EQUALITY IN CERTAIN INEQUALITIES

Marvin Marcus and Afton Cayford

1. Introduction. Let $\sigma=\left(\sigma_{1}, \cdots, \sigma_{n}\right)$ be a point on the unit ($n-1$)-simplex $S^{n-1}: \sum_{i=1}^{n} \sigma_{i}=1, \sigma_{i} \geqq 0$. Let $0<\lambda_{1} \leqq \lambda_{2} \leqq \cdots \leqq \lambda_{n}$ and $\mu_{1} \geqq \mu_{2} \geqq \cdots \geqq \mu_{n}>0$ be positive numbers and form the function. on S^{n-1}

$$
\begin{equation*}
F(\sigma)=\sum_{i=1}^{n} \sigma_{i} \lambda_{i} \sum_{i=1}^{n} \sigma_{i} \mu_{i} . \tag{1.1}
\end{equation*}
$$

The main purpose of this paper is to examine the structure of the set of points $\sigma \in S^{n-1}$ for which $F(\sigma)$ takes on its maximum value. In case a convex monotone decreasing function f is fitted to the points $\left(\lambda_{i}, \mu_{i}\right)$ (i.e. $f\left(\lambda_{i}\right)=\mu_{i}$), $i=1, \cdots, n$, then it is not difficult to show that the maximum for $F(\sigma)$ on S^{n-1} is the upper bound given by M. Newman [4] in a recent interesting paper. In the case of the Kantorovich inequality [1] the function f is $f(t)=t^{-1}, \mu_{i}=\lambda_{i}^{-1}, i=$ $1, \cdots, n$. In this case a maximizing σ is $\sigma_{1}=1 / 2, \sigma_{n}=1 / 2, \sigma_{i}=0$, $i=2, \cdots, n-1$, and if $\lambda_{1}<\lambda_{k}<\lambda_{n}, k=2, \cdots, n-1$, it is a corollary of our main result (Theorem 2) that this is the only choice possible for $\sigma \in S^{n-1}$ in order to achieve the maximum value.

We shall assume henceforth in this paper that $\mu_{i}=f\left(\lambda_{i}\right), i=1$, \cdots, n, where f is a monotone decreasing convex function defined on the closed interval $\left[\lambda_{1}, \lambda_{n}\right]$. In 2 we determine the structure of the set of $\sigma \in S^{n-1}$ for which $F(\sigma)$ is a maximum in the case in which f is assumed to be strictly convex. In 3 we investigate the structure of the set of unit vectors x for which the function

$$
\begin{equation*}
\varphi(x)=(A x, x)(f(A) x, x) \tag{1.2}
\end{equation*}
$$

assumes its maximum value on the unit sphere $\|x\|=1$. Throughout, A is a positive definite hermitian transformation on an n-dimensional unitary space U with inner product (x, y). The eigenvalues of A are $\lambda_{i}, 0<\lambda_{1} \leqq \cdots \leqq \lambda_{n}$, with corresponding orthonormal eigenvectors u_{i}, $A u_{i}=\lambda_{i} u_{i}, i=1, \cdots, n$. Of particular interest in (1.2) is the choice $f(t)=t^{-p}, p>0$.

Finally, in 4, we discuss the applications of the previous results to Grassmann compounds and induced power transformations associated with A. In two recent papers [2,5] the Kantorovich inequality was applied to the compound to obtain inequalities involving principal subdeterminants of a positive definite hermitian matrix. We shall prove (Theorem 5) that these inequalities are in fact strict except in

[^0]trivial cases. Similar inequalities are obtained for the permanent function together with a discussion of the cases of equality. These inequalities are believed to be new.
2. Maximum values for F. In the rest of the paper M will systematically denote the maximum value of $F(\sigma), \sigma \in S^{n-1}$, and m will denote the largest of $\lambda_{1} \mu_{1}$ and $\lambda_{n} \mu_{n}$. Also, γ will denote the number $\left(\lambda_{1} \mu_{n}+\lambda_{n} \mu_{1}\right) / 2$. The main result of this section is Theorem 2 which describes the structure of those σ for which $F(\sigma)=M$ when f is strictly convex. We first prove

Theorem 1. For any $\sigma \in S^{n-1}$ there exists a $\beta \in[0,1]$ such that

$$
\begin{equation*}
F(\sigma) \leqq\left(\beta \lambda_{1}+(1-\beta) \lambda_{n}\right)\left(\beta \mu_{1}+(1-\beta) \mu_{n}\right) . \tag{2.1}
\end{equation*}
$$

If f is strictly convex and for some $k, 1 \leqq k \leqq n, \lambda_{1}<\lambda_{k}<\lambda_{n}$ and $\sigma_{k}>0$ then there exists $a \beta \in[0,1]$ for which (2.1) is a strict inequality.

To prove Theorem 1 we use the following elementary fact.
LEMMA. If $0 \leqq \alpha_{1} \leqq \alpha_{2} \leqq a_{3}$, and $b_{1} \geqq b_{2} \geqq b_{3} \geqq 0$ and

$$
\begin{equation*}
\left(a_{1}-a_{3}\right)\left(b_{2}-b_{3}\right) \geqq\left(a_{2}-a_{3}\right)\left(b_{1}-b_{3}\right) \tag{2.2}
\end{equation*}
$$

then for any $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in S^{2}$ there exists a $\beta \in[0,1]$ such that

$$
\begin{equation*}
\sum_{i=1}^{3} \alpha_{i} a_{i} \sum_{i=1}^{3} \alpha_{i} b_{i} \leqq\left(\beta a_{1}+(1-\beta) a_{2}\right)\left(\beta b_{1}+(1-\beta) b_{3}\right) \tag{2.3}
\end{equation*}
$$

If the inequality (2.2) is strict and $\alpha_{2}>0$ then there exists a $\beta \in[0,1]$ such that (2.3) is strict.

Proof. Let θ and ω in $[0,1]$ be so chosen that $a_{2}=\theta a_{1}+$ $(1-\theta) a_{3}, b_{2}=\omega b_{1}+(1-\omega) b_{3}$ and set $b_{2}^{\prime}=\theta b_{1}+(1-\theta) b_{3}$. Then

$$
\begin{equation*}
b_{2}^{\prime}-b_{2}=(\theta-\omega)\left(b_{1}-b_{3}\right) . \tag{2.4}
\end{equation*}
$$

Assume first that $\alpha_{3}>a_{2}$ and $b_{2}>b_{3}$. Then $\theta=\left(a_{2}-a_{3}\right) /\left(a_{1}-a_{3}\right)$ >0 and $\omega=\left(b_{2}-b_{3}\right) /\left(b_{1}-b_{3}\right)$. Moreover $\theta \geqq \omega$ by (2.2) and if (2.2) is strict then $\theta>\omega$. From (2.4) $b_{2}^{\prime}-b_{2} \geqq 0$ and we compute that

$$
\begin{align*}
L \leqq & \left(\left(\alpha_{1}+\theta \alpha_{2}\right) a_{1}+\left(\alpha_{2}(1-\theta)+\alpha_{3}\right) a_{3}\right) \\
& \left(\left(\alpha_{1}+\theta \alpha_{2}\right) b_{1}+\left(\alpha_{2}(1-\theta)+\alpha_{3}\right) b_{3}\right), \tag{2.5}
\end{align*}
$$

where L is the left side of (2.3). This is (2.3) with $\beta=\alpha_{1}+$ $\theta \alpha_{2} \in[0,1]$. If (2.2) is strict then $\theta>\omega, b_{2}^{\prime}=b_{2}$, and $\alpha_{2}>0$ together imply that (2.5) is strict.

Suppose next that $a_{2}=a_{3}$. From (2.2) and ($a_{1}-a_{3}$) $\leqq 0$ we have
$\left(a_{1}-a_{3}\right)\left(b_{2}-b_{3}\right)=0$ and hence $a_{1}=a_{3}$ or $b_{2}=b_{3}$. The first alternative yields $a_{1}=a_{2}=a_{3}$ and thus $L=a_{1} \sum_{i=1}^{3} \alpha_{i} b_{i} \leqq a_{1} b_{1}$ which is (2.3) with $\beta=1$. If $b_{2}=b_{3}$ then (2.3) holds with $\beta=\alpha_{1}$. This completes the proof of the lemma.

The proof of Theorem 1 is by induction on n. The first nontrivial case is $n=3$. In general the convexity of f implies that

$$
\begin{equation*}
\left(\lambda_{1}-\lambda_{3}\right)\left(\mu_{2}-\mu_{3}\right)>\left(\lambda_{2}-\lambda_{3}\right)\left(\mu_{1}-\mu_{3}\right) \tag{2.6}
\end{equation*}
$$

and (2.6) is strict if $\lambda_{1}<\lambda_{2}<\lambda_{3}$ and f is strictly convex. The inequality (2.1) follows from the lemma. If $n>3$ we distinguish the two possibilities $\sigma_{1}+\sigma_{2}=1$ and $\sigma_{1}+\sigma_{2}<1$. In the first case

$$
\begin{equation*}
F(\sigma)=\left(\sigma_{1} \lambda_{1}+\sigma_{2} \lambda_{2}\right)\left(\sigma_{1} \mu_{1}+\sigma_{2} \mu_{2}\right) \tag{2.7}
\end{equation*}
$$

If $\mu_{1}=\mu_{n}$ and hence $\mu_{i}=\mu_{1}=\mu_{n}, i=1, \cdots, n$, then $F(\sigma) \leqq \lambda_{n} \mu_{n}$ which is (2.1) with $\beta=0$. If $\mu_{1}>\mu_{n}$, and hence $\lambda_{1}<\lambda_{n}$, obtain θ and ω in $[0,1]$ so that $\lambda_{2}=\theta \lambda_{1}+(1-\theta) \lambda_{n}, \mu_{2}=\omega \mu_{1}+(1-\omega) \mu_{n}$ and set $\mu_{2}^{\prime}=\theta \mu_{1}+(1-\theta) \mu_{n}$ to obtain

$$
\begin{equation*}
\mu_{2}^{\prime}-\mu_{2}=(\theta-\omega)\left(\mu_{1}-\mu_{n}\right) \geqq 0 \tag{2.8}
\end{equation*}
$$

The convexity of f again implies that $\theta \geqq \omega$ with strictness in case f is strictly convex and $\lambda_{2}>\lambda_{n}$. Hence

$$
\begin{aligned}
& F(\sigma) \leqq\left(\sigma_{1} \lambda_{1}+\left(\theta \lambda_{1}+(1-\theta) \lambda_{n}\right) \sigma_{2}\right)\left(\sigma_{1} \mu_{1}+\sigma_{2} \mu_{2}^{\prime}\right) \\
& \quad=\left(\left(\sigma_{1}+\theta \sigma_{2}\right) \lambda_{1}+(1-\theta) \sigma_{2} \lambda_{n}\right)\left(\left(\sigma_{1}+\theta \sigma_{2}\right) \mu_{1}+(1-\theta) \sigma_{2} \mu_{n}\right)
\end{aligned}
$$

which is (2.1) with $\beta=\sigma_{1}+\theta \sigma_{2}$. We proceed to the case $\sigma_{1}+\sigma_{2}<1$. Let $\lambda_{3}^{\prime}=\sum_{i=3}^{n} \sigma_{i} \lambda_{i} /\left(1-\sigma_{1}-\sigma_{2}\right), \mu_{3}^{\prime \prime}=\sum_{i=3}^{n} \sigma_{i} \mu_{i} /\left(1-\sigma_{1}-\sigma_{2}\right)$ and observe that $\lambda_{1} \leqq \lambda_{2} \leqq \lambda_{3}^{\prime}, \mu_{1} \geqq \mu_{2} \geqq \mu_{3}^{\prime \prime}$ and $F(\sigma)=\left(\sigma_{1} \lambda_{1}+\sigma_{2} \lambda_{2}+\left(1-\sigma_{1}-\sigma_{2}\right) \lambda_{3}^{\prime}\right)$ $\left(\sigma_{1} \mu_{1}+\sigma_{2} \mu_{2}+\left(1-\sigma_{1}-\sigma_{2}\right) \mu_{3}^{\prime \prime}\right)$. We next verify that (2.2) holds for the choices $\lambda_{3}^{\prime}=a_{3}, \lambda_{2}=a_{2}, \lambda_{1}=a_{1}, \mu_{1}=b_{1}, \mu_{2}=b_{2}, \mu_{3}^{\prime \prime}=b_{3}$:

$$
\begin{align*}
& \left(\lambda_{1}-\lambda_{3}\right)\left(\mu_{2}-\mu_{3}^{\prime \prime}\right)-\left(\mu_{1}-\mu_{3}^{\prime \prime}\right)\left(\lambda_{2}-\lambda_{3}^{\prime}\right) \tag{2.9}\\
& \quad=\mu_{2}\left(\lambda_{1}-\lambda_{3}^{\prime}\right)-\mu_{1}\left(\lambda_{2}-\lambda_{3}^{\prime}\right)+\mu_{3}^{\prime \prime}\left(\lambda_{2}-\lambda_{1}\right) ;
\end{align*}
$$

and

$$
\mu_{3}^{\prime \prime}=\sum_{i=3}^{n} f\left(\lambda_{i}\right) \sigma_{i} /\left(1-\sigma_{1}-\sigma_{2}\right) \geqq f\left(\sum_{i=3}^{n} \lambda_{i} \sigma_{i} /\left(1-\sigma_{1}-\sigma_{2}\right)\right)=f\left(\lambda_{3}^{\prime}\right)=\mu_{3}^{\prime}
$$

Hence the expression in (2.9) is at least

$$
\begin{equation*}
\mu_{2}\left(\lambda_{1}-\lambda_{3}^{\prime}\right)-\mu_{1}\left(\lambda_{2}-\lambda_{3}^{\prime}\right)+\mu_{3}^{\prime}\left(\lambda_{2}-\lambda_{1}\right) \tag{2.10}
\end{equation*}
$$

If $\lambda_{2}=\lambda_{3}^{\prime}$ the expression (2.10) reduces to 0 and the expression in (2.9) is nonnegative. If $\lambda_{2}<\lambda_{3}^{\prime}$ then $\lambda_{1}<\lambda_{3}^{\prime}$ and (2.10) becomes $\left(\lambda_{1}-\lambda_{3}^{\prime}\right)\left(\lambda_{2}-\lambda_{3}^{\prime}\right)\left\{\left(\mu_{2}-\mu_{3}^{\prime}\right) /\left(\lambda_{2}-\lambda_{3}^{\prime}\right)-\left(\mu_{1}-\mu_{3}^{\prime}\right) /\left(\lambda_{1}-\lambda_{3}^{\prime}\right)\right\} \geqq 0$. Apply
the lemma to obtain $\beta_{1} \in[0,1]$ for which

$$
\begin{aligned}
&\left(\sigma_{1} \lambda_{1}+\sigma_{2} \lambda_{2}+\left(1-\sigma_{1}-\sigma_{2}\right) \lambda_{3}^{\prime}\right)\left(\sigma_{1} \mu_{1}+\sigma_{2} \mu_{2}+\left(1-\sigma_{1}-\sigma_{2}\right) \mu_{3}^{\prime \prime}\right) \\
& \leqq\left(\beta_{1} \lambda_{1}+\left(1-\beta_{1}\right) \lambda_{3}^{\prime}\right)\left(\beta_{1} \mu_{1}+\left(1-\beta_{1}\right) \mu_{3}^{\prime \prime}\right) \\
&=\left(\beta_{1} \lambda_{1}+\sum_{i=3}^{n}\left(1-\beta_{1}\right) \sigma_{1} \lambda_{i} /\left(1-\sigma_{1}-\sigma_{2}\right)\right) \\
& \quad\left(\beta_{1} \mu_{1}+\sum_{i=3}^{n}\left(1-\beta_{1}\right) \sigma_{i} \mu_{i} /\left(1-\sigma_{1}-\sigma_{2}\right)\right)
\end{aligned}
$$

This last expression is a product of convex combinations of λ 's and ${ }^{\circ}$ μ 's involving only $n-1$ terms and satisfying the induction hypothesis.. Hence there exists $\beta \in[0,1]$ such that

$$
\begin{aligned}
& F(\sigma) \leqq\left(\beta_{1} \lambda_{1}+\sum_{i=3}^{n}\left(1-\beta_{1}\right) \sigma_{i} \lambda_{i} /\left(1-\sigma_{1}-\sigma_{2}\right)\right) \\
& \quad\left(\beta_{1} \mu_{1}+\sum_{i=3}^{n}\left(1-\beta_{1}\right) \sigma_{i} \mu_{i} /\left(1-\sigma_{1}-\sigma_{2}\right)\right) \leqq\left(\beta \lambda_{1}+(1-\beta) \lambda_{n}\right) \\
& \quad\left(\beta \mu_{1}+(1-\beta) \mu_{n}\right)
\end{aligned}
$$

This establishes (2.10).
The discussion of the strictness in (2.1) requires the use of (2.1) itself. Let k be the least integer for which both $\sigma_{k}>0$ and $\lambda_{1}<$ $\lambda_{k}<\lambda_{n}$. Then

$$
\begin{gather*}
F(\sigma)=\left(\alpha_{1} \lambda_{1}+\alpha_{k} \lambda_{k}+\alpha_{k+p} \lambda_{k+p}+\cdots+\alpha_{n} \lambda_{n}\right) \tag{2.11}\\
\left(\alpha_{1} \mu_{1}+\alpha_{k} \mu_{k}+\alpha_{k+p} \mu_{k+p}+\cdots+\alpha_{n} \mu_{n}\right)
\end{gather*}
$$

in which $\alpha_{1}+\alpha_{k}+\alpha_{k+p}+\cdots+\alpha_{n}=1, \alpha_{j}=\sigma_{j}, j=k+p, \cdots, n$, and $\lambda_{k}<\lambda_{k+p}$. Assume

$$
\begin{aligned}
\alpha_{1}+\alpha_{k}<1, \text { set } \lambda_{k+p}^{\prime} & =\sum_{i=k+p}^{n} \sigma_{i} \lambda_{i} /\left(1-\alpha_{1}-\alpha_{k}\right), \mu_{k+p}^{\prime \prime} \\
& =\sum_{i=k+p}^{n} \sigma_{i} \mu_{i} /\left(1-\alpha_{1}-\alpha_{k}\right)
\end{aligned}
$$

and (2.11) becomes

$$
\begin{gather*}
F(\sigma)=\left(\alpha_{1} \lambda_{1}+\alpha_{k} \lambda_{k}+\left(1-\alpha_{1}-\alpha_{k}\right) \lambda_{k+p}^{\prime}\right) \\
\left(\alpha_{1} \mu_{1}+\alpha_{k} \mu_{k}+\left(1-\alpha_{1}-\alpha_{k}\right) \mu_{k+p}^{\prime \prime}\right) \tag{2.12}
\end{gather*}
$$

Clearly $\lambda_{1}<\lambda_{k}<\lambda_{k+p}^{\prime}$ and we compute that

$$
\begin{gather*}
\left(\lambda_{1}-\lambda_{k+p}^{\prime}\right)\left(\mu_{k}-\mu_{k+p}^{\prime}\right)-\left(\mu_{1}-\mu_{k+p}^{\prime}\right)\left(\lambda_{k}-\lambda_{k+p}^{\prime}\right) \\
=\mu_{k}\left(\lambda_{1}-\lambda_{k+p}^{\prime}\right)-\mu_{1}\left(\lambda_{k}-\lambda_{k+p}^{\prime}\right)+\mu_{k+p}^{\prime \prime}\left(\lambda_{k}-\lambda_{1}\right) ; \tag{2.13}\\
\mu_{k+p}^{\prime \prime} \geqq f\left(\lambda_{k+p}^{\prime}\right)=\mu_{k+p}^{\prime} \tag{2.14}
\end{gather*}
$$

It follows that the expression in (2.13) is at least
$\left(\lambda_{1}-\lambda_{k+p}^{\prime}\right)\left(\lambda_{k}-\lambda_{k+p}^{\prime}\right)\left\{\left(\mu_{k}-\mu_{k+p}^{\prime}\right) /\left(\lambda_{k}-\lambda_{k+p}^{\prime}\right)-\left(\mu_{1}-\mu_{k+p}^{\prime}\right) /\left(\lambda_{1}-\lambda_{k+p}^{\prime}\right)\right\}$
and in case f is strictly convex this whole expression is positive. The inequality (2.2) holds strictly with $\lambda_{1}=a_{1}, \lambda_{k}=a_{2}, \lambda_{k+p}^{\prime}=a_{3}, \mu_{1}=b_{1}$, $\mu_{k}=b_{k}, \mu_{k+p}^{\prime}=b_{3}$ and the strict form of the lemma together with (2.12) implies that there exists $\beta_{1} \in[0,1]$ such that

$$
\begin{gather*}
F(\sigma)<\left(\beta_{1} \lambda_{1}+\sum_{i=k+p}^{n}\left(1-\beta_{1}\right) \sigma_{i} \lambda_{i} /\left(1-\alpha_{1}-\alpha_{k}\right)\right) \\
\left(\beta_{1} \mu_{1}+\sum_{i=k+p}^{n}\left(1-\beta_{1}\right) \sigma_{i} \mu_{i} /\left(1-\alpha_{1}-\alpha_{k}\right)\right) \tag{2.15}
\end{gather*}
$$

Now apply (2.1) to the right side of (2.15) to obtain a $\beta \in[0,1]$ for which $F(\sigma)<\left(\beta \lambda_{1}+(1-\beta) \lambda_{n}\right)\left(\beta \mu_{1}+(1-\beta) \mu_{n}\right)$.

Assume now that $\alpha_{1}+\alpha_{k}=1$ and then $F(\sigma)$ becomes $\left(\alpha_{1} \lambda_{1}+\right.$ $\left.\left(1-\alpha_{1}\right) \lambda_{k}\right)\left(\alpha_{1} \mu \mu_{1}+\left(1-\alpha_{1}\right) \mu_{k}\right)$. Choose θ and ω in $[0,1]$ so that $\lambda_{k}=$ $\theta \lambda_{1}+(1-\theta) \lambda_{n}, \mu_{k}=\omega \mu_{1}+(1-\omega) \mu_{n}$, set $\mu_{k}^{\prime \prime}=\theta \mu_{1}+(1-\theta) \mu_{n}$ and note that $\mu_{k}^{\prime \prime}-\mu_{k}=(\theta-\omega)\left(\mu_{1}-\mu_{n}\right)$. Then since f is monotone decreasing and strictly convex, $\theta-\omega$ and $\mu_{1}-\mu_{n}$ are both positive. It follows that

$$
\begin{aligned}
& \left(\alpha_{1} \lambda_{1}+\left(1-\alpha_{1}\right) \lambda_{k}\right)\left(\alpha_{1} \mu_{1}+\left(1-\alpha_{1}\right) \mu_{k}\right)<\left(\left(\alpha_{1}+\theta\left(1-\alpha_{1}\right)\right) \lambda_{1}\right. \\
& \left.\quad+(1-\theta)\left(1-\alpha_{1}\right) \lambda_{n}\right)\left(\left(\alpha_{1}+\theta\left(1-\alpha_{1}\right)\right) \mu_{1}+(1-\theta)\left(1-\alpha_{1}\right) \mu_{n}\right)
\end{aligned}
$$

If the quadratic polynomial in β on the right in (2.1) is maximized in $[0,1]$ we immediately obtain our main result.

Theorem 2. If

$$
\begin{equation*}
\gamma \geqq m \text { and } \lambda_{1}<\lambda_{n} \text { and } \mu_{1}>\mu_{n} \tag{2.16}
\end{equation*}
$$

then

$$
\begin{equation*}
M=\left(\lambda_{n} / \rho_{1}-\lambda_{1} f_{n}\right) / 4\left(\lambda_{n}-\lambda_{1}\right)\left(\mu_{1}-\mu_{n}\right) \tag{2.17}
\end{equation*}
$$

If

$$
\begin{equation*}
\gamma \leqq m \text { or } \lambda_{1}=\lambda_{n} \text { or } \mu_{1}=\mu_{n} \tag{2.18}
\end{equation*}
$$

then

$$
\begin{equation*}
M=m \tag{2.19}
\end{equation*}
$$

Let f be strictly convex and suppose that

$$
\lambda_{1}=\cdots=\lambda_{p}<\lambda_{p+1} \leqq \cdots \leqq \lambda_{n-q}<\lambda_{n-q+1}=\cdots=\lambda_{n} .
$$

Then $F(\sigma)=M, \sigma \in S^{n-1}$, if and only if σ has the form

$$
\sigma=\left(\sigma_{1}, \cdots \sigma_{p}, 0, \cdots, 0, \sigma_{n-q+1}, \cdots, \sigma_{n}\right)
$$

$\sum_{j=1}^{p} \sigma_{j}=\beta_{0}, \sum_{j=n-q+1}^{n} \sigma_{j}=1-\beta_{0}$, where

$$
\beta_{0}=\left\{\begin{array}{l}
\left(\gamma-\lambda_{n} \mu_{n}\right) /\left(\lambda_{n}-\lambda_{1}\right)\left(\mu_{1}-\mu_{n}\right) \text { if }(2.16) \text { holds } \tag{2.20}\\
0 \text { or } 1 \text { if }(2.18) \text { holds } .
\end{array}\right.
$$

We remark that if $\gamma=m$ then the expression on the right in (2.17) reduces to m.
3. Applications. As customary $f(A)$ will designate the linear transformation defined for any $x \in U$ by

$$
\begin{equation*}
f(A) x=\sum_{i=1}^{n} \mu_{i}\left(x, u_{i}\right) u_{i},\left(\mu_{i}=f\left(\lambda_{i}\right)\right) . \tag{3.1}
\end{equation*}
$$

On the unit sphere $\|x\|=1$ define the real valued function

$$
\begin{equation*}
\varphi(x)=(A x, x)(f(A) x, x) \tag{3.2}
\end{equation*}
$$

We compute directly from (3.1) that

$$
\begin{equation*}
\varphi(x)=\sum_{i=1}^{n} \lambda_{i}\left|\left(x, u_{i}\right)\right|^{2} \sum_{i=1}^{n} \mu_{i}\left|\left(x, u_{i}\right)\right|^{2} \tag{3.3}
\end{equation*}
$$

and by setting $\sigma_{i}=\left|\left(x, u_{i}\right)\right|^{2}, i=1, \cdots, n$, we have $\sigma=\left(\sigma_{1}, \cdots, \sigma_{n}\right)$ $\in S^{n-1}$ and

$$
\begin{equation*}
\varphi(x)=F(\sigma) . \tag{3.4}
\end{equation*}
$$

Thus by direct application of Theorem 2 we have
Theorem 3. Then maximum value of $\varphi(x)$ for x on the unit sphere $\|x\|=1$ is the number M in the statement of Theorem 2. Moreover $\varphi\left(x_{0}\right)=M$ can always be achieved with a unit vector x_{0} in. the subspace spanned by those eigenvectors of A corresponding to λ_{1} and λ_{n}. If f is strictly convex and $\varphi\left(x_{0}\right)=M$ then x_{0} must lie in the sum of the null spaces of $A-\lambda_{1} I$ and $A-\lambda_{n} I$. In particular, if λ_{1} and λ_{n} are simple eigenvalues of A, f is strictly convex and $\varphi\left(x_{0}\right)=M$ then x_{0} must lie in the two dimensional subspace spannedby u_{1} and u_{n}.

In Theorem 3 take $f(t)=t^{-p}, p>0$. Let $\theta=\lambda_{1} / \lambda_{n}$ denote the condition number of A. Assume that $\theta<1$ (otherwise $\lambda_{1}=\lambda_{n}$ and A is a multiple of the identity). There are two cases to consider: $p>1 ; p \leqq 1$. In case $p>1, m=\lambda_{1}^{1-p}$ and the condition (2.16), $\gamma \geqq m$, becomes

$$
\begin{equation*}
g(\theta)=\theta^{p+1}-2 \theta+1 \geqq 0 \tag{3.5}
\end{equation*}
$$

We note that g is convex, $g(1)=0, g^{\prime}(\theta)=0$ for $\theta=(2 /(p+1))^{1 / p}$, and
hence g has precisely one root in $(0,1)$, call it θ_{p}. It is easy to see that $\theta_{p}>1 / 2$ for all $p>1$. In general, if $0<\theta \leqq \theta_{p}$ then Theorem 2 yields

$$
\begin{equation*}
M=\lambda_{1}^{1-p}\left(\theta^{p+1}-1\right)^{2} / 4 \theta(\theta-1)\left(\theta^{p}-1\right) ; \tag{3.6}
\end{equation*}
$$

and if $1 \geqq \theta>\theta_{p}$ then

$$
\begin{equation*}
M=\lambda_{1}^{1-p} . \tag{3.7}
\end{equation*}
$$

In case $p \leqq 1, m=\lambda_{n}^{1-p}$ and the condition (2.16), $\gamma \geqq m$, becomes $g(\eta)$ $\geqq 0$ where $\eta=\theta^{-1}$. But $g(\eta) \geqq 0$ for $\eta \geqq 1$ and $\eta=\theta^{-1} \geqq 1$ so the upper bound for $F(\sigma)$ is M given in (3.6).

Assume now that λ_{1} and λ_{n} are both simple eigenvalues of A and we examine the structure of the vector x_{0} that maximizes $\varphi(x)=$ $(A x, x)\left(A^{-p} x, x\right)$ on the unit sphere $\|x\|=1$. By Theorem 3 the maximum value of $\varphi(x)=F(\sigma)$ can only occur for $\sigma_{2}=\cdots=\sigma_{n-1}$ $=0$. Moreover by (2.20) $F(\sigma)=M$ for the unique values

$$
\left.\begin{array}{l}
\sigma_{n}=\sigma_{n}(\theta)=g(\theta) / 2(1-\theta)\left(1-\theta^{p}\right) \tag{3.8}\\
\sigma_{1}=\sigma_{1}(\theta)=\sigma_{n}\left(\theta^{-1}\right)
\end{array}\right\} \text { if } g(\theta) \geqq 0 \text { or } p=1
$$

and

$$
\begin{equation*}
\sigma_{1}=1, \sigma_{n}=0 \text { if } g(\theta)<0 \text { and } p>1 \tag{3.10}
\end{equation*}
$$

Summing up these results we have
Theorem 4. Let θ designate the condition number of $A, \theta=$ $\lambda_{1} / \lambda_{n}$. If either $0<p \leqq 1$, or $p>1$ and $0 \leqq \theta \leqq \theta_{p}$, then for $\|x\|=1$

$$
\begin{equation*}
(A x, x)\left(A^{-p} x, x\right) \leqq \lambda_{1}^{1-p}\left(\theta^{p+1}-1\right)^{2} / 4 \theta(\theta-1)\left(\theta^{p}-1\right) \tag{3.11}
\end{equation*}
$$

If $p>1$ and $\theta_{p}<\theta$ then for $\|x\|=1$

$$
\begin{equation*}
(A x, x)\left(A^{-p} x, x\right) \leqq \lambda_{1}^{1-p} \tag{3.12}
\end{equation*}
$$

If λ_{1} and λ_{n} are simple eigenvalues of A then the upper bound in (3.11) is only achieved for unit vectors of the form

$$
\begin{equation*}
x_{0}=\sqrt{\sigma_{n}\left(\theta^{-1}\right)} e^{i \omega_{1}} u_{1}+\sqrt{\sigma_{n}(\theta)} e^{i \omega_{2}} u_{n} \tag{3.13}
\end{equation*}
$$

ω_{1}, ω_{2} real. The upper bound in (3.12) is achieved only for unit vectors of the form

$$
x_{0}=e^{i \omega} u_{1}
$$

In case $p=1$ we have the Kantorovich inequality. In this case (3.11) becomes (for $\|x\|=1$)

$$
\begin{equation*}
(A x, x)\left(A^{-1} x, x\right) \leqq\left(\sqrt{ } \bar{\theta}+\sqrt{\left.\overline{\theta^{-1}}\right)^{2}} / 4 .\right. \tag{3.14}
\end{equation*}
$$

If λ_{1} and λ_{n} are simple eigenvalues then the inequality (3.14) is strict unless

$$
\begin{equation*}
x=x_{0}=\left(e^{i_{1} 1} u_{1}+e^{i \omega_{2}} u_{n}\right) / \sqrt{2}, \omega_{1}, \omega_{2} \text { real } . \tag{3.15}
\end{equation*}
$$

4. Determinants and permanents. In this section we specialize by taking U to be the unitary space of n-tuples with inner product (x, y) $=\sum_{i=1}^{n} x_{i} \bar{y}_{i}$ and A to be an n-square hermitian positive semidefinite matrix. If $1 \leqq k \leqq n$ then $C_{k}(A)$ will denote the k th compound of A and if x_{1}, \cdots, x_{k} are vectors in U then $x_{1} \wedge \cdots \wedge x_{k}$ is the Grassmann product of these vectors, sometimes called a pure vector of grade $k\left[6\right.$, p. 16]. The eigenvalues of $C_{k}(A)$ are all $\binom{n}{k}$ numbers $\lambda_{i_{1}} \cdots \lambda_{i_{k}}$, with corresponding eigenvectors $u_{i_{1}} \wedge \cdots \wedge u_{i_{k}}, 1 \leqq i_{1}<\cdots$ $<i_{k} \leqq n$. The smallest and largest of these eigenvalues are $\prod_{j=1}^{k} \lambda_{j}$ and $\prod_{j=1}^{k} \lambda_{n-j+1}^{n}$ respectively. It has been noted in [2] and [5] that the Kantorovich inequality applied to $C_{k}(A)$ yields

$$
\begin{equation*}
\operatorname{det} A\left[i_{1}, \cdots, i_{k}\right] \operatorname{det} A^{-1}\left[i_{1}, \cdots, i_{k}\right] \leqq\left(\sqrt{\Delta}+\sqrt{A^{-1}}\right)^{2} / 4 \tag{4.1}
\end{equation*}
$$

where $\Delta=\prod_{j=1}^{k} \lambda_{j} \lambda_{n-j+1}^{-1}$ and $A\left[i_{1}, \cdots, i_{k}\right]$ is the principal submatrix of A lying in rows and columns numbered i_{1}, \cdots, i_{k}.

We prove
Theorem 5. If $1 \leqq k<n-1$ and $\lambda_{1}, \cdots, \lambda_{k}$ together with λ_{n}, \cdots, λ_{n-k+1} are simple eigenvalues of A then the inequality (4.1) is always strict.

Proof. The number $\operatorname{det} A\left[i_{1}, \cdots, i_{k}\right] \operatorname{det} A^{-1}\left[i_{1}, \cdots, i_{k}\right]$ is a value of the product of quadratic forms associated with $C_{k}(A)$ and $C_{k}\left(A^{-1}\right)$,

$$
\begin{align*}
& \left(C_{k}(A) x_{1} \wedge \cdots \wedge x_{k}, x_{1} \wedge \cdots \wedge x_{k}\right) \\
& \quad\left(C_{k}\left(A^{-1}\right) x_{1} \wedge \cdots \wedge x_{k} ; x_{1} \wedge \cdots \wedge x_{k}\right), \tag{4.2}
\end{align*}
$$

and according to (3.15), (4.1) will be strict unless

$$
\begin{equation*}
x_{1} \wedge \cdots \wedge x_{k}=\frac{1}{\sqrt{2}}\left(e^{i \omega_{1}} u_{1} \wedge \cdots \wedge u_{k}+e^{i \omega_{2}} u_{n} \wedge \cdots \wedge u_{n-k+1}\right) . \tag{4.3}
\end{equation*}
$$

Let $p=\min \{k, n-k\}, q=\max \{k+1, n-k+1\}$ and compute successively the Grassmann products of both sides of (4.3) with u_{1}, \cdots, u_{p} and u_{n}, \cdots, u_{q}. We obtain

$$
\begin{equation*}
x_{1} \wedge \cdots \wedge x_{k} \wedge u_{j}=\frac{e^{i \omega_{2}}}{\sqrt{2}}\left(u_{n} \wedge \cdots \wedge u_{n-k+1} \wedge u_{j}\right), j=1, \cdots, p, \tag{4.4}
\end{equation*}
$$

and
(4.5) $\quad x_{1} \wedge \cdots \wedge x_{k} \wedge u_{j}=\frac{e^{i \omega_{2}}}{\sqrt{2}}\left(u_{1} \wedge \cdots \wedge u_{k} \wedge u_{j}\right), j=q, \cdots, n$.

Since u_{1}, \cdots, u_{n} are linearly independent it follows that the right sides of (4.4) and (4.5) are not 0 . Thus

$$
\begin{equation*}
<x_{1}, \cdots, x_{k}, u_{j}>=<u_{1}, \cdots, u_{k}, u_{j}>, j=1, \cdots, p \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
<x_{1}, \cdots, x_{k}, u_{j}>=<u_{1}, \cdots, u_{k}, u_{j}>, j=q, \cdots, n \tag{4.7}
\end{equation*}
$$

where $<x_{1}, \cdots, x_{k}, u_{j}>$ denotes the subspace spanned by the vectors inside the brackets. Intersect the p subspaces on the left in (4.6) and observe that $\left\langle x_{1}, \cdots, x_{k}\right\rangle$ is a subspace of the intersection. Similarly $\left\langle x_{1}, \cdots, x_{k}\right\rangle$ is a subspace of the intersection of the $n-q+1$ spaces on the left in (4.7). On the other hand

$$
\bigcap_{j=1}^{p}<u_{n}, \cdots, u_{n-k+1}, u_{j}>=<u_{n}, \cdots, u_{n-k+1}>
$$

and

$$
\bigcap_{j=q}^{n}<u_{1}, \cdots, u_{k}, u_{j}>=<u_{1}, \cdots, u_{k}>
$$

Hence

$$
\begin{align*}
& \operatorname{dim}\left\{<u_{1}, \cdots, u_{k}>\cap<u_{n}, \cdots, u_{n-k+1}>\right\} \\
& \quad=\operatorname{dim}\left\{\bigcap_{j=1}^{n}<x_{1}, \cdots, x_{k}, u_{j}>\cap \bigcap_{j=q}^{n}<x_{1}, \cdots, x_{k}, u_{j}>\right\}>k \tag{4.8}
\end{align*}
$$

The subspace $<u_{1}, \cdots, u_{k}>\cap<u_{n}, \cdots, u_{n-k+1}>$ is nonempty if and only if $n-k+1 \leqq k$ in which case its dimension is $2 k-n$. But the inequality $2 k-n \geqq k$ implies that $k \geqq n$, a contradiction. Thus (4.3) cannot hold and (4.1) is strict.

We remark that in case $k=n-1$ then $p=1, q=n, x_{1} \wedge \cdots \wedge$ $x_{k} \wedge u_{1}=u_{n} \wedge \cdots \wedge u_{2} \wedge u_{1}, x_{1} \wedge \cdots \wedge x_{k} \wedge u_{n}=u_{1} \wedge \cdots \wedge u_{n-1} \wedge u_{n}$ and the above argument fails. In fact, it is not difficult to construct examples for which (4.1) is equality.

Once again, if $1 \leqq k \leqq n$ then $P_{k}(A)$ will denote the k th induced power matrix of A and if x_{1}, \cdots, x_{k} are vectors in U then $x_{1} \cdots x_{k}$ will denote the symmetric or dot product of these vectors [3, p. 49]. The eigenvalues of $P_{k}(A)$ are all $\binom{n+k-1}{k}$ homogeneous products $\lambda_{i_{1}} \cdots \lambda_{i_{k}}$ with corresponding eigenvectors $u_{i_{1}} \cdots u_{i_{k}}, 1 \leqq i_{1} \leqq \cdots \leqq i_{k}$ $\leqq n$. Suppose x_{1}, \cdots, x_{n} are orthonormal vectors and the multiplicities
of the distinct integers in the sequence $i_{1} \leqq \cdots \leqq i_{k}$ are respectively m_{1}, \cdots, m_{p}. Let $\mu=\mu\left(i_{1}, \cdots, i_{k}\right)=m_{1}!\cdots m_{p}$!. Then the square of the length of the symmetric product $x_{i_{1}} \cdots x_{i_{k}}$ is $\mu\left(i_{1}, \cdots, i_{k}\right)$ [3, p. 50]. Applying the Kantorovich inequality to $P_{k}(A)$ yields

$$
\begin{align*}
& \left(P_{k}(A) x_{i} \cdots x_{i_{k}}, x_{i_{1}} \cdots x_{i_{k}}\right)\left(P_{k}\left(A^{-1}\right) x_{i_{1}} \cdots x_{i_{k}}, x_{i_{1}} \cdots x_{i_{k}}\right) \tag{4.9}\\
& \quad \leqq \mu^{2}\left(\sqrt{\delta}+\sqrt{\delta^{-1}}\right)^{2} / 4,1 \leqq i_{1} \leqq \cdots \leqq i_{k} \leqq n
\end{align*}
$$

where $\delta=\left(\lambda_{1} \lambda_{n}^{-1}\right)^{k}$, and x_{1}, \cdots, x_{n} is an orthonormal basis of U. In particular if we let $x_{i}=e_{i}$, the unit vector with 1 in the i th position, 0 elsewhere, then (4.9) becomes

$$
\begin{equation*}
\operatorname{per} A\left[i_{1}, \cdots, i_{k}\right] \operatorname{per} A^{-1}\left[i_{1}, \cdots, i_{k}\right] \leqq \mu^{2}\left(\sqrt{\delta}+\sqrt{\left.\delta^{-1}\right)^{2}} / 4\right. \tag{4.10}
\end{equation*}
$$

where $A\left[i_{1}, \cdots, i_{k}\right]$ is the k-square matrix whose (s, t) entry is $a_{i_{s} i_{t}}$, $s, t=1, \cdots, k$.

Theorem 6. If λ_{1} and λ_{n} are simple eigenvalues of A and there are at least three distinct integers in the sequence $i_{1} \leqq \cdots \leqq i_{k}$ then the inequality (4.10) is strict.

Proof. According to (3.15), (4.10) will be strict unless

$$
\begin{equation*}
e_{i_{1}} \cdots e_{i_{k}}=\frac{e^{i \omega_{1}}}{\sqrt{2 k!}} u_{1} \cdots u_{1}+\frac{e^{i \omega_{2}}}{\sqrt{2 k!}} u_{n} \cdots u_{n} \tag{4.11}
\end{equation*}
$$

Let y be an arbitrary vector and compute the inner product of both sides of (4.11) with $y \cdots y$ to obtain

$$
\begin{equation*}
\prod_{j=1}^{k}\left(e_{i{ }_{j}}, y\right)=\frac{e^{i \omega_{1}}}{\sqrt{2 k!}}\left(u_{1}, y\right)^{k}+\frac{e^{i \omega_{2}}}{\sqrt{2 k!}}\left(u_{n}, y\right)^{k} \tag{4.12}
\end{equation*}
$$

Set

$$
v_{1}=\left(\frac{e^{i \omega_{1}}}{\sqrt{2 k!}}\right)^{1 / k} u_{1}, v_{2}=\left(\frac{e^{i \omega_{2}}}{\sqrt{2 k!}}\right)^{1 / k} u_{n}
$$

and write $e_{i_{j}}=\alpha_{j} v_{1}+w_{j}, w_{j} \in<v_{1}>^{\perp}, j=1, \cdots, k$. Then for y any vector in $\left\langle v_{1}\right\rangle^{\perp}$, (4.12) becomes

$$
\begin{equation*}
\prod_{j=1}^{k}\left(e_{i y}, y\right)=\prod_{j=1}^{k}\left(w_{j}, y\right)=\left(v_{2}, y\right)^{k} \tag{4.13}
\end{equation*}
$$

in which w_{j}, v_{2}, y are in $\left\langle v_{1}\right\rangle^{\perp}, j=1, \cdots, k$. But then from [3, Theorem 3] we conclude that $w_{j}=\beta_{j} v_{2}, j=1, \cdots, k$, for appropriate scalars $\beta_{1}, \cdots, \beta_{k}$ and hence $e_{i j} \in\left\langle v_{1}, v_{2}\right\rangle, j=1, \cdots, k$. Since there are at least three linearly independent $e_{i j}$, (4.11) must fail and hence (4.10) is strict.

References

1. L. V. Kantorovich and V. I. Krylov, Approximate methods of higher analysis, New York, Interscience (1958).
2. Marvin Marcus, and N. A. Khan Some generalizations of Kantorovich's inequality, Portugaliae Math. 20, 1, (1961), 33-38.
3. Marvin Marcus and Morris Newman. Inequalities for the permanent function, Ann of Math., 75, 1, (1962), 47-62.
4. Morris Newman. Kantorovich's inequality, J. Research Nat. Bur. Standards, 64 (B), (1960), 33-34.
5. Andreas H. Schopf,. On the Kantorovich inequality, Numerische ${ }_{2}^{\text {W. Math., }} 2$ (1960), 344-346.
6. J. H. M. Wedderburn,. Lectures on matrices, Amer, Math. Soc. Coll. Publ., 17 (1934).

University of California, Santa Barbara
AND
University of British Columbia, Canada

[^0]: Received October 30, 1962.

