

¢|lkllsg,- From (2.7) we obtain also the result that [|[k|*—0 as t—0
which proves that in fact <7 c #.
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LEMMA 2. Assume (i)—(iv) and
t
(v) 1/v§ widg e L
(1]
(vi) P'y*el”
(vii) 1/wo*e L~
(viil) —(1/v) 1/0*e L=, v = 0. Assume also that a(t, u, u) = «a |ju|p,
then

(2.8) OReE,(k, k) = S:Hakuz {—a<%)3l - %} dt
8 k'
+ g —

where, for k = Stcphdf, E(u, k) = E(u, h) .

}2 (P9 — 2By dt

Proof. Formally we have
(2.9) 2ReE,(k, k) _-—a(t, k, k) lo - S:{(%)Ia(t, k, ) — (%) @', k, &)} dt}

+ 2Re5”l(3k', dt — @ hp| +
e 0

S“go' \hdt .
0

Noting that lim@ |k|* = lim 1/@ |k’ |* = 6* = 0 will exist if all the other
terms make sense we have

(2.10) .;17 alt, b, 1) = S|k} = & S:co%’déS:I I%‘_I |’d§

which vanishes ‘as t — 0. Note by the Banach Steinhaus theorem it
follows that (see [18])

(2.11) la(t, u, k)| < cllu]|||h]|
(2.12) |a'(t, u, B)| < ¢)f|ull||R]|

8 1 8 kl 2

— ! ENdE] < _— 2t < oo ,
(2.13) |So¢ (B, k') t! _BU = } pydt <
Moreover under the hypotheses above

9 et = (o] 2Lt <on

(2.14) ) 2 |k (o wl dt <
(2.15) |S a'(t, k, k)dt‘ < c,s L lIok|Pdt < e

)

216 — S (-q-

. 1Y 1
< — (=) = 2
= a(t, k, k)dtzcga <v> 5 [|0k|Pdt < oo
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Thus (2.9) is valid and (2.8) follows.

The formula (2.8) indicates the properties desired of 6 and @ in
order to obtain an estimate ReE,(k, k) = 2]|k|[},, thus enabling us to
apply the Lions projection theorem (see [18]). We will give here a
natural choice for 0,  ete. without seeking the best possible result.
To this end set

, _ [t dE

(2.17) @=¢ SO el

Then @ € C']0, b], »—0, and since + is monotone ¢/p’ = Wgtdg/q;ﬂ < Nt.
0

Hence @y = ép/p’ — 0 also and thus 1/py — . Next let R+ 0 be
a constant and

(2.18) “<%> FoRv= [6, + Sl”Razdg]

where 6, > 0 is determined by v(s). Thus v — 0 corresponds to o ¢ L*
and in any case, noting v = Rv*0,

@19) L[ wvie< | ovae = L[1- Z—%] =1 - H—_g_zéi .
\ ;

(This shows that Sta)zv?dé < « and that 1/v Sta)“’v?dej— < M. The last
term in (2.19) is taken to be zero if & ¢ L* or v(0) = 0, and v(0)/v(%) is seen
to be bounded by one in all other cases.) Thus (i), (ii) (by assumption),
(iii), (v), (vi), and (viii) hold. Also the @'* term dominates in the
second integral of (2.8) for s small. Now for (vii) we note that 1/v6* =
/YR and v = (@/q)’; thus

(2.20) £=ﬂ~£:£[1_Q'¢”S‘§§T]_
v P q P q 0 A

If we assume for example that (q¢'v*/q) Stdéln,!rz <1—¢, for t small
then v'/v = ¢,¢'/p — o« since @, @ > 0 on EO, b] and @/’ — 0. In any
case if v'/v— o then v/v' — 0 and 1/v0°— 0 which means not only
that (vii) holds but that the —a(1/v) 1/6* term dominates in the first
integral of (2.8) for s small. Note here that @ and hence v are defined
on [0, b] independently of s by say (2.17) whereas (2.18) determines ¢*
on any interval (0, s] for v given. Finally with regard to (iv) there
are various hypotheses on w and v which would work but we assume
simply that

.21) w="_0<e<1

,UZ—E
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Then if say ve C"0, b]

Soa (S @™ 2d$) dt = S = (S v v’d&) dt

1 A 1
R + ¢) So e Re(1 + ¢)

(2.22)

¥ (1) | .

It should be noted that v € C°[0, b] now implies that @ < ¢d since w?/d* =
Rv* and this would be a condition equivalent to (ii). We remark that

v — 0 implies w ¢ L* since st’df— = Ssv'/vz‘fdé = 0(1/v*°). This proves
t t

LemMMA 3. Assume a(t, u, u) = a||u|], v'[v— o, ve CY0, b], w* =
VT, @ = cS d&|y*, and v =1/0, + S Ro*de. Then o =<c¢d and (i),
(iii)—(viii) hold with ReE(k, k) = Qllk”%s for s sufficiently small.

Using the above lemmas and the Lions projection theorem (see [18])
there results

THEOREM 1. Under the hypotheses of Lemma 3 and the conditions
on a(t, u, v), B(t) stipulated above there exist functions w (w¢L* if
v — 0) such that for s small problem 1 has a solution.

Proof. We need only check that the map u — E,(u, k): & — C is
continuous for ke . % fixed and that the map k — L,(k) = L,(h):
%, — C is continuous. This verification is immediate.

Now since ¢ > 0 on (0, b] we can treat qa(t, u, v) as a nondegenerate
form on say [s/2, b] and apply Lions’ results for such problems (see
[17; 18]). We want to solve

Problem 2. Find ue .% such that Ey(u, h) = L,(h) for all he 5%.

Thus suppose the problem has been solved for [0, s|], that is suppose
problem 1 has been solved with solution w,. Then following [17] let
peC' with p=1 on [0,2/3s] and p =0 in a neighborhood of s. Set
%, = % — Pu,; then u, = 0 on [0, 2/3 s] and u, = u for ¢ = s. The problem
2 for u becomes

(2.23) By, B) = S:(f, hydt — SZp’[(Bul, k) + (&, B)ldt

— ('tgatt, w, ph) + (Bt 1) — (i, (oRY N .
Now if he 57 we see that phe 57; hence
@.24)  Ey(u, b) = S:(f, h — phydt — S:p’[(Bul, h) + (&, R))d -

In particular we see that everything vanishes on say [0, s/2]; hence
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we pose the Cauchy problem with initial data given at s/2 as follows.
Let 4, be the space of u such that wwue L*(v) and '€ L(H) on
[s/2, s/2 + s;] with u(s/2) = 0. The space 57, corresponding to 57,
is defined similarly on [s/2, s/2 + s,]. We extend w and ¢ to be constant
on [s, b]; then since 4, , 0 ete. are positive and continuous we may
define say Falrny in terms of u € Ly(V) and v’ € LXH). Let E,, ., denote
the terms in FE, integrated over [s/2, s/2 + 3113 and denote the right

side of (2.24) integrated from s/2 to s/2 + s, by I:E,,2 s, (k). Then consider

Problem 3. Find u,€ .7, such that E,, oy (Usy B) = Ly o, () for
all he SF,p,,.

Problem 3 has a (unique) solution for s, sufficiently small by [17]
and the above extension procedure may be repeated in steps of length
8,/2. Thus u will eventually be determined on [0, b] satisfying problem
2. Hence

THEOREM 2. Under the hypotheses of Theorem 1 there exists a
solution of problem 2.

3. Suppose now that E,(u,h) =0 for all hezz,. Let h =
—S‘Judg, W = Ju,J— . Then
t

LEMMA 4. Assume
t

@) Jje?| defyte L

(b) Jjwy e L~

© JZ/aﬂS (o) dee L. Then he 57, if ue Z and h = —S Judg.
0 t

Proof. Clearly &'/ =(J|wy)wu € L*(V)(hence certainly b’/ € L*(H))
and h(s) = 0; also

@y |[E=cl|2 g(“—nwuuds) 2,2 de [ Noulra
on  []lgs]es] &0 aafmra

Using the Fubini and Tonelli theorems (see e.g. [19]) the lemma follows.

We note now explicitly the fact that if we L*(H) and « e L*(H)

(' taken in =’(H) on (0, s)) then % may be identified with a continuous

function and %(0) = 0 makes sense. Indeed for u, determined almost

everywhere, we see that w'e L'(H) on [0, s] and clearly D% = %' in
t

<'(H) where % = S wdée £%(H) (see [23]). Thus D(# — u) =0 and
0

by [21] for any he H,(# — u,h) =¢, in &2’. Hence (& —u, k) =c¢,
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almost everywhere as a function and thus # may be identified scalarly
with the continuous function #%. Since H is separable we may then
identify # with a continuous function and #(0) = 0 is meaningful (see

[23], [22]). Hence u = #% follows. Thus setting u = Stu’dé, h = —Sah’dé
0 t

@3) 1w = |- [ we, vaarde|

<o S v [ o = 2 [ i £ o
<2 o~ orvwrae o ¥ o).

Thus (#, 2) = 0 at ¢ = 0 and we note that S (Bw, h)dt = ——S (B'u, h)dt —
§ (Bu, k') dt. Hence E(u,h) =0 becomes, with ~ as above

(3.4) S{F alt, W', h) — (B"u, h) — J(Bu, u) — J@, u)} dt=0.

Set now §* = lim q/J a(t, h, ) which will exist if everything else makes
sense in the following. Then we have

LEMMAt 5. Assume (a)-(c) from Lemma 4 and

@ 7| defe L

(e) —J'lw*eL>;J" <0

(f) J—> o; J[J' —0

() (q/JY[(q]J)— . Then if h= — SsJudS, we 7, and if a(t,h,h) =
||k it follows that ‘

65 [{a(5) G- o(4) S|4

L2 e ) mra o

Proof. By (d) we have

JlngJ(Slwldf) <J§ B [ lywdg—0

whereas from (e) there results —J' |u|* = —J'/@* |wu|* e L'. Next by
(f) and (e) it follows that lim Jq/w* = lim (J/—J') (—J 'q/®*) = 0; hence
Jglw*e L~ and

@6 |(L) linlrde= {'(L) ([T 1ullde) d

= () (1 5 aelonieae)ar = ([owirac) | St e
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Note here ¢/J—0 and ¢/J = S (q/J) dE; also by (g) surely S q/J||R|PdE<

w. Now by (f) it follows that J|u|* = (J[J') J'|u|*e L' and finally
we remark that

60 |2Re| B, myag| < B[ 1@ tu + lu@ 1) dedt
< 3{fiout (4 e+ [ £ ourar).

Here the Ji/w* term makes sense since Jtj/@* = (J/—J')(—J 't[w*) — 0
by (e) and (f). Then we note that

o V.78 = () (27 (7))

but by 1’ Hospital’s rule lim 1/J SstE = lim J/—J* = 0 (here note that
t
J' #0,J+# 0 for ¢t > 0). Hence we may write

3.8) b+ So{<jqf> alt, b, ) + (-3-) @', b, h)} dt

+ 2ReS’(B'u, h)dt + 2ReSSJ(Bu, wydt
0 0
— {71l dt + TluEP = 0.
0

The lemma follows immediately.

Now let @® = v'[v** as before and consider the following choice
for the function J

(3.9) J=7+ égsa)zdf; ~L .
t

It follows that (e) holds (we assume w, v ete. are as before) and since
v = @[q (d) is a consequence of the fact that

610 cfwas| T <splrag=ip| - (L) %

=¢ R[v(t) 'v(s)] R [Q() ?(0) q((s;]

Note now that with the above choice of @w we can write J in the
form J=j+¢ S‘v'/v"‘8 dE=7—(¢/1 —¢) A/v(s))= + (¢/1 —e) (1/v(t))=.
If j is taken to be j = (¢/1 — &) (1/v(s))*® then

@11 -5 G = G)

Thus if v/v' — 0 then J/—J’'— 0. Moreover since w* = (v'[v) (1/v)'™* it
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follows that w — o if v — 0 and v/v' — o and also by (8.11) J—
if v— 0. Hence if v'/v — o and » — 0 then (f) holds and w — .

Consider now condition (a); using (d) we have J?/@? S‘d{:/@lr’ =cdlw*=
0
—¢éc J|J'— 0 which implies (a). For (¢) we note

o [5G

< (Lt A e aa

However 1/’ st”dé = vy 531;’/'02“E dé = (1/1 — &) {v/v' — ¢/w?} and if
t t

v[v' — 0 and ®w — o it follows that the first two integrals in (3.12)

exist. The last integral in (3.12) is bounded by

o [ Lvae] [Trae | S -

The first term in the integrand vanishes as ¢ — 0 by the above remarks
and using 1’ Hospital’s rule on the second term we note that

lim S a)zdég dnjw* = lim (S: 2d§>2/a)“ which is zero by the above (note

here if we L* (3.12) is seen immediately to exist and no recourse to
the preceding argument is intended). Thus if /v — o and ® — «
(c) surely holds.

Now since J/wy = (¢/1 — ¢) 1/wyv*—® it follows that (b) holds if
W% > c[y? or (V'[v)e > c[y®. It is not necessary that 4 | oo in general;
when v — 0 (b) will hold if " > ¢/y*. Thus (b) holds if » — 0 and

(3.13) 1-(¥0)f, ‘f > &q

since v' = @'[q — ¢q'[¢* and ¢ = € Stdé/a/rz. In particular (3.13) holds
13 0

if for example (v*¢'/q) S dé[y* =<1 — ¢, since ¢q— 0 (see here also
0 .

equation (2.20)). This proves

LEMMA 6. Assume (h) (¢'v*/q) S‘dé/ny? =1—¢ fort small. Then
if J = @1 — &) 1o (J' = —éw®) and v— 0 4t follows that v'[v — oo
and (a)~(f) hold.

We recall that @ and v are defined independently of s (see (2.17))
and our constructions and proofs have shown that for ¢ small
enough the (¢/J) w'q* and —J'[/®* terms will dominate in the first
and second integrals respectively of (8.5). It remains to check only
a few terms in order to see whether by suitable choice of s thig
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domination prevails over [0, s]. Now by (8.11) J/J’ is independent of
s as is J/w* (indeed a priori »* and ¢* depend only on v). Now since
—J" = éw* > 0 we have J monotone decreasing and clearly

1

0 S JEdE<s—t<b.

Hence referring to the proof of Lemma 5 we can establish domination
over an interval [0, s] in the second integral of (3.5). There remains
the (¢q/J) term for which we may write

(3.14) @=q+(1_8)?:%{1~8[ —%]},

Thus in particular the ratio in (8.14) is a priori independent of s and
the desired domination may be obtained on an interval [0, s] by choosing
s sufficiently small. Thus we have proved

LemMMA 7. If the hypotheses of Lemma 6 hold and (g) ts true it
Jollows that for suitably small s, S lou*dt < 0.
0

Clearly the condition (h) in Lemma 6 is much stronger than is
necessary but it gives a manageable criterion. We note now that if
q' = 0 then by (h) e, = [1 — ¢'9/q9’] =< 1 and from (3.14) it results that
@/J)[@ld) = (1 — €)@’/ — . Thus if q is monotone, for any ¢, 0 <
e<l, (g is a consequence of (h). Another case of interest would be
if 1—¢qplgp’ <@Q; then if ¢ <1/Q (g) holds. A somewhat better
result may be obtained as follows. We note that

q'y’ S‘ ag _  (logq q)

99’ q Joy’ (10(15 dé)

Then assume that Q = lim (¢’v*/q) Stdé/«/ﬂ exists as t —0. We note
that the conditions needed to apply I’Hospital’s rule hold and thus @ =
lim loq ¢/loq S d&/y*. Therefore for ¢ small (h) implies that

[

logq/loggz%gl——ez, 0<e<eg.

But tfor t 1small the logarithms are negative and thus log ¢ =
—gg t 1—gy
loq(S d§/¢2> or q = (S d&/a}r2> = ¢p'~®2, Conversely if q = cp'™™
0 0
and if @ = lim ¢'p/qp’ exists then @ <1 — ¢, for some &, 0 < & < &,
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Hence if @ exists as defined and ¢ = ¢@'~* then (h) holds and moreover
v = @lqg £ plep ™ = (1/c)p* — 0. We note that by construction if Q@
exists then @ = lim loq ¢/loq S dE[4y* = 0; hence ¢[1 — ¢'p/qp"] < e(1 + &)
for ¢t small enough and ¢, >0 go'iven. Choose now ¢, such that (1 +¢,)<1
or ¢, < (1 — ¢)/e then from (3.14) (¢9/J)/(q/J) = ¢@'|p for t small. This
proves

THEOREM 3. Assume Q = lim (¢'v?*/q) Ldf/a/ﬂ exists and that q =
¢ 1—gy 0
(S dé/ﬂlf") ,0<¢&<1. Then (h) holds, v— 0, and (q/J)[(q/J) — o for
0
J = ¢/v*"® as above. Hence for s small enough the solution of problem

1 vs unique.
Again using [17] we conclude

THEOREM 4. Assume a(t, u, u) = a |||, t — a(t, u, v) € C* [0, b], t —
B(t) e (< (H, H)), a(t, u, v) = a(t, v, u), g€ C*(0,b],g >0 for t >0,
qg—0 as t—0,9veC°(0,b],v >0,vT as t—0,yfecL¥H),q=
(S dgly?) (0 < &< 1), and Q = lim (¢ W/q)g dE|v* ewists. Then there
exists a unique solution of problem 2 for spaces &, 57, based on
Sfunctions w ¢ L* (w e C° (0, b]).

We note now that if @ + 0 then ¢’ < 0 for ¢ small is not possible.
Moreover if log g/loq S d&[y? =z ¢, > 0 then ¢ < (Std’g'/a/l‘2>“ and we may
assume ¢,<1 since if ¢ < v, 7 =0,7v—0, thenqg < v* forany e, <1
when ¢ is small. In fact ¢, < 1 is necessary if we are to have ¢ =
cp'™® and thus the case Q+ ?swith q gt(g(:d&/q&“>mz amounts to an
estimate of the form (Sodé/qlr“) ‘<qg=< <Sod$/q/r2) ,0<e, <1, 6,46, =
1. Finally we remark that under the hypotheses of Theortem 4 if
lim ¢'y* exists then by 1’Hospital’s rule lim¢'y* = limgq / S d&|y? =
lim ¢ g/ = . This implies that | « if ¢’ is bounded but gn a case
such as ¢ = %, 4 | « is not required.

4. Let now ﬁ%’ be the completion of .97, for the norm || |[|e.
Then we may pose problem 1 for ﬁ“ instead of & (call this problem
1) and repeating the procedures of §§ 2 and 3 there will exist a function
#e % solving problem 1’ if s is small enough. It may be easily seen
that the elements adjoined to .9%; by completion correspond to functions
k such that ke LAV), k'|py e LX(H), and %(0) = 0. Moreover the
injection : . %, — % may be extended by continuity to a continuous
map i: 5% — Z,.

LEMMA 8. 5% C.Z algebraically and topologically.
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Proof. We need only sgow, after the above remarks, that 7 is an
injection. Let k, — k in s k, € 2%, and assume that i(k,) =k, —0 =
t(k). We want to show that k=0 in % First k, =1i(k,)—0 in
%, means in particular that wk, — 0 in L*(V). Hence (see [6], p. 133)
there is a subsequence [|wk,,|['— 0 almost everywhere. Therefore
[0k, |I*— 0 almost everywhere and by the assumption k, — % in A
we know ok,, — ok in L*(V). Theorefore we must have (see [6], p. 133
again) Jk,, — 0 in L¥V), and 6k = 0 in LA(V) (s1m11arly E'|py = 0in
L”(H)), thus in particular £ = 0 which shows that ’b(k) = 0 implies
k=o.

Let now # € % be the solution of problem 1’ above. Then @€ &
by Lemma 8 and by the uniqueness Theorem 3 we must have %4 = u
for s small where u is the solution of problem 1. Hence

THEOREM 5. Let the hypotheses of Theorem 4 hold. Then there
exists a unique solution w of problem 2 which belongs to .7%.

Now consider the proof of the Lions projection theorem given say
in [17] (see also [18]). We have ReE,(k, k)= 2 HkHA for ke 9%
and wish to solve E,(u, k) = L,(k) for ue A (the equatlon holding for
allke .2). Then we write, following Lions, L,(k) = (4, B))z,0 x € e,
and E,(u, k) = (4, Lk))g., Llc € %, Here L: 9%;— 9, is a densely
defined linear operator in .%%,. But ke 9%

(4.1) Q1klig, = 1((k, L)z, | < |1klig, || Lz,

which implies L is one-to-one. Moreover if R, = L(.%;) then L™ is
a bounded operator on R, and may be extended by continuity to R,
deﬁnmg L R,— % Let P: 5% — R, be the projection and set R =
L~'P which is thus everywhere defined and continuous on % Then
we want to find w such that ((u, Lk)) = ((x, L™ Lk)) = ((x, BLk)) =
((R*x, Lk)) for all ke .24,. Thus a solution is u = R*)y and by the
subsequent uniqueness result # = R*y is the only solution. Using this
sketch of the proof of the projection theorem we can bound #. Indeed
lullg, = II1R*xllz, = ¢llxlls, since R* is bounded. Moreover

o= §{os B = (o {4

" (\rwrrat 1w at)” < ((1orrat) "ikilg, = Flklg, -

This means (/see [5], p. 111) since .%%; is dense in % that Il < F =
8 1/2

(S [4f |2 dt> . Therefore we have proved
0

THEOREM 6. Under the hypotheses of Theorem 4 and for s suf-
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ficiently small the (un/'ique) solution of problem 1 satisfies the estimate
llullg, < o(|1wrrat)".

The estimate can clearly be extended to [0, b] which given

COROLLARY. Under the hypotheses of Theorem 6 the wm’gue solution
b 1/2
of problem 2 satisfies the estimate ||ullg, = c(g (f lzdt) .
: 0
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