
EQUALITY IN CERTAIN INEQUALITIES

MARVIN MARCUS AND APTON CAYPORD

1. Introduction. Let a = (σlt , σn) be a point on the unit
{n - l)-simplex S—1: Σ?-i*« = 1, ^ ^ 0. Let 0 < \ ^ λ2 ^ g λ»
and / ί 1 ^ / ί 1 ^ ^//,>f lbe positive numbers and form the function,
on S-1

(1.1) F(σ) = ±σ.χ.±σiμi.
* = 1 ί = l

The main purpose of this paper is to examine the structure of
the set of points a e S""1 for which F(σ) takes on its maximum value.
In case a convex monotone decreasing function / is fitted to the
points (Xi, f*i)(i.e.f(Xi) = μ{), i == 1, , n, then it is not difficult tσ
show that the maximum for F(σ) on Sn~τ is the upper bound given
by M. Newman [4] in a recent interesting paper. In the case of the
Kantorovich inequality [1] the function / is f(t) = t~\ μ{ = λr\ i =
1, , n. In this case a maximizing σ is σ1 = 1/2, σn = 1/2, Gi = 0,
i = 2, , n — 1, and if \ < λfc < λn, k = 2, — , w — 1, it is a corol-
lary of our main result (Theorem 2) that this is the only choice possible
for σ 6 S71"1 in order to achieve the maximum value.

We shall assume henceforth in this paper that μt = /0w), i = 1,
• , n, where / is a monotone decreasing convex function defined on
the closed ointerval [λx, Xn], In 2 we determine the structure of the
set of a e S71"1 for which F{σ) is a maximum in the case in which f
is assumed to be strictly convex. In 3 we investigate the structure
of the set of unit vectors x for which the function

(1.2) φ(x) = (Ax, x)(f(A)x, x)

assumes its maximum value on the unit sphere \\x\\ = 1. Throughout,
A is a positive definite hermitian transformation on an ^-dimensional
unitary space U with inner product (x, y). The eigenvalues of A are
\ 9 0 < λj. ^ ^ λw, with corresponding orthonormal eigenvectors uit

AUi = XiUi, i = 1, , n. Of particular interest in (1.2) is the choice
/(ί) = t~\ p > 0.

Finally, in 4, we discuss the applications of the previous results
to Grassmann compounds and induced power transformations associated
with A. In two recent papers [2, 5] the Kantorovich inequality was
applied to the compound to obtain inequalities involving principal
subdeterminants of a positive definite hermitian matrix. .We shall
prove (Theorem 5) that these inequalities are in fact strict except in
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trivial cases. Similar inequalities are obtained for the permanent
function together with a discussion of the cases of equality. These
inequalities are believed to be new.

2 Maximum values for F. In the rest of the paper M will
systematically denote the maximum value of F(σ), σ e S71"1, and m
will denote the largest of λ ^ and Xnμn. Also, 7 will denote the
number ( λ ^ + λ^μO/2. The main result of this section is Theorem
2 which describes the structure of those o for which F(σ) = M when
/ is strictly convex. We first prove

THEOREM 1. For any σeS"'1 there exists a βe[0,1] such that

(2.1) F{σ) ^ {β\ + (1 - β)λn){βμ1 + (1 - β)μn) .

/ / / is strictly convex and for some k, 1 ^ k ^ n, \ < λfc < λn and
&k>0 then there exists a βe[0,1] for which (2.1) is a strict in-
equality.

To prove Theorem 1 we use the following elementary fact.

LEMMA. If 0 ^ a± ̂  α2 £ α3, and b^b^b^O and

(2.2) (a, - az)(b2 - b3) ^ (α2 - α3)(δ2 - δ3)

then for any a = (alf a2, a3) e S2 there exists a βe[0,1] such that

(2.3) Σ ^i^i Σ « A ^ CS î + (1 ~ /5)O(/3δi + (1 - /S)δ3) .

/ / the inequality (2.2) is strict and a2>0 then there exists a

β e [0,1] such that (2.3) is strict.

Proof. Let θ and ω in [0,1] be so chosen that a2 = 0 ^ +
(1 - 0)α3, δ2 - ωδx + (1 - ω% and set 6J = θbx + (1 - 0)68. Then

(2.4) δ; - 62 - (θ - ω){bλ - 63)

Assume first that α3 > α2 and 62 > 68. Then θ = (α2 - α3)/(α1 - α3)
> 0 and ω = (6, - δ3)/(δχ - &8). Moreover θ ^ ω by (2.2) and if (2.2)
is strict then θ > ω. From (2.4) 6J - 62 g 0 and we compute that

L ^ ((«! + ί α j o ! + (αa(l - 0) + ^3)̂ 3)
< 2 # } ((« + Θa% + ( α ( l - θ) + az%) ,

where L is the left side of (2.3). This is (2.3) with β = aι +
θa2e [0,1]. If (2.2) is strict then θ > ω, 6̂  = δ2, and tfa > 0 together
imply that (2.5) is strict.

Suppose next that a2 = α3. From (2.2) and (αα — α3) ̂  0 we have
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{aλ — α3)(δ2 — 63) = 0 and hence ax — α3 or b2 = δ3. The first alternative
yields ax — a2 — α3 and thus L = α ^ U ^ A ^ #A which is (2.3) with
β = 1. If 62 = 63 then (2.3) holds with β = aλ. This completes the
proof of the lemma.

The proof of Theorem 1 is by induction on n. The first non-
trivial case is n = 3. In general the convexity of / implies that

(2.6) (\ - λ3)(ft - ft) > (λ, - λs)(ft - ft)

and (2.6) is strict if λx < λ2 < λ3 and / is strictly convex. The in-
equality (2.1) follows from the lemma. If n > 3 we distinguish the
two possibilities σ1 + σ2 = 1 and σλ + σ2 < 1. In the first case

(2.7) F(<7) - (CĴ I + ^i^X^ift + <?2ft) .

If ft = ft and hence ft = ft = ft, i = 1, , w, then F{σ) ^ λ n f t
which is (2.1) with β = 0. If ft > ft, and hence λx < λn, obtain ^
and ω in [0,1] so that λ2 = ΘX± + (1 — θ)Xn, ft = ωμ1 + (1 — ω)μn and

ft = θμλ + (1 — θ)μn to obtain

<2.8) μ', - ft = (θ - ω)(ft - ft) ^ 0 .

The convexity of / again implies that θ ^ ω with strictness in case
/ is strictly convex and λ2 > λn. Hence

F(σ) ^ (σΛi + (0λx + (1 - θ)Xn)σ2){σ1μ1 + σ2μ\)

= ({σx + ίσOλx + (1 - θ)σ2κn){{σ1 + Θσ2)μx + (1 - 0)<7aμn)

which is (2.1) with β = σλ + θσ2. We proceed to the case σ1 + σ2 < 1.
Let λ̂  = Σ?=s^Λί/(l — (Ti — σ2), μ'J = Σ?=8^»ft/(1 — ^1 — ^2) and observe
that λ ^ λ 2 ^ λj, ft ^ ft ^ /i;' and jP(σ) = (σxλi + o2X2 + (1 — σx — σa)λί)
(α jft + tf2ft + (1 — ίTi — tfa)μί') W e n e x t verify that (2.2) holds for
the choices λ3 = α3, λ2 = α2, λx = αx, ft = 6X, ft = b2, μ" = δ3:

(λx - λ8Xft - ^ί') - (ft - /^')(λ2 - λj)

ft(λ - λ{) - ft(λ2 - λ3) + /£;'(λ2 - λθ

,and

ΐ = 3 \ΐ = 3 /

Hence the expression in (2.9) is at least

(2.10) ft(λ2 - λί) - ft(λ2 - X'3) + μ',(X2 - X,) .

If λ2 = λί the expression (2.10) reduces to 0 and the expression in
(2.9) is nonnegative. If λ2 < λί then λx < λί and (2.10) becomes
<λx - λί)(λ2 - λί){(ft - /£ί)/(λ2 - λί) - (ft - μί)l(\ - λί)} ^ 0. Apply
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the lemma to obtain βx e [0,1] for which

=g (Aλ, + (1 - AKK&ft + (1 - A)ft")

Σ (1 -

ift + Σ (i - AKft/(l - *i - <Ί

This last expression is a product of convex combinations of λ's and
μ's involving only n — 1 terms and satisfying the induction hypothesis..
Hence there exists β e [0,1] such that

F(σ) ^ (ftλ, + Σ (1 - βM^Kl -a,- σ2))

+ Σ (1 - Atoft/(1 - <r, - σ2)) ^ (/9X, + (1 - β)xn)

+ (1 - /3)/O .

This establishes (2.10).
The discussion of the strictness in (2.1) requires the use of (2.1))

itself. Let k be the least integer for which both σk > 0 and λj <.
Xk < λ.. Then

.P(σ) = ( α ^ + akxh + ak+pxk+p + + anxn)

( α ^ + ^ f t + ak+pμk+p + + anμn)

in which ax + ak + ak+p + + oεn = 1, ctj = σd, j = k + p, , n, and
λfc < λfc+p. Assume

ax + ak< 1, set λj+1, = Σ ^i^/(l - ^ - ak), μ'k'+p

= Σ ffιft/(l - «i - «»)

and (2.11) becomes

^(tf) = (tfiλx + αfcλfc + (1 - ^ - αrfc)λί+J>)

( α ^ + α4/£* + (1 - at - ak)μf

k\p) .

Clearly X1 < λfc < λ'Λ+3) and we compute that

(2 13) ( λ l λ ^ p ) ( / f c

(2.14)

It follows that the expression in (2.13) is at least
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- K+p) - (ft - ί£i

and in case / is strictly convex this whole expression is positive. The
inequality (2.2) holds strictly with λx = αlf λfc = α2, λ'fc+p = αs, ft = 6lf

Pk = bk, μ
f

k+p = δ3 and the strict form of the lemma together with
{2.12) implies that there exists fte[0,1] such that

F(σ)

(Aft + Σ (1 ~ A

Now apply (2.1) to the right side of (2.15) to obtain a /3e[0,1] for
which F(σ) < {β\, + (1 - β)K)(βμ1 + (1 - £)/£Λ).

Assume now that ^ + ak = 1 and then F(σ) becomes (a{κx +
(1 — o^d^k)(aiβi + (1 — (Xj)μk). Choose θ and ω in [0,1] so that Xk —
ϋ\ + (1 - 0)λΛ, ft - cwft + (1 - ω)μn, set ^ ' - ^ft + (1 - θ)μn and
note that μk — ft = (61 — α>)(ft — /£n). Then since / is monotone
decreasing and strictly convex, θ — ω and ft — μn are both positive.
It follows that

( α λ + (1 - αOλOί^ft + (1 - αjft) < ((^ + θ(l - aj)\

If the quadratic polynomial in β on the right in (2.1) is maximized
in [0,1] we immediately obtain our main result.

THEOREM 2. If

{2.16) 7 2̂  m emd λx < λn α^d ft > /^

{2.17) M = (λnft - \μn)

(2.18) 7 ^ m or λx = λn or ft = p:w

{2.19) M = m .

Lei / δβ strictly convex and suppose that

Then F(σ) = M, σ e Sn~\ if and only if σ has the form

o — ( î, 0p, 0, , 0, σw_?+1, , σn) ,
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Σ?=i<7; = A), Σ i = w - ? + i ^ i = 1 - &» where

(7 - Kμn)l(K - \)(βi - ft.) if (2.16) holds,
(2 20) yδ =

(0 or 1 i/ (2.18)

We remark that if 7 = m then the expression on the right in
(2.17) reduces to m.

3 Applications* As customary f(A) will designate the linear
transformation defined for any x e U by

(3.1) f(A)x = Σ ft(α, % ) ^ , (ft

On the unit sphere \\x\\ = 1 define the real valued function

(3.2) φ(x) = (Ax,x)(f(A)x,x).

We compute directly from (3.1) that

(3.3) φ(x) = Σ λ< I (x, Ui) I2 Σ ft I (», ̂ ) I2

i=l i = l

and by setting CF; = | (x, Uj) |2, i = 1, , n, we have σ = (σl9 , σn)
e S71-1 and

(3.4) Ψ{x) = F(σ) .

Thus by direct application of Theorem 2 we have

THEOREM 3. Then maximum value of φ{x) for x on the unit
sphere \\x\\ = 1 is the number M in the statement of Theorem 2.
Moreover φ(x0) — M can always be achieved with a unit vector xQ in-
the subspace spanned by those eigenvectors of A corresponding to Xx

and λw. If f is strictly convex and φ(x0) — M then xQ must lie irί
the sum of the null spaces of A — \I and A — \nI. In particular,
if X1 and Xn are simple eigenvalues of A, f is strictly convex cmd
φ(χo) — M then x0 must lie in the two dimensional subspace spanned
by uλ and un.

In Theorem 3 take f(t) = t~v, p > 0. Let Θ = λjλ^ denote the
condition number of A. Assume that θ < 1 (otherwise \ = Xn and
A is a multiple of the identity). There are two cases to consider:
p > 1; p ^ 1. In case p > 1, m = X\~p and the condition (2.16), 7 ^ m,.
becomes

(3.5) g(θ) = θp+1 - 2Θ + 1 ^ 0 .

We note that g is convex, #(1) = 0, g\θ) = 0 for θ = (2/(j> + l))llP, and
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hence g has precisely one root in (0,1), call it θp. It is easy to see
that θp > 1/2 for all p > 1. In general, if 0 < θ ^ βp then Theorem
2 yields

(3.6) M = λi-p(ff»+1 - l)2/40(0 - l)(θ* - 1)

and if 1 ^ 0 > θv then

(3.7) M = \{~p .

In case p ^ 1, m = λ5rp and the condition (2.16), y ^ m, becomes g{η)
^ 0 where η = 0-1. But r̂(>7) ̂  0 for 17 ̂  1 and J? = θ~λ ^ 1 so the
upper bound for F(σ) is M given in (3.6).

Assume now that λn and λn are both simple eigenvalues of A and
we examine the structure of the vector x0 that maximizes φ(x) =
(Ax, x)(A~px, x) on the unit sphere | |OΣ|| = 1. By Theorem 3 the
maximum value of φ{x) = F(σ) can only occur for σ2 = = crw_1

= 0. Moreover by (2.20) F(σ) = M for the unique values

(3.8) σn = σn(θ) = g(θ)l2(l - θ)(l - θ')\

(8.9, ,, - am = σ.(,-) J* «<»U 0 « ,, - 1

and

(3.10) σx = 1, σn = 0 if ff(0) < 0 and p > 1 .

Summing up these results we have

THEOREM 4. Let θ designate the condition number of A, θ =
λi/λn. / / either 0 < p ^ l , or p > 1 αraZ 0 ^ θ ^ θPf then for

(3.11) (Ax, α>)(A-% a?) ^ λ j - ^ ^ ^ 1 - l)2/40(0 - 1)(0P - 1) .

If p > 1 ami 0P < 0 then for \\ x \\ = 1

(3.12) (Ax, aj)(A-paj, a?) ^ λl~p .

/ / X1 and \n are simple eigenvalues of A then the upper bound in
(3.11) is only achieved for unit vectors of the form

(3.13) x0 = VWJjF^) e^u, + VσJjS)ei^un ,

o)l9 o)2 real. The upper bound in (3.12) is achieved only for unit
vectors of the form

x0 = e

iωu±.

In case p = 1 we have the Kantorovich inequality. In this case
(3.11) becomes (for | | g | | = 1)
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{Ax, xXA^x, x) ^ {VT+

If λi and Xn are simple eigenvalues then the inequality (3.14) is strict
unless

<3.15) x = x0 = (e^u, + ei(ύ*un)jVΎ, ωlf ω2 real .

4 Determinants and permanents In this section we specialize
by taking U to be the unitary space of w-tuples with inner product
{x, v) = Σί=i χiVi a nd. .Ά to be an ^-square hermitian positive semi-
definite matrix. If lSk^n then Ck(A) will denote the kth com-
pound of A and if xu , α?fc are vectors in U then a?x Λ Λ xk is the
Grassmann product of these vectors, sometimes called a pure vector

of grade k [6, p. 16]. The eigenvalues of Cfe(A) are all (?) numbers
λ^ λ<Jt, with corresponding eigenvectors wίχ Λ Λ ut , 1 ^ ix <
•< ̂  ^ n. The smallest and largest of these eigenvalues are Π1=Ai
and Πi=iVi+i respectively. It has been noted in [2] and [5] that
the Kantorovich inequality applied to C^(A) yields

<4.1) det A[ilf •, ik] det A^fa, , ik] ^ (VΎ + VT^Y/A

where A = Πi=i^Λwiy+i and A[ilf ---,ik] is the principal submatrix
Of A lying in rows and columns numbered ilf , ik.

We prove

THEOREM 5. / / 1 S k < n — 1 and λ l f , λ* together with Xn, ,
~λn-k+i are simple eigenvalues of A then the inequality (4.1) is always
strict.

Proof, The number det A[il9 , ik] det A'1^, , ίk] is a value
of the product of quadratic forms associated with Ck(A) and Ck{A~ι),

/A m (Ck(A)x1 A Λ xk, xx A Λ xk)(4.2)
(CfcίA"1)^! Λ • Λ xk> %i Λ Λ xk) ,

and according to (3.15), (4.1) will be strict unless

(4.3) xx A Λ xk = - J L ( e ί ω ^ Λ Λ % + e ί ω 2 ^ Λ Λ Ϊ V . Λ + 1 ) .

Let p = min {&, n — k},q ^= max {fc + 1, w — fc 4- 1} and compute suc-
cessively the Grassmann products of both sides of (4.3) with uu •••,
Up and un, , uq. We obtain

(4.4) α?i Λ Λ a?* Λ % = Tpζ^ A Λ wΛ-*+i Λ % ) , i = 1, , p ,
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and

(4.5) xx A Λ xk A Uj = yψ(Mi Λ Λ uk A uό), j = q, , n .

Since ux, •••,%» are linearly independent it follows that the right
sides of (4.4) and (4.5) are not 0. Thus

(4.6) < xl9 , xk9 Uj > = < ul9 , %, % >, j = 1, , p ,

and

(4.7) < xlf •••,%,%> = < ulf 9uk9us>9 i = g, , w ,

where < ^ , , #*., % > denotes the subspace spanned by the vectors
inside the brackets. Intersect the p subspaces on the left in (4.6)
and observe that < xl9 , xk > is a subspace of the intersection.
Similarly < xlf *', xk > is a subspace of the intersection of the
n — q + 1 spaces on the left in (4.7). On the other hand

, un_k+1
n < un, , ttn_fc+1, Uj > = <uny

and

n < Ui, , uk, uj > = < % ! , - • • , % > .

Hence

dim {< Uj, , uk > Π < un, , un-k+1 >}
(4.8) f , . . .

= dim n < ^ * ^ b ^ > n f l < •«!, , a** % > r > fe

The subspace < ul9 , uk > Π < unf , wn_jfe+i > is nonempty if and
only if% — k + 1 ^ k in which case its dimension is 2k — n. But the
inequality 2k — n ^ k implies that k^ n, a contradiction. Thus (4.3)
cannot hold and (4.1) is strict.

We remark that in case k = n — 1 then p — 1, q = n, xx A Λ
®k Λ ux = un A " - A u2 A ul9 xx A Λ xk A un = ux A Λ un-x A un

and the above argument fails. In fact, it is not difficult to construct
examples for which (4.1) is equality.

Once again, if 1 ^ k ^ n then Pk(A) will denote the kth induced

power matrix of A and if xl9 , xk are vectors in U then xx xk

will denote the symmetric or dot product of these vectors [3, p. 49].

The eigenvalues of Pk(A) are all (n -, "" J homogeneous products

Xh λίft with corresponding eigenvectors utl wίfc, 1 ^ ix ^ ^ ΐ*
^ ?ι. Suppose x19 , xn are orthonormal vectors and the multiplicities
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of the distinct integers in the sequence ix S ^ ik are respectively
ml9 , mv. Let μ = ^(iu , ik) = mj mp!. Then the square of
the length of the symmetric product xiχ xijc is μ(ilf , ik) [3, p. 50].
Applying the Kantorovich inequality to Pk(A) yields

(4 .9) (Pk(A)xi . B V α ^ x^iP^A'^x^ . x i k , x h - . > x h )

where δ — (λ1λ~1)fc, αwd BJ, •••,$» is an orthonormal basis of U. I n

particular if we let xζ — ei9 the unit vector with 1 in the ith position,
0 elsewhere, then (4.9) becomes

(4.10) per A[ilf , ik] per A-\il9 , ik] ^ μ\V δ +

where A[i19 •• ,iA;] is the ksquare matrix whose (s9t) entry is aigit9

THEOREM 6. If \ and Xn are simple eigenvalues of A and there
are at least three distinct integers in the sequence ix :g ^ ik then
the inequality (4.10) is strict.

Proof. According to (3.15), (4.10) will be strict unless

(4.11) β, . eik =

Let y be an arbitrary vector and compute the inner product of both
sides of (4.11) with y y to obtain

k n^ωl Λ* ω 2

(4.12) π (ei > v) =~ /Λ* "Λk ' / Λ ' Λ Λ &

Set

/ fitWl \l/fc / Λiω2 \l/fc

and write e^ = ^ ^ + «/,-, w5 e < vλ > ± , j = 1, , Λ. Then for y any
vector in < v1>

±

9 (4.12) becomes

(4.13) Π (eij9 y) = U (wj9 y) = (v29 yf ,
3 = 1 J 3 = 1

in which wj9 v29 y are in < vx >L,j — 1, , k. But then from [3,
Theorem 3] we conclude that w3- = βjV29 j = 1, , k9 for appropriate
scalars βl9 --,βk and hence ei}e < v19 v2 >, j = 1, , k. Since there
are at least three linearly independent eij9 (4.11) must fail and hence
(4.10) is strict.



EQUALITY IN CERTAIN INEQUALITIES 1329

REFERENCES

1. L. V. Kantorovich and V. I. Krylov, Approximate methods of higher analysis, New
York, Interscience (1958).
2. Marvin Marcus, and N. A. Khan Some generalizations of Kantorovich's inequality,.
Portugaliae Math. 20, 1, (1961), 33-38.
3. Marvin Marcus and Morris Newman. Inequalities for the permanent function, Ann
of Math., 75, 1, (1962), 47-62.
4. Morris Newman. Kantorovich's inequality, J. Research Nat. Bur. Standards, 6 4
(B), (1960), 33-34.
5. Andreas H. Schopf,. On the Kantorovich inequality, Numerische'Math., 2 (1960),
344-346.
6. J. H. M. Wedderburn,. Lectures on matrices, Amer, Math. Soc.^Coll. Publ., I T
(1934).

UNIVERSITY OF CALIFORNIA, SANTA BARBARA

AND

UNIVERSITY OF BRITISH COLUMBIA, CANADA






