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1. The purpose of this paper is to prove the following results:

THEOREM 1. Let

π Jo 2tan{lj2)t ε-+o I π

The mapping f—*f is a bounded mapping of an Orlicz space into
itself if and only if the space is reflexive.

Beginning with the classical result by M. Riesz for the Lp spaces
[6; vol. I, p. 253] several authors have proved this theorem in one
direction or the other for various special classes of Orlicz spaces.
We mention in particular the papers by J. Lamperti [2] and S. Lozinski
[4] and the results given in A. Zygmund's book [6; vol. II, pp. 116-118].
In our proof we use inequalities and techniques due to S. Lozinski
[3, 4] to show that boundedness of the mapping implies that the space
is reflexive. We use the theorem of Marcinkiewicz on the interpolation
of operations [6; vol. II, p. 116] to prove that reflexivity implies the
boundedness of / —»/. Our results are more general than Lozinski's
results since we use the definition of an Orlicz space given by
A. C. Zaanen [5] which includes, for example, the space Lx.

Section 2 contains preliminary material about Orlicz spaces. In
§ 3 we prove that boundedness implies reflexivity and in § 4 we prove
the converse.

2Φ Let v = φ(u) be a nondecreasing real valued function defined
for u ^ 0. Assume that φ(0) = 0, that φ is left continuous and that
φ does not vanish identically. Let u = ψ(v) be the left continuous
inverse of φ. If lim^^ φ(u) = I is finite then ψ(v) — co for v > I;
otherwise ψ(v) is finite for all v Ξ> o. The complementary Young's
functions Φ and Ψ are defined by

φ(u) = [Uφ(t)dt , Ψ(v) = [ψ(s)ds .
Jo Jo

Φ is an absolutely continuous convex function for 0 ^ v> < °° and Ψ
is absolutely continuous and convex in the internal where it is finite.
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If limu^^(u) = oo this internal is 0 ^ ^ < °° If \imu^^(u) = I is
finite we say that Ψ jumps to infinity at v = I.

Φ is said to satisfy the z/2-condition if there is a constant k > 0
and a u0 *> 0 such that Φ(2w) ̂  &$(%) for w ^ w0. This is equivalent
to satisfying the inequality Φ(lu) S klΦ(u) for all sufficiently large u,
where I is any number greater than one (for a proof and further details
see [1; p. 23]).

The Orlicz space Lφ — Lφ (0,2ττ) consists, by definition, of all
measurable complex functions / defined on the unit circle for which

S 2jr

I/(*)#(£) I dt < oo, where the supremum is taken over all
0 pπ

functions g with 1 Ψ \ g(t) \ dt ^ 1. The space LΨ is defined by inter-
Jo

changing Φ and Ψ. The Orlicz space LMΦ is defined to be the set of
all measurable complex functions / for which

= sup [*\f(t)g(t) I dt
Jo

where the supremum is taken over all g with || g \\r ̂  1. LMΨ is similarly
defined. The spaces Lφ, LΨ, LMΦ and LMΨ are all Banach spaces with
their respective norms when functions equal almost everywhere are
identified. The spaces Lφ and LMΦ consist of the same functions and
lί/lljf# ^ 11/ll# ^ 211/HJC*. The same is true replacing Φ by Ψ. The
space Lφ is reflexive with dual space LMΨ if and only if both Φ and Ψ
satisfy the J2-condition.

Two Young's functions Φx and Φ2 are said to be equivalent (Φx ~ Φ2)
if and only if there exist positive constants klf k2, and u0 such that
Φ^u) ^ Φ2(u) ^ Φx{k2u) for u ^ uQ. It is clear that — is an equivalence
relation and that the J2-condition is an equivalence class property. If
Φx ~ Φ2 then Lφχ and L02 consist of the same functions and the norm
|| ||Φland || ||Φ2 are equivalent. Conversely, if Lφχ and L02 have the
same elements then Φλ ~ Φ2 [1; p. 112].

3» In this section we will show that if / —> / is bounded then Lφ

is reflexive. Let Sn(f) denote the nth partial sum of the Fourier
series of/and write Dn{t) = sin [n + (l/2)]ί/2 sin (l/2)ί. If | | / | | ^ C | | / | | #

for all feLΦ then it follows [6; vol. I, p. 266] that || Sn(f) ||# ^ A| |/ | |#

for all feLφ and all n, where A is a positive constant independent
of n and /. Thus, the following result is ostensibly more general than
the corresponding part of Theorem 1.

THEOREM 2. If \\ Sn(f) \\Φ^ A\\f\\φ for all feLφ and all n then
Lφ is reflexive.

The proof of Theorem 2 uses the following two lemmas given by
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S. Lozinski in [3]. Lozinski proved these lemmas under more restrictive
conditions on φ than we have assumed. Nevertheless, Lozinski's proofs
remain valid for the functions as we have defined them.

LEMMA 1. (?>(%)/250) log {njuφ{n)) ^ || Dn \\Φ for uφ(u) ^ 1.

LEMMA 2. If \\Sn(f)\\Φ ^ A\\f\\φ for all feLφ and all n then
|| Dn \\φ ̂  2πA (n + Φ(u))/u for 0 < u < <*>.

Proof of Theorem 2. Our proof is a variation of the one given
by Lozinski in [4]. From Lemmas 1 and 2 we have

(1) ^ l o g »
vφyυ) u

for vφ(v) Ξ> 1 and 0 < u < co. k = 2πA/250. Our immediate aim is to
show that for all sufficiently large λ > 1

for v ^ v0, where v0 depends upon λ.
For any

λ > 1, Φ(u) -= \Uφ(t)dt > \U φ{t)dt
JO Jw/λ

and hence

λ

Thus

(3) i o g i
φ

x \x
By combining (3) and (1) we see that

whenever (v/λ) <p(v/X) ^ 1. Let n = [Φ(v)] = greatest integer in Φ(v).

Then (4) becomes

(5) «•) log {(X - 1) 1^1} ^ k Wy)1 + ̂  ^ 2*-ίίϋ
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For every sufficiently large λ there exist a v0 ^ 0 such that for v ^ v0

and

Using (5), (6) and the fact that Φ(v) 5Ξ v^(ι;) we get inequality (2) for
v ^ v0. Since λ can be arbitrarily large (2) implies that \imu^^(u) = oo
and hence that Ψ does not jump to infinity. We next show that Ψ
satisfies the J2-condition.

Let λ be large but fixed and write I = (l/2fc) log (λ/2). Then (2)
states that

(8) lφ{±) £ φ(t)

for t ^ v0. This implies, on taking inverses, that there is a number
s0 such that for s ^ s0

(9)

Thus

ψ(s)ds^X\ ψ( — )d8 = Xl\ ψ(s)ds

or

(10) w(v) -

This shows that for sufficiently large v

(11) Ψ{lv) ^

and hence proves that Ψ satisfies the J2-condition
If || Sn(f) \\Φ S A\\f\\Φ for al l/6 LΦ then it follows that || Sn{g) \\MΨ S

Λ\\g\\MΨ for al l geLMΨ or, e q u i v a l e n t s , t h a t \\Sn(g)\\Ψ S2A\\g\\Ψ for
all g e LΨ. Since we have shown that Ψ does not jump to oo we can
interchange the role of Φ and Ψ in the above argument to show that
Φ satisfies the z/2-condition. This proves that Lφ is reflexive and
completes the proof of Theorem 2.

4* In this section we prove a general result about reflexive Orlicz
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spaces which combined with the classical results of M. Riesz [6; vol.
I, p. 253 and p. 266] yields the unproved half of Theorem 1 as well
as the converse of Theorem 2.

THEOREM 3. Suppose that T is a bounded linear operator on Lp

into Lp for 1 < p < co . Then if Lφ is reflexive T is defined and
bounded on Lφ into Lφ.

Proof. The proof consists of showing that Φ can be replaced by
an equivalent function ΦX{Φ ~ ΦJ such that Φx satisfies the conditions
of the Marcinkiewicz theorem on the interpolation of operations i.e.
such that

and

(13)
u« ί

for u —• co, where 1 < a < β < oo.

The assumption that Lφ is reflexive implies that
and hence that l inv^ Φ(u)ju = co. By [1; p. 16] Φ is equal for
sufficiently large values of u to a function M of the form M(u) =

p(t)dt where p is a nondecreasing right continuous function with
imω_0 P(u) = 0 and lim^*, p(u) — co. Clearly Φ ~ M.

By [X; p. 46] the function Mx defined by Mx(u) = \U(M(t)lt) dt is
Jo

equivalent to M and hence to Φ. The derivative of Mx is continuous
and strictly increasing.

Since Lφ is reflexive both Φ and Ψ satisfy the Λ2-condition. Thus
both Mλ and its conjugate Young's function Nx satisfy the J2-condition
[1; p. 23]. According to [1; pp. 26-27] this implies the existence of
numbers a, b, and ^ ^ 0 with 1 < a < 6 < co such that

for all u ^ u0. If we define Φx by

Φx(u) =

Mλ{u) for u ^ u0

we obtain a function Φλ~ Φ such that
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(14) 1 < a ^

for all u Ξ> 0.

We next show that Φx satisfies (12) and (13) for suitably chosen
a and β. In particular choose a and β such that 1 < a < a ^ b < β < oo.
This is clearly possible. In what follows all of the integrals will exist
as finite numbers because of (14).

Integration by parts shows that

(15)
Uβ

and

(16) \ d t +
Jo t"+1 U*

From (14) we obtain

and

(18) \

Jo t*

Combining (15) with (17) and (16) with (18) shows that

and

(20) ^ ^
v ^ Jo t«+1 a -a

This shows that Φλ satisfies (12) and (13). Thus by the Marcinkiewicz
theorem and Theorem 10.14 of [6; vol I, p. 174] there exists a constant
Kx such that || Γ/||# 1 ^ ^ill/IU, for all feLΦl. Since Φ ^ Φ1 there is
a constant K such that || Tf \\Φ ^ K\\f\\φ for a l l / e Lφ. This completes
the proof of Theorem 3.

Statements of the standard corollaries of Theorem 1 can be found
in [2].
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