EXTREMAL ELEMENTS OF THE CONVEX CONE OF SEMI-NORMS

E. K. McLachlan

1. Introduction. Let L be a real linear space and let p be a real function on L such that (1) $p(\lambda x)=|\lambda| p(x)$ for all x in L and all real λ, and $p\left(x_{1}+x_{2}\right) \leqq p\left(x_{1}\right)+p\left(x_{2}\right)$ for all x_{1} and x_{2} in L, i.e. is a semi-norm on L. Since the sum of two semi-norms, $p_{1}+p_{2}$ and the positive scalar multiplication of a semi-norm, $\lambda p, \lambda>0$ are seminorms, the set of semi-norms on L, C form a convex cone. Those $p \in C$ such that if $p=p_{1}+p_{2}$ where p_{1} and $p_{2} \in C$ we have p_{1} and p_{2} proportional to p are extremal element of C, [1]. In this paper it is shown that $p=|f|$, where f is a real linear functional of L is an extremal element of C. For L, the plane it is shown that these are the only extremal elements of C. Since norms are semi-norms, C includes this interesting class of functionals.
2. The main results. The convex cone C and the convex cone $-C$, the negatives of the elements of C have only the zero seminorm in common since semi-norms are nonnegative. The zero seminorm is an extremal element if one wishes to allow in the definition the vertex of a convex cone to be an extremal element. Below only the nonzero elements are considered.

The following lemma which characterizes the nature of certain semi-norms will be used in obtaining the two main theorems.

Lemma 1. If p is a semi-norm on L such that the co-dimension. of $N(p)=1$, then p is of the form $p=|f|$ where f is a linear functional on L.

Proof. Let $b \in L \backslash N(p)$, where $N(p)$ is the null space of p. Then any element $x \in L$ can be written $x=z+\lambda b$ where $z \in N(p)$ and λ is real. Let $f(x)=\lambda p(b)$. Then clearly f is a linear functional on L. It shall now be shown that $|f(x)|=p(x)$ for all $x \in L$. Notice that

$$
|f(x)|=|f(z+\lambda b)|=|\lambda p(b)|=|\lambda| p(b) .
$$

Thus

$$
|f(x)|=p(\lambda b)=p(z)+p(\lambda b) \geqq p(z+\lambda b)=p(x)
$$

The proof will be complete if it can be shown that the inequality
Received May 2, 1962, and in revised form June 26, 1963.
cannot be a strict inequality for $\lambda \neq 0$.
Consider the case of the strict inequality occurring at $z^{\prime}+\lambda_{0} b$ where $\lambda_{0}>0$ and $z^{\prime} \in N(p)$. The set $U=\left\{x: p(x) \leqq \lambda_{0} p(b)\right\}$ is a convex circled set containing $N(p)$ and $\lambda_{0} b$. It follows that there exists $\gamma \geqq 1$ such that

$$
\dot{p}\left(\gamma\left(z^{\prime}+\lambda_{0} b\right)\right)=\gamma \dot{p}\left(z^{\prime}+\lambda_{0} b\right)=\lambda_{0} p(b)
$$

and hence $\gamma\left(z^{\prime}+\lambda_{0} b\right) \in U$. Take $\beta=(\gamma(1-\alpha)) / \alpha$ where $\alpha=(\gamma-1) /(2 \gamma)$. Then $0<\alpha<1$ and

$$
\alpha\left[\beta\left(-z^{\prime}\right)\right]+(1-\alpha)\left[\gamma\left(z^{\prime}+\lambda_{0} b\right)\right]=(1-\alpha) \gamma \lambda_{0} b
$$

belongs to U since $-z^{\prime}$ and $\gamma\left(z^{\prime}+\lambda_{0} b\right) \in U$ and U is convex. Now

$$
p\left((1-\alpha) \gamma \lambda_{0} b\right)=(1-\alpha) \gamma p\left(\lambda_{0} b\right)>\lambda_{0} p(b)
$$

since $(1-\alpha) \gamma=(1 / 2)(1+\gamma)>1$, a contradiction since $(1-\alpha) \gamma \lambda_{0} b \in U$. Thus $|f(x)|=p(x)$ for $\lambda_{0}>0$. Now for the case $\lambda_{0}<0$ it follows from the above

$$
|f(x)|=\left|f\left(z+\lambda_{0} b\right)\right|=\left|-f\left(-z-\lambda_{0} b\right)\right|=\left|f\left(-z-\lambda_{0} b\right)\right|
$$

and

$$
\left|f\left(-z-\lambda_{0} b\right)\right|=p\left(-z-\lambda_{0} b\right)=p\left(z+\lambda_{0} b\right)
$$

Thus $p(x)=|f(x)|$ for all $x \in L$.
It is now possible to prove the following theorem which shows that the absolute value of a real linear functional is an extremal element of C.

Theorem 1. If f is a real linear functional on L, then $|f|$ is an extremal element of C.

Proof. It is easy to check that $|f|$ is subadditive and absolutely homogeneous and hence $|f| \in C$.

Suppose $|f|=p_{1}+p_{2}$ where p_{1} and $p_{2} \in C$. Since p_{1} and p_{2} are nonnegative $0 \leqq p_{i} \leqq|f|, i=1$, 2 . Thus when $f(x)=0, p_{i}(x)=0$, $i=1,2$ and $N(f) \subset N\left(p_{i}\right), i=1,2$. Hence the co-dimension of p_{1} and p_{2} is less than or equal to one. If the co-dimension of $N\left(p_{1}\right)$ is zero, then clearly p_{1} and p_{2} are proportional to $|f|$. If the codimension of $N\left(p_{1}\right)$ is one then by Lemma 1 , there exists a real linear functional f_{1} such that $p_{1}=\left|f_{1}\right|$. Since $N\left(f_{1}\right)=N\left(p_{1}\right) \supset N(f)$ it follows that $\lambda_{1} f=f_{1}$ for some real $\lambda_{1} \neq 0$. Hence $\left|\lambda_{1}\right||f|=p_{1}$. Thus p_{1} (and consequently p_{2}) is proportioned to $|f|$, and hence $|f|$ is an extremal element of C.

The following theorem shows that for the case $L=E^{2}$, the Euclidean plane, the only extremal elements for C are the seminorms given in Theorem 1.

Theorem 2. Let $L=E^{2}$, then if p is an extremal element of C, there exists a linear functional f on L such that $p=|f|$.

In order to prove this theorem it will be necessary to show that for p a semi-norm on L and p not of the form $p=|f|$ then there exists semi-norms p_{1} and p_{2} on L such that $p=p_{1}+p_{2}$ and p_{1} (and consequently p_{2}) is not proportional to p.

It follows from Lemma 1 that for a semi-norm p on L to not be of the form $|f|$, where f is a linear functional on L that the codimension of $N(p)$ must be greater than one. Hence for arbitrary L and p an extremal element of C other than those of Theorem 1, then p must have the co-dimension of $N(p)>1$. For $L=E^{2}$ and $p \in C$ such that the co-dimension of $N(p)>1$, then p is a norm. Thus for the proof of Theorem 2 a non-proportional decomposition must be provided for all norms on E^{2}.

For p a norm on $E^{2}=\left\{\left(x_{1}, x_{2}\right)\right\}$, the unit ball $U(p)=\{x: p(x) \leqq 1\}$ is a convex circled set containing the origin as a core point. There is no loss in generality in assuming that the segment $(-1,0),(1,0)$ is a diameter of $U(p)$. This will mean that $U(p)$ is contained in the closed unit disk with center at the origin. Let $b_{p}\left(x_{1}\right)=\sup \left\{x_{2}:\left(x_{1}, x_{2}\right)\right.$ $\in U(p)\}$, the function giving the upper boundary of $U(p)$. Then b_{p} is a concave function on $[-1,1]$ and $b_{p}(+1)=0$. The lower boundary is given by $b_{p}^{\prime}\left(x_{1}\right)=-b_{p}\left(-x_{1}\right)$ since $p(-x)=p(x)$. The next lemma gives a non-proportional decomposition of norms p such that the set $U(p)$ is a parallelogram.

Lemma 2. Let p be a norm on E^{2} such that $b_{p}\left(a_{1}\right)=b_{1}>0$ for some $a_{1},-1 \leqq a_{1} \leqq 1$ and $b\left(x_{1}\right)$ is linear on $\left[-1, a_{1}\right]$ and on $\left[a_{1}, 1\right]$, then p is not an extremal element of C.

Proof. Let $p_{1}\left(\left(x_{1}, x_{2}\right)\right)=\left(1 / b_{1}\right)\left|b_{1} x_{1}-a_{1} x_{1}\right|$ and let $p_{2}\left(\left(x_{1}, x_{2}\right)\right)=$ $\left(1 / b_{1}\right)\left|x_{2}\right|$. Then p_{1} and $p_{2} \in C$ since they are positive multiples of the absolute values of linear functionals. In order to see $f=p_{1}+p_{2}$ it is sufficient to show that $p_{1}\left(\left(x_{1}, b_{p}\left(x_{1}\right)\right)\right)+p_{2}\left(\left(x_{1}, b_{p}\left(x_{1}\right)\right)\right)=1$ for all $x_{1} \in[-1,1]$. This can be easily checked directly by substituting in the equations of the appropriate straight lines for b_{p}. Clearly p_{1} and p_{2} are not proportional to p.

The next lemma will give a non-proportional decomposition of a norm p such that the set $U(p)$ is a six-sided polygon.

Lemma 3. Let p be a norm on E^{2} such that $b_{p}\left(a_{i}\right)=b_{i}>0$,
$i=1,2$, where $-1<a_{1}<a_{2}<1$ and b_{p} is linear on $\left[-1, a_{1}\right]$, $\left[a_{1}, a_{2}\right]$ and on $\left[a_{2}, 1\right]$, then p is not an extremal element of C.

Proof. Let $p_{i}\left(\left(x_{1}, x_{2}\right)\right)=\alpha_{i}\left|a_{i} x_{2}-b_{i} x_{1}\right|, i=1,2$ and let $p_{3}\left(\left(x_{1}, x_{2}\right)\right)$ $=\alpha_{3}\left|x_{2}\right|$ where

$$
\begin{aligned}
& \alpha_{1}=\left(b_{2} / \Delta\right)\left(b_{1}-b_{2}+\left|b_{2} a_{1}-a_{2} b_{1}\right|\right) \\
& \alpha_{2}=\left(b_{1} / \Delta\right)\left(b_{2}-b_{1}+\left|b_{2} a_{1}-a_{2} b_{1}\right|\right), \\
& \alpha_{3}=\left(\left(\left|b_{2} a_{1}-a_{2} b_{1}\right|\right) / \Delta\right)\left(b_{1}+b_{2}-\left|b_{2} a_{1}-a_{2} b_{1}\right|\right),
\end{aligned}
$$

and

$$
\Delta=2 b_{1} b_{2}\left|b_{2} a_{1}-a_{2} b_{1}\right|
$$

Then $p=p_{1}+p_{2}+p_{3}$ gives a non-proportional decomposition of p.
Although an extension of this method will not be used in the proof of Theorem 2 it is worth noting at this point that this method of decomposing p can be used on any norm p such that $U(p)$ is a polygon. For a polygon with $2 n+2$ sides then $b_{p}(x)$ is a concave polygonal function having vertices at $\left\{\left(a_{i}, b_{i}\right)\right\}, i=1,2, \cdots, n$ where: $b_{i}>0$ and $-1<a_{1}<a_{2}<\cdots<a_{n}<1$. In this case set.

$$
p(x)=\sum_{i=1}^{n} \alpha_{i}\left|a_{i} x_{2}-b_{i} x_{1}\right|+\alpha_{n+1}\left|x_{2}\right|
$$

By substituting each of the points $\left(a_{i}, b_{i}\right), i=1,2, \cdots, n$ and $(1,0)$. in this equation we have $n+1$ linear equations in $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n+1}$ since $p\left(\left(a_{i}, b_{i}\right)\right)=p((1,0))=1$ for all i. By solving for the α_{i} and nothing that they are nonnegative we get the required decomposition of p. Notice that p is a finite sum of extremal elements of C.

For any norm p on E^{2} such that $U(p)$ is not a polygon of less than six sides, that is p is a norm different from those considered in Lemmas 2 and 3 , then there exist points of $E^{2}, x^{(1)}=\left(a_{1}, b_{p}\left(a_{1}\right)\right)$, $x^{(2)}=\left(a_{2}, b_{p}\left(a_{2}\right)\right),-1 \leqq a_{1}<a_{2} \leqq 1, a_{2}-a_{1}<2$ such that b_{p} is not piecewise linear on [a_{1}, a_{2}] on three or fewer non-overlapping segments whose union is $\left[a_{1}, a_{2}\right]$. This means that p restricted to the line segment $\left[x^{(1)}, x^{(2)}\right]$ is a strictly positive convex function that is not. piecewise linear on three or fewer non-overlapping segments whoseunion is $\left[x^{(1)}, x^{(2)}\right]$.

Let C_{12} be the convex cone in E^{2} with vertex at the origin that. is generated by $\left[x^{(1)}, x^{(2)}\right]$ and let $-C_{12}$ be the negatives of the vectors. in C_{12}. Let $U\left(p^{\prime}\right)$ be the closed convex hull of $U(p) \backslash\left(C_{12} \cup\left(-C_{12}\right)\right)$. Let t_{1} and t_{2} be the tangent half-lines to $U(p)$ at $x^{(1)}$ and $x^{(2)}$ respectively. These tangent half-lines are to be taken from the interior of C_{12}. Their intersection $x^{(3)}$ will be a point in C_{12}. Let $U\left(p^{\prime \prime}\right)$ be the closed convex circled set whose boundary $U(p) \backslash\left(C_{12} \cup\left(-C_{12}\right)\right)$ is the same as $U(p)$ and whose boundary in C_{12} is $\left[x^{(1)}, x^{(3)}\right] \cup\left[x^{(3)}, x^{(2)}\right]$.

Let p^{\prime} and $p^{\prime \prime}$ be the semi-norms whose unit ball is $U\left(p^{\prime}\right)$ and $U\left(p^{\prime \prime}\right)$ respectively. Since $U\left(p^{\prime}\right) \subset U(p) \subset U\left(p^{\prime \prime}\right)$ we have $p^{\prime}(x) \leqq p(x) \leqq p^{\prime \prime}(x)$ for all $x \in E^{2}$. Then if there exist semi-norms q_{1} and q_{2} on E^{2} such that $p^{\prime}(x) \leqq q_{i}(x) \leqq p^{\prime \prime}(x), \quad i=1,2$ for all $x \in E^{2}$ and such that on $C_{12} \cup\left(-C_{12}\right)$,

$$
\alpha q_{1}(x)+(1-\alpha) q_{2}(x)=p(x)
$$

$0<\alpha<1$, q_{1} (and hence q_{2}) is not equal to p on $C_{12} \cup\left(-C_{12}\right)$, then $p_{1}=\alpha q_{1}$ and $p_{2}=(1-\alpha) q_{2}$ will be semi-norms on E^{2} such that $p_{1}+p_{2}=p$ and $p_{i}, i=1,2$ is not proportional to p. Thus the problem reduces to showing the existence of these semi-norms q_{1} and q_{2}.

Notice that it must be that $q_{1}(x)=q_{2}(x)=p(x)$ on $E^{2} \backslash$ $\left(C_{12} \cup\left(-C_{12}\right)\right)$ and hence it remains to show that the definition of q_{1} and q_{2} can be satisfactorily extended as required above to all of E^{2}. If $q_{i}, i=1,2$, restricted to the closed line segment $\left[x^{(1)}, x^{(2)}\right]$ is defined to be a convex function such that $q_{i} \neq p$ restricted to this same segment but agreeing with p at $x^{(1)}$ and $x^{(2)}$ and $q_{i} \geqq p^{\prime}$ restricted to this same segment then q_{i} can be extended to a seminorm on E^{2}. Consider the following: For $x \in C_{12}, x \neq 0$, there is a $\lambda>0$ such that λx belongs to $\left[x^{(1)}, x^{(2)}\right]$. Then take $q_{i}(x)=(1 / \lambda) q_{i}(\lambda x)$. For $x \in\left(-C_{12}\right)$ take $q_{i}(x)=q_{i}(-x)$ and take $q_{i}(0)=0$. Now $U\left(q_{i}\right)$ is a closed convex circled set since the central projection of a convex curve is convex. Hence q_{i} is a semi-norm. Notice $U\left(p^{\prime}\right) \subset U\left(q_{i}\right) \subset U\left(p^{\prime \prime}\right)$ and thus $p^{\prime}(x) \leqq q_{i}(x) \leqq p^{\prime \prime}(x), \quad i=1,2$ and $x \in E^{2}$. Notice also that the slopes of the half-tangents to $q_{i}, i=1,2$ restricted to $\left[x^{(1)}, x^{(2)}\right]$ are finite even at the end-points. The possibility of defining q_{i}, $i=1,2$ on $\left[x^{(1)}, x^{(2)}\right]$ as required above is assured by the following lemma.

Lemma 4. Let f be a real convex function on $[a, b]$ such that the right-hand derivative at $a, f_{+}^{\prime}(a)$ and the left-hand derivative at $b, f_{-}^{\prime}(b)$ are finite. Suppose further that f is not piecewise linear on three or fewer non-overlapping segments whose union is $[a, b]$. Then there exist real convex functions f_{1} and f_{2} on $[a, b]$ that differ from f on $[a, b]$, but have the same values and derivatives as f at the end-points and for some $\alpha, 0<\alpha<1, \alpha f_{1}(x)=(1-\alpha) f_{2}(x)+$ $f(x)$ for all $x \in[a, b]$

Proof. Let $h(x)=f_{+}^{\prime}(a)(x-a)+f(a)$. Then $F=(1 / m)(f-h)$, where m is the left-hand derivative of $f-h$ at b, is a nonnegative convex function on $[a, b]$ such that $F(a)=0, \quad F_{+}^{\prime}(a)=0$, and $F_{-}^{\prime \prime}(b)=1$. The right-hand derivative of F, F_{+}^{\prime} is a nondecreasing right continuous function on $[a, b]$. Let F_{+}^{\prime} be defined at by $F_{+}^{\prime}(b)=F_{-}^{\prime}(b)$. Since f is not piecewise linear on three or fewer
non-overlapping segments whose union is $[a, b]$ then the range of F_{+}^{\prime} has at least four values, that is two besides 0 and 1 . If there exist two non-decreasing right continuous functions $F_{i}, i=1,2$ on $[a, b]$ such that $F_{i}(\alpha)=0, F_{i}(b)=1, F_{i} \neq F_{+}^{\prime}$ on some subinterval of $[a, b]$,

$$
\alpha F_{1}(x)+(1-\alpha) F_{2}(x)=F_{+}^{\prime}(x),
$$

$0<\alpha<1$ on $[a, b]$, and

$$
\int_{a}^{b} F_{i}(x) d x=\int_{a}^{b} F_{+}^{\prime}(x) d x
$$

then the required functions f_{i} are given by

$$
f_{i}(x)=h(x)+m \int_{a}^{x} F_{i}(t) d t,
$$

$i=1,2$.
Consider first the case of $F_{\neq}^{\prime \prime}$ having at least three discontinuities. Let F_{+}^{\prime} have positive jump discontinuities of θ_{i} at $c_{i}, i=1,2,3$ where $a<c_{1}<c_{2}<c_{3}<b$. Take $\theta=(1 / 2) \min \left(\theta_{1}, \theta_{2}, \theta_{3}\right)$. Let

$$
F_{1}(x)=F_{+}^{\prime}(x)-\sigma_{1},
$$

when $e_{1} \leqq x<c_{2}$,

$$
F_{1}(x)=F_{+}^{\prime}(x)+\sigma_{2},
$$

when $c_{2} \leqq x<c_{3}$, and $F_{1}(x)=F_{+}^{\prime}(x)$ elsewhere ; and let

$$
F_{2}(x)=F_{+}^{\prime}(x)+\sigma_{1},
$$

when $c_{1} \leqq x<c_{2}$,

$$
F_{2}(x)=F_{+}^{\prime}(x)-\sigma_{2},
$$

when $c_{2} \leqq x<c_{3}$, and $F_{2}(x)=F_{+}^{\prime}(x)$ elsewhere. Take $\sigma_{i}, i=1 ; \mathbf{2}$ such that $0<\sigma_{i}<\theta, \sigma_{1}\left(c_{2}-c_{1}\right)=\sigma_{2}\left(c_{3}-c_{2}\right)$. It follows that F_{1} and F_{2} satisfy the above requirement for $\alpha=(1 / 2)$.

Now for the case where F_{+}^{\prime} has less than three points of discontinuity it follows from the condition that F_{+}^{\prime} has at least four range values that there exists a subinterval of $[a, b]$ on which F_{+}^{\prime} is continuous and non-constant. If now F_{1} and F_{2} can be defined on $\left[a_{1}, b_{1}\right]$ as it was required that they be on $[a, b]$ then F_{1} and F_{2} can be extended to $[a, b]$ by taking $F_{1}(x)=F_{2}(x)=F_{+}^{\prime}(x)$ for $x \in[a, b] \backslash\left[a_{1}, b_{1}\right]$. It will follow that F_{1} and F_{2} obtained in this manner satisfy the above requirements. Thus it is sufficient to show the existence of F_{1} and F_{2} where F_{+}^{\prime} is continuous on $[a, b]$.

Let us perform one further simplification. Let $\bar{\alpha}=\sup \left\{x: F_{+}^{\prime}(x)=0\right\}$ and let $\bar{b}=\inf \left\{x: F_{+}^{\prime}(x)=1\right\}$. Then $a \leqq \bar{a}<\bar{b} \leqq b$. Since F_{1} and F_{2} are non-decreasing, $F_{i}(a)=0$, and $F_{i}(b)=1$, and since $\alpha F_{1}+(1-\alpha) F_{2}=$ F_{+}^{\prime} it follows that $F_{i}(x)=0$ on $[a, \bar{a}]$ and $F_{i}(x)=1$ on $[\bar{b}, b], \mathrm{i}=1,2$. Thus we may assume that $0<F_{+}^{\prime}(x)<1$ on the interior of the interval of definition. Take the interval $[\bar{a}, \bar{b}]$ to be $[0,1]$ since there is no loss in generality in doing so.

The problem is now reduced to the following: Given F (instead of F_{+}^{\prime} for simplicity) a continuous non-decreasing function on $[0,1]$ such that $F(0)=0, F(1)=1$ and $0<F(x)<1$ for $0<x<1$. Show that there exist two functions F_{1} and F_{2} that have the same properties as F but are not F (that is, they differ from F at one point) and such that for some $\alpha, 0<\alpha<1, \alpha F_{1}+(1-\alpha) F_{2}=F$ and such that

$$
\int_{0}^{1} F_{i} d x=\int_{0}^{1} F d x
$$

$i=1,2$. Take $\eta_{1}, \eta_{2}, \eta_{3}$ such that $0<\eta_{1}<\eta_{2}<\eta_{3}<1$ and let ξ_{i}, $i=1,2,3$ be such that $F\left(\xi_{i}\right)=\eta_{i}$. Then let

$$
F_{1}(x)=\left(\eta_{2} / \eta_{1}\right) \min \left(F(x), \eta_{1}\right)
$$

when $0 \leqq x \leqq \xi_{2}$ and

$$
F_{1}(x)=\left(\left(1-\eta_{2}\right) /\left(1-\eta_{3}\right)\right)\left(\max \left(F(x), \eta_{3}\right)-\eta_{3}\right)+\eta_{2}
$$

when $\xi_{2}<x \leqq 1$. Let

$$
F_{2}(x)=\left(\eta_{2} /\left(\eta_{2}-\eta_{1}\right)\right)\left(\max \left(F(x), \eta_{1}\right)-\eta_{1}\right),
$$

when $0 \leqq x \leqq \xi_{2}$ and

$$
F_{2}(x)=\left(\left(1-\eta_{2}\right) /\left(\eta_{3}-\eta_{2}\right)\right)\left(\min \left(F(x), \eta_{3}\right)-\eta_{2}\right)+\eta_{2}
$$

when $\xi_{2}<x \leqq 1$. Now F_{1} and F_{2} are continuous non-decreasing on $[0,1]$ such that $F_{i}(0)=0, F_{i}(1)=1, i=1,2$ and $F_{i} \neq F$. Then

$$
\left(\eta_{1} / \eta_{2}\right) F_{1}+\left(\left(\eta_{2}-\eta_{1}\right) / \eta_{2}\right) F_{2}=F
$$

on $\left[0, \xi_{2}\right]$ and

$$
\left(\left(1-\eta_{3}\right) /\left(1-\eta_{2}\right)\right) F_{1}+\left(\left(\eta_{3}-\eta_{2}\right) /\left(1-\eta_{2}\right)\right) F_{2}=F
$$

on $\left(\xi_{2}, 1\right)$. Take $\eta_{1}=(1 / 2) \eta_{2}$ and $\eta_{3}=(1 / 2)\left(1+\eta_{2}\right)$. Then it follows that $f=(1 / 2) F_{1}+(1 / 2) F_{2}$ on $[0,1]$, with η_{2} arbitrary. It remains only to be shown that η_{2} can be chosen such that

$$
\int_{0}^{1} F_{i} d x=\int_{0}^{1} F d x
$$

$i=1,2$ but this is assured if there exists a $\xi_{2}, 0<\xi_{2}<1$ such that

$$
G\left(\xi_{2}\right)=\int_{0}^{\xi_{2}}\left(F_{1}-F\right) d x=\int_{\xi_{2}}^{1}\left(F-F_{1}\right) d x=H\left(\xi_{2}\right)
$$

It can easily be checked that $G(0)=H(1)=0, G$ is a not identically zero non-decreasing continuous function on $[0,1)$ and H is a not identically zero non-increasing continuous function on $(0,1]$. Hence there exists $\xi_{2}, 0<\xi_{2}<1$ such that $G\left(\xi_{2}\right)=H\left(\xi_{2}\right)$.
3. Remarks. The argument in E^{2} that shows that the norms in E^{2} are not extremal elements of C shows also that for L general and $p \in C$ such that the co-dimension of $N(p)=2$, then p is not an extremal element of C. Thus for L general any extremal element of C other than those mentioned in Theorem 1 must be such that the co-dimension of its null space is greater than or equal to two.

References

1. N. Bourbaki, Espaces vectoriels topologiques. Act. Sci. Ind. no. 1189, Paris, 1953.
2. G. Choquet, Theory of capacities. Ann. Inst. Fourier, Grenoble (1953-1954), pp. 131-295, 1955.

Oklahoma State Uuiversity

