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1. Introduction* A real ^-square matrix is called doubly stochastic
if it has nonnegative elements and each row and each column sums
to 1. For any two ^-vectors x = (xlf , xn), y = (ylf , yn), let #* =
(xf, , x*) and y* = (yf, , y*) be the vectors obtained from x and
y by rearranging their respective components in nonincreasing order.
Then for T doubly stochastic and y — Tx it is not hard to show that

( 1 )

The converse is also true. If the inequalities (1) are valid for every
pair of vectors related by the equation y — Tx, then T must be
doubly stochastic. Employing a continuous version of (1), one can
define on a space of integrable functions a class of linear operators
which inherits many of the familiar properties of doubly stochastic
matrices, A concrete representation of these operators will be
obtained and a comparison made with the doubly stochastic operators
defined by Rota [6].

In the following all functions and variables will be real. Measure
will be understood to mean Lebesgue measure and will be denoted
by μ. Sets will always be measurable and the term "almost every-
where " will usually be suppressed. L1 = L1 (0,1) and L°° = L°° (0,1)
are to have the conventional meaning as the spaces of integrable
and essentially bounded " functions " on [0,1], with [L1] and [L°°] to
represent the operator spaces of L1 and L°°. Convergence is to be
taken in the point wise sense unless the contrary is indicated.

2Φ Rearrangements* If / is a measurable function on [0,1]
consider

m(y) = μ{x:f(x) > y}.

This function is nonincreasing, right-continuous and defined for all
values of y. As such, the function m admits an inverse which will
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be denoted by / * . To fix ideas and remove certain ambiguities of
definition it is convenient to define

f*(x) = sup y
m(y)>x

for 0 < x < 1. It is not difficult to show from this definition that
/ * is also nonincreasing and right-continuous. The function / * is
called (somewhat inaccurately) the decreasing rearrangement of / .
The definition given here represents a departure from the customary
definition of / * as the decreasing rearrangement of | / | (see [1],
Chapter X). If {fn} is a convergent sequence of measurable functions
on [0,1] with limit /, then / * = limn/*. Thus, it is possible to give
a more suggestive definition of / * by first choosing a sequence {σn} of
simple functions converging to / . Then the corresponding sequence
of rearrangements {σ*} will form a sequence of decreasing step func-
tions converging to / * . Moreover, if the simple functions converge
monotonically so too will the step functions (for g ^ / implies g* ^ / * ) .
The functions / and / * are equally integrable (or non-integrable) and
their integrals are related by

/ g\'f* 0 ίS s < 1,
o Jo

Jo Jo

Furthermore, if / and g are integrable, the inequality

(V + fir)* ̂  ί/* + (V O^s^l
Jo Jo Jo

is easy to verify.

3* ©-operators* A partial order •< can be introduced in U by
defining g <f whenever

Jo Jo
0 S s < 1,

JO JO

and

(It is instructive to compare this with (1)). The class of linear
transformations T: L1 —> L1 which satisfy Tf <f for each integrable
function / will be denoted by @. Such transformations will be
referred to as ^-operators. As an illustration, the transformation
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which carries each / e L 1 onto the constant 1/ is an ©-operator.
Jo

Other examples arise from measure preserving transformation s —> π(s)
of [0,1] by defining (Tf)(s) = f(π(s)). Their behavior is plainly
reminiscent of that of permutation matrices. On the other hand,
the mapping /—»/* fails to belong to @ since it is not linear.

The use of the word operator for transformations in @ is intended
to imply that they are bounded. Indeed, any ©-operator is simultane-
ously a contraction operator in both [L1] and [I/30]. To see this,
suppose first that / ^ 0 and that on a set Eo of positive measure
Tf < 0. Then, for 1 - μ(E0) < s < 1, (Tf)*(s) < 0. Hence,

so that Tf<f is not possible. Consequently, if T is in @ then
Γ ^ 0 (i.e., / ^ 0 implies Tf ^ 0). If / is arbitrary write / = /+ - /-,
where / + and / " are the positive and negative parts of /. Then from
Tf = TfΛ — Tf~ and the preceding consideration,

^ Tf+

^ Tf~

and so

That T restricted to L°° is a contraction in [L°°] follows by a similar
argument.

A representation for operators in [L1] has been established [3]
whereby each such operator T is given by

<2) (Tf)(s)^-j-[K(sft)f(t)dt

as Jo

"where K is measurable on the square 0 ΪS S, t 5Ξ 1 and satisfies:

(a) K(0, ί) = 0 0 ^ ί ^ 1

(b) essup V[K( , ί)] = C < °°
t

(c) \ K( , t)f{t)dt is absolutely continuous for every fe L1.
Jo

By V[K(-,t)] is meant the total variation of K for t fixed. The
kernel K may be chosen in such a way that the constant C in (b)
equals || Γ||. It will be assumed that this has been done.

While the derivative of the integral in (2) may appear awkward,
it is ordinarily not possible to replace this representation by an
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integral transformation (necessary and sufficient conditions are given
in [3, p. 146]). In particular, the identity transformation (an @-
operator, incidentally) cannot be represented in this way. On the
other hand, if one takes K(s, •) to be the characteristic function of
the interval [0, s], it is clear that (2) gives the identity. More
generally, if s —> π(s) is measure preserving, set E8 = TΓ̂ flΌ, s]) and
define K(s, •) to be the characteristic function of E8. Then for
0 < s < 1 and h > 0 sufficiently small,

•1 \\κ(s + h,t)- K(s, t)]f(t)dt = A- Γhf(π(t))dt
h io k is

or

f(π(s)) = J±-
as Jo

The kernel K(s, t) — s in (2) gives the operator which carries / onto

/ and is the only ©-operator with degenerate kernel K(s, t) — Φ{s)ψ(t).

The kernels in (2) corresponding to operators in @ also share the
following properties:

(d) s = [Kis, t)dt
Jo

(e) Si < s2 implies K(s19 •) ̂  K(s2, •)

(f) K(l, t) = l 0 ^ t ^ 1.

If 1 is used to denote the function which is identically equal to 1,
it is readily seen that Tl = 1 whenever T is in @, which gives (d)
For any measurable set E

4λ K(s, t)dt ̂  0
as JE

establishing (e), while

\ , t)dtμ(E) = \

implies (f). The importance of these three latter properties will be
evident when the representation theorem for Θ-operators is given.
However, the essential characterization of these operators is contained
in the following result:

LEMMA. Let Te[L°°] satisfy

0 g TχE ^ 1

χE = μ(E)
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for each characteristic function χ. Then T is bounded in the L1-
norm and admits a unique extension Te[L% This extension will
be an ^-operator.

Proof. Let σ = Σ O>%XB% be a simple function and suppose for the
present that 0 < a± < α2 < < an. Write

n

l — # i " l — U -β'i

Then σ = Σ 6iχi,i (6, > 0) and

° — \1Λ °ilίFi) — 2-ι ΌiλFi*

From the hypothesis then

0 <£ ('(Γσ)* - [(ΣbiTχFίr ^ \8ΣJ>i(TχFiy
Jo Jo Jo

A small modification of this argument covers the case where some
or all of the coefficients of σ are negative. Thus, Tσ <σ for all-
simple functions σ. Furthermore, in the IΛnorm, T acts on the
simple functions as a contraction and so, extends uniquely to an.
operator Te[U\.

Suppose now that / G L 1 and / ^ 0. Select an increasing sequence
{σn} of nonnegative simple functions converging to /. It follows that
{Tσn} will also be increasing and nonnegative. Therefore, Tσn—* Tf
both point wise and in the ZZ-sense. Accordingly, Tf<f. This
reasoning may now be extended to arbitrary / by splitting the func-
tion into its positive and negative parts, and completes the proof.

REMARK. The pointwise convergence of the sequence {Tσn} was-
required to guarantee the convergence of {(Tσn)*} to (Tf)*.

Representation theorem* A linear transformation T: L1 —> L1 isr
an ^-operator if and only if T admits a representation (2) wher&
the kernel K is measurable and satisfies conditions (a)-(f).

Proof. Properties (a)-(c) are necessary and sufficient for a trans-
1 This devise appears to have been first employed by F. Riesz ([5, p. 164]).
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formation (2) to belong to [L1], so that it is (d), (e) and (f) which
single out the class @. From (e) one infers that Γ^O, while (f)
gives Γϊ7/ = Γ/ for each feL1. With h > 0, 0 < s < 1 and χ an

Jo Jo

arbitrary characteristic function, (d), (e) and (f) combine to give

0 g -1 \\κ(s + h,t)- K(s, t)]χ(t)dt ^ i - \\κ(s + h,t)- K(s, t)]dt = 1.
h Jo h Jo

That is, 0 ^ Γχ ^ 1, hence the lemma applies.
It is natural to inquire whether the class @ is at all comparable

with the doubly stochastic operators introduced by Rota [6]. A
linear transformation P is said to be doubly stochastic if

(i) P ^ 0 and is simultaneously a contraction in [L1] and [L°°]
(ii) PI = 1 (recall that 1 represents the function which is

identically equal to 1)
(iii) P*e[V].

Condition (iii) is equivalent to the requirement that to each feL1

there corresponds a function P*fel/ such that

[fPg = [gP*f
Jo Jo

whenever g eL°°. (It should be remarked that this definition is equally
applicable when [0,1] is replaced by an arbitrary (positive) measure
space (S, Σ> y) ) From the lemma and (i) and (ii) one sees that each
doubly stochastic operator is also in @. On the other hand, it has
already been shown that each Θ-operator satisfies (i) and (ii). The
behavior of the adjoint T* of an ©-operator T requires some further
study. It is a fact, however, that the adjoint of any Θ-operator
(restricted to L1) is again in @ (this is not surprising, the transpose
of a doubly stochastic matrix is again doubly stochastic). To see
this, let χs be the characteristic function of the interval [0, s] and
take any geL°°. Then, using (2)

\\sTg = j * ( A ^K(σ, t)g{t)dt)dσ

Evidently, T*χs = K(s, •)• If Z<? i s the characteristic function of an
open subset G = U; (an h) of [0,1] then

which converges to an essentially bounded function (property (b)).
Since the constant in (b) can be taken to be 1, for each open subset
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<? one has

0 ^ T*ta ^ 1

Limiting arguments show now that T* satisfies the hypothesis of the
lemma and proves the assertion. In particular then, (iii) is satisfied
by every ©-operator. Therefore, the doubly stochastic operators
coincide with the class @.

4. Concerning the extreme points.2 The convexity of @ leads
naturally to questions of extreme points and convex closure. Con-
sider the space [L°°] endowed with the weak* operator topology. A
subbasic neighborhood of the null transformation in this topology
consists of all Te[L°°] for which WfTg < ε, where g eL°° and/e ZΛ

@ is closed in this topology. Hence, by a direct application of the
general compactness theorem of Kadison [2], @ is also compact.

It is not really necessary to appeal to the Krein-Milman theorem
for the existence of extreme points. For instance, those operators
induced by measure preserving transformations, as described earlier,
are extreme points of @. Indeed, any ©-operator which carries
characteristic functions onto characteristic functions is an extreme
point. These operators may also be characterized as the elements of
@ which are multiplicative on L°° (Tfg = TfTg). Proofs of the
preceding remarks are straightforward.

Now consider the operator T defined by (Tf)(s) = 1/2/0/2) +
l/2/((s + l)/2). This operator is the adjoint (restricted to L1) of the

Θ-operator S induced by the measure preserving transformation
s—>π(s) = 2s (mod 1). It follows that T is also in @. Suppose that
T= 1/2 Tx + 1/2 T2 with 2\ and Γ2 in @. The corresponding ad joints
then satisfy S = 1/2 Γ* + 1/2 T2*. Since S is an extreme point, T* =
T2*. Hence, Tλ — T2 (as norms are preserved) so that T is also an
extreme point. However, T is not multiplicative. A complete
characterization of the extreme points of @ does not seem to be
known.

A second problem is suggested by a corollary to Muirhead's
theorem [1, p. 49]. It can be shown that if x and y are two
w-vectors whose components are related by the inequalities (1), then
there is a doubly stochastic matrix which carries x onto y. Now
suppose that / and g are in L1 and g <f. Does it follow that there
exists an ©-operator T such that g — Tf!

2 The author is indebted to Professor R. R. Phelps for several enlightening con-
versations and for access to his forthcoming paper [4],
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