
SPECTRAL PERMANENCE OF SCALAR OPERATORS

GREGERS L. KRABBE

0, Introduction* Let {33fc: ke K} be a family of Banach spaces
whose intersection D is dense in 33*. for each ke K. Suppose that 0,
16 K and that each 33̂  satisfies the relations 33O Π 95i c 3Sfe and S30 <
23* < S3i (see § 1); let T be a linear operator which is simultaneously
defined and bounded on each member of the family {33fe: keK} (that
is, TepBΛ]; see 0.1). This paper gives a condition insuring that

σ(T; [»o]) = ff(Γ; [Bui) for any k Φ 1; here σ(T; [S3,]) denotes the
spectrum of T relative to [39fc]. In fact, this spectral equality holds
whenever T has a spectral resolution which is bounded in [5BJ; see
§ 1. In this connection, it should be mentioned that the articles of
Halberg and A. E. Taylor [4, 5] study relations between σ(T; [33O]) and
σ(T; [SSx]) in the particular case K = {0,1}.

Let 3ίx be the Banach algebra of all complex-valued functions of
bounded variation on a finite interval X. Our end-result depends on
the fact that an operational calculus into [S30] induces a continuous
representation of some - £&x into [33̂ ] (for k Φ 1); as is the case with
the "spectral distributions" of Foias [3], properties of such represent-
ations may be exploited to some extent: see § 3.

Let μ be a continuous representation of 3ϊx into some Banach
algebra ©, and let Σm be the largest open set G such that μ\a, b[ =
O whenever [α, b] c G; the existence of Σm is established in § 2. If
he&x, then μ(h) is a member T of Gf, and the spectrum σ(T; @)
coincides with the image h(Σm) whenever h is continuous on X. Let
g be a function on h(Σn); as we shall see, it is natural to write
g(T) = μ(g oh). It will be shown that

(1) σ(g(T); ®) = g(σ(T; β)) - (g<>h)(ΣJ)

whenever the images h(x) and (g o Λ,)(X) are plane rectifiable continuous
curves: see 3.2. The first equality in (1) is well-known when g is a
polynomial

Σtfvλ
v (for \eh(X));

v=o

note that1, in this case
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1 The composition g o h is defined by the relation (g o h)(λ) = g(h(λ)) for any λ €
<-oo, oo).
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The equality ( 1 ) is an analogue of the Dunford Mapping Theorem..
Another analogue of the same theorem has been obtained by Foias:
see §3 .

0.1. NOTATION. When 2) is a Banach space, then [2)] will denote
the Banach algebra of bounded endomorphisms of 2). From the den-
seness of D it follows that [33J is identifiable with the space of all
bounded linear operators on D to 93*.

0.2. APPLICATIONS. Set Lp(a, v), where (α, v) is an arbitrary
measure space. Suppose that p09 pl9 p2 are three distinct points in the
closed interval [1, oo], such that p2 is between p0 and pλ. Set p0 = 2,
and let T be a self-a joint bounded linear operator on L(2); its spectral
resolution {λ —> mτ(\)} is here considered as a function of a real vari-
able taking its values in [L(2)]. Theorem II (see § 1) implies the
following

THEOREM I. / / the function {λ —• mτ(\)} is bounded in the norm
of [L(pJ], then

( 2 ) σ(T; [L(2)]) = σ(T; [L(p2)]) .

For example, let L(p) be the sequence space lp: in [10, p. 355]'
it is proved that Theorem I is satisfied when T is represented by t h e
Hubert matrix

n
j = 0, ± 1 , ± 2 , ± 3 ,

Theorem I is also satisfied when T is the operator Δ defined on p. 335
of [10].

Let L(p) = Lv(— oo, 0), 1 < p < &>. It should be noted that the
conclusion (2) is false when T is the Legendre differential operator
(see p. 89 in G.-C. Rota's paper [16]); consequently, Theorem I shows,
that {λ—>mΓ(λ)} is—in this particular case—an unbounded function
in the norm of [L(p)] whenever p Φ 2.

U The main result* Again, let {%5k: k = 0, 1, 2} be a family of
Banach spaces whose intersection is dense in 33fc for each k = 0,1, 2.
We will write S30 < S32 < S8X to indicate that 932 is an interpolation:
space (in the sense of J.-L. Lions [15]) strictly intermediate between
35O and some space S33 such that 233 is an interpolation space strictly
intermediate between S50 and 33lβ The property 330 < S32 < S3χ can be
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stated without using the above terminology; this is done in § 4,
wherein is found two conditions whose conjunction is equivalent to
the property 330 < 332 < 33̂  see Remark 4.2.

THEOREM II. Suppose that SS0 n S5i c S32 and S30 < 332 < S .̂ Let
T 6 [330] δe a scalar operator whose spectral resolution is a bounded
mapping into [S3J; then

σ(T; [®0]) = *(T; [S3,]).

The spectral solution of T is here considered as a [330]-valued
function of two variables.

THEOREM III. Under the hypotheses of Theorem II, let X be a
finite interval such that (— co, co) i) Xzi σ(T; [33O]); is h is a continuous
function such that the image h(X) is a plane rectifiable curve, then
h(T)e[S82] and

σ(h(T); [8J) = h(σ(T; [SBJ» = σ(h(T); [SB,]) .

Theorem III is proved in §4; since. T is scalar (i.e., "of scalar type"
in the sense of Dunford [2]), h(T) is defined as in [2, p. 343]; note
also that h(σ(T; [33O]) is the image h(S0) of the spectrum So = σ(T; [93O])
of T with respect to [95O]. In the case where T has a real spectrum,
the spectral resolution of T is considered as a mapping of (-co, co)
into [33O], and Theorem II is a direct consequence of Theorem III. To
the reader is left the task of verifying that Theorem II can be proved
by extending to two dimensions the methods of the present paper.

We now return to the setting L(p) = Lp(a, v) of 0.2, and let p0,
pl9 p2 be any three distinct points in the closed interval [1, co] such
that p2 is between p0 and pλ. If 33fc = L(pk), then 33O < S32 < $blf

whence Theorem I is seen to be an immediate consequence of Theorem
III when Te[L(p0)] is a scalar operators2.

2 The spectrum of a vector*valued function* Let M be a spec-
tral (σ-additive) measure on R = (— co, co); the spectrum of M (see
[6, p. 62]) is a set A such that

T = [ \.M{dX) - ( λ M(dλ) .

Let m be a vector-valued function on R; we shall presently introduce
a set Σm whose role will be to duplicate a theorem [6, p. 64] stating
that the spectrum of M coincides with the spectrum of T; mutatis
mutandis, since our case corresponds to

2 In 0.2 we took the particular case po = 2 and supposed that T is a bounded self-
ad joint transformation of the Hubert space L(2).
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Γ = [ λ dm(λ) = ί λ dm(λ) ,

although neither integral need exist under our assumptions.

2.1. DEFINTION. If GaR, we say that m is constant on G if
m(α) = m{b) whenever [α, 6] is a closed interval with [α, 6] c G.

2.2. NOTATION. Let έ?m be the family of all open subsets G of
jR — (— oo, co) such that m is constant on G. The complement
{# G R: x g B} is denoted R ~ B, and we write

( 3 ) 2 Λ = Λ ~ U Λ = Λ ~ U {G: G e ^ }

the set Σm is called the "spectrum" of m. It will now be proved
that Σm is the complement of the largest open set on which m is
constant. If x,ye R, then [x, y] = {θ e R: x ^ θ < y}.

2.3. LEMMA. Let K be a closed nonvoίd subinterval (of R) such
that Kcz U d?m. There exists a finite family of subίntervals such that
Ka U ̂  and

( 4 ) [x, y[ c K Π Jo implies that m(x) = m(y)

whenever Joe^.

Proof. Take ίeif. The hypothesis Z c U Λ shows that £eG,
for some Gt e έ?mm Since Gt is an open subset of R, there exists a
family ^ t of open subintervals such that Gt = U ^ Γ but ί e Gέ implies
that ί e It for some /4 e J?t note that m is constant on It (since the
property Gte <^m necessitates that m is a constant on Gt ZD It). The
family J^o = {Jt: ί e i£} is therefore an open cover of the compact set
K, whence the existence of a finite sub-family ^ = {/<: ί e p} c J f
such that

(5) i ί c U ^ - Utt : ίep} .

Since [α?, y[ c iί, it follows that y e K, and (5) shows the existence of
Ji = R , βi[ e J? with

(6) a1<y<β1.

From a? < 2/ and «i < 2/ we see that there exists a number λ such
that

(7) ax < λ < y and α? < λ < j/ .

But (6)-(7) show that a±<X < y < βu whence [λ, y] c Jx and [x, λ] c
Jo (the last inequality comes from (7) and the hypothesis [x, y[ c Jo).



SPECTRAL PERMANENCE OF SCALAR OPERATORS 1293

Since m is constant on all members of ^ , it follows that m is
constant on Jk when k — 0,1. Having thus seen that [λ, y] c Jx and
[x, λ] c Jo, we conclude that m{x) — m(λ) = m(y).

2.4. THEOREM. If Gm = U ̂ , then Gmzέ?m and

(8) G e ^ w = > G c G w .

Proof. Property (8) is obvious. Since Gm is clearly an open set,
it remains to show that m is constant on Gm. Take an arbitrary
closed nonvoid interval K = [α0, δ0] with KaGm. As we shall see,
there exists a finite partition a0 = x0 < xλ < <xs+1 — δ0 such that
m{xn-^) = m(xn) for n = 1, 2, , s + 1; therefore m(α0) = m(δ0), so
that m is constant on Gm (which had to be demonstrated). Accordingly,
the forthcoming construction of such a partition will conclude the
proof.

In view of 2.3, our hypothesis Ka U έ%> implies the existence of
a finite family ^ such that Ka U ̂  and (4). If x e K, then xeJx

for some J ^ e ^ ; set Jx = ]ax, βx[ and f(x) = min {/5X, 60}. Since
α x < a? < /3X and α0 ^ a? ̂  δ0, it follows that x g /(α?) and [x, f(x)[ c
i ί Π JΣ. Consequently, we infer from (4) that

( 9 ) m{x) = m{f{x)) .

Let H denote the set of all end-points of the members of ^ . If
f(x) < 60, then f(x) = βx (since the only alternative is f(x) = δ0); in
view of the inequality x < βXy it follows therefore that

(10) f(x) <bo=*x< f{x) e H.

Now to construct our partition. Define recursively a sequence
(xn)n as follows: x0 — α0, xn = /(a?Λ_i) for n ^ l . From (10) we see
that {xn: xn < b0} is a subset of the finite set H, whence the existence
of

(11) xs = max {xn: xn < b0} .

Note that xs+1 = f(x8) ^ b0. I say that xs+1 = b0: otherwise xs+1 < b0,
so that x8+1 ^ xs (by (11)), which contradicts the conclusion xs < f(xs) =
#8 + 1 obtained from (10) and f(xs) = x8+1 < b0. Thus xs+1 = δ0, and
mί&n-O = m(a?n) (from (9)); the partition has all the required properties.

3* Spectral mapping theorems. Let X be a compact (i.e., closed
and bounded) subinterval oϊ R = (— oo.oo), and let 3rx be the Banach
algebra of all complex-valued functions g on R such that # vanishes
outride of X, and such that g is of bounded variation on X. Note
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that &x is identifiable with the usual algebra of all functions having
finite total variation on X. Throughout, μ is a continuous representa-
tion of the Banach algebra £pz into some Banach algebra @.

If BaR, then [B] will denote the characteristic function of the
set B:

if θ e B
-f Θ $ B a n d θ e R t

If XβR, set ek = [ ( - « , λ [ n l ] ; thus, if X - [»', a?''], then βλ(0) - 1
if x' S 0 < λ and eλ(0) = 0 for all other values of θ in Λ. Let m be
the function defined on R by the relation

(12) m(λ) = μ(βλ) (when λ e J2) .

3.1. THEOREM. Let h be a continuous function with he &x. If
σ(μ(h); ©) denotes the spectrum of μ(h), then

(13) σ(μ(h); ©) = h(Σm) - {k(θ): θeΣm}.

The proof is given in 3.10.
It is easily seen that Σm c X. If j 1 is the function defined by

j\θ) = θ for ^ e l and vanishing outside of X, then (13) shows that

(14) Σm - σ(μ(fy, (g) .

Foias' paper [3] deals with a continuous representation of the function-
space C°°(R); Foias' formulae (1.2)-(1.3) (see [3]) correspond to (13)-
(14).

3.2. With h as in 3.1, let g be a continuous function on the
image h(X); if T = M )̂> write #(T) = μ(goh). A double application
of 3.1 now shows easily that

(15) tf(flr(Γ); S ) = g(σ(T; E)) = {ff(A(ί»: ^ G ^m} ,

whenever the curve {g(h{θ))\ θ e X} is rectifiable. For an analogue of
(15), see formula (28) in [13, p. 426].

Schaefer [14] considers the continuous representation μ~\h—>

h-dM> of the algebra of bounded Baire functions (when M is a

spectral measure); his Proposition 16 [14, p. 151] asserts that (15)

holds for any continuous function g on σ(T; @); he presupposes that

T = μ(h) for some h in the domain of μ.

3.3. ORIENTATION. The remainder of this section is devoted to
the task of proving Theorem 3.1. To that effect, we begin by intro-
ducing some notation.
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3.4. NOTATION. Let 31 be a Banach algebra with multiplicative
unit e. If αeSI, then the resolvent set p(a; 21) consists of all com-
plex λ such that Xe — a has an inverse R(ay 21; λ) e 2ί. It is known
[7, p. 126] that

(16) R(a, 2ί; •) is analytic in p(a; 21) with values in 21

here "analytic" is what is called "locally analytic" in [7]. The com-
plement of p(a; 21) is the spectrum σ(a; 21).

If <βζ is the family of complex-valued functions on /ί = (— co,oo)
such that g vanishes on R ~ X = {Θ e R: Θ £ X}, then

^ = {ge^: V(g; X) < ~} ,

where V(g; X) is the total variation of g on X. Note that <^χ,
[Φ]> [χ]> *y is a Banach algebra under pointwise multiplication (/, g) —>
f-g, where (f.g)(θ)=f(θ)g(θ) for θ e R; the zero-element and the
identity-element are, respectively, the characteristic functions [Φ] and
[X], We shall consistently drop the brackets and parentheses and
simply write μB instead of

3.5. HYPOTHESES. Henceforth, μ is a continuous representation
(i.e., homomorphism) of the Banach algebra ζE, O, /, o)>. In particular,
Mf'θ) = f*(f) ° M^) and M[X]) = /, while μ([Φ]) = O. Finally, suppose
that h is a continuous function with he S$x.

3.6. ORIENTATION. Our objective is the proof of Theorem 3.1,
which will now be presented in a sequence of four steps. The com-
plex plane is denoted C, and the complement {ζeC: ζ g B} is denoted

3.7. Let A and 5 be subintervals of R. Since μ(A ΠS) =
o μl?, it is immediately seen that

(17) AczB and μB = O =* μA = O ,

and

(18) SczB and μS=I=

On the other hand, if J5 = [α, 6[ = {#eR: a^x< 6}, then [i?] = eb — ea,
so that

(19) μ[a, b[ = m(6) - m(α)

in accordance with our notational convention, we have written μ[a, b[ =
μB instead of ,«([β]). It follows from (17) that

(20) μ[a, b] = O => m(b) = m(a) .
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3.8. LEMMA. Let K be a closed nonvoid subinterval of X.
If λe ~h(K), then there exists an element Φ(X) of @ such that

- μ(h))oφ(\) = μK .

Moreover, the function Φ is analytic on ~ h(K).

Proof. Since K is compact, the continuity of h implies that h(K)
is compact. The hypothesis λ e ~ h(K) implies the existence of some
δ > 0 such that | λ — h(θ) | ^ δ whenever θ e K, whence the existence
of some function / of bounded variation on K such that f{θ)(X — h{θ)) —
1 for any θ e K. In other words, X[K] — h [K] has an inverse in the
Banach algebra £%rκ whenever X e ~h(K). Consequently, ~h(K) c
ρ(h-[K]; &rκ); but (16) shows that R(h-]K], ^ κ ; •) is an analytic
function ψ with values in the subset &κ of 3fx\ furthermore,
(X[K] - h\K\).φ{\) = [K] whenever \e~h(K). Since

(X[K] -

and φ(X) = φ(X)-[K] e &x, we see that

(X[X] - h)-φ{X) = [K] (when λ G

Since μ is a homomorphism of &z, it follows that

(XI- μ(h)) o ̂ ( Λ , ) ) = μ([K]) = μK .

The proof is concluded by setting Φ(X) = μ(φ(X)) and nothing that
the analyticity of Φ is implied by the continuity of μ (to see this,
observe that Φ(X) has a power series expansion with coefficients in
the subset £&κ of &x).

3.9. LEMMA. If T = μ(h), then

(21)

Proof. If S is a subset of the complex plane C, denote by h^S
the inverse image {x e X: h(x) e S}, and observe that

(22) Adh-1S=^h(A)czS.

Let us admit for a moment that m is constant on h"xp{T\ Gf).
The continuity of Λ implies that h^ρ(T; @) e ££ (see 2.2); from 2.4(8)
it therefore results that h^piT; ( ϊ ) c U Λ : consequently, Λ - U Λ c
-h-'piT; @) = h^-piT; ®) - fe-M?7; ®), so that Λ - U Λ c ^"M? 7; ©).
In view of 2.2(3), an application of (22) concludes the proof of (21).

It remains to show that m is constant on h~ιp(T; ©). To that
effect, take an arbitrary nonvoid interval K — [a, b] such that
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(23) Kah-'piT; C)

in view of (20), it will be sufficient to prove that μK = O.
From (23) and (22) it follows that h(K)cp(T; @), whence

(24) C = p(T; β ) U ~ Λ ( 1 0 .

From 3.8 it results the existence of a function Φ defined on ~h(K)
such that

(25) (XI - T) o Φ(\) = μίΓ (when λ € ~Λ(J5Γ)) .

Take Xeρ(T; ©) Π ~ΛC*O; the inverse ^(T, @; λ) belongs to @, and
(25) shows that <P(λ) = μKoR(T,&; λ). Set i^(λ) = μKo R(T, (g; λ).
The function î 7 is defined on /9(Γ; @) and agrees with Φ on ^(Γ; ©) Π
~h(K); thus, we may define

(Φ(X) if
(26) + ( HΛ) if
whenever λe/θ(Γ;©)U ~h(K). From (24) we see that ψ is defined
on the complex plane C; since Φ and F are both analytic, ψ is an
entire function. On the other hand, it is easily verifiable that O =
lim F(X) (when |λ|—>co); see [7, p. 125]. Consequently, ψ is an
entire function such that O — lim ψ(X) (when | λ | —> oo), and Liouville's
theorem [7, 3.13.2] shows that ψ(X) = O for every XeC. The desired
property μK = O now results immediately from (25) and (26).

3.10. THEOREM. Let μ be a continuous representation of &x

into some Banach algebra @, and let Σm denote the spectrum of the
function m defined as in (12). If h is a continuous function with
h e J2&X, then

(27) h(ΣΛ) = σ(μ(h); ®)

Proof. Set Γ = μ(h), and take an arbitrary λ e ~h(Σn). It will
suffice to find a member Q of Gc such that

(28) ( λ l - T)oQ = I;

indeed, (28) shows that -fc(Im)cp(T;(f), so that
the conclusion (27) now comes from 3.9.

Take K= [α0, δ0] such that RzD[ao,bo[iDX; from 3.7 (18) we see
that

(29) μ[a0, bo[ = I.

Set g — {θ e K —> |λ — h(θ) |}; since λ does not belong to the compact
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set h(Σm), there exists a number δ > 0 such that

(30) g{θ) = I λ - h(θ) I ̂  3 (for any θ e Σm) .

Let M be the family of all y e R such that iΓ(# = y) is an infinite
set (by definition, K(g = #) is the set of all θ e K such that g(θ) = y).
By means of the Banach indicatrix, it can be shown that M is a set
of Lebesgue measure zero (see [12, p. 231]); consequently, the open
interval ]0, δ[ cannot be included in M, and there exists a number
ε e ]0, δ[ such that ε g M. Accordingly, δ > ε > 0 and i£(g = ε) is a
finite set.

Now K = [α0, δ0], and the finite set i? = {α0, bQ} U i^(^ = ε) may
be indexed as follows: B = {xn : n = 0,1, , k}f where a0 = x0 < xx <
KXu-x < xh = 60. On the other hand, % = {# —•#(#) — ε} is a continuous
real-valued function vanishing on K(g — ε); since u vanishes nowhere else,
its sign is a constant Xn on each open interval ]xn-u xn[. The following
abbreviations will be used: r = {1, 2, , k} , g = {ver: λv < 0} , and
2> = {s 6 r: λs > 0} we also write

K(g^ε) = {θeK: g(θ) < ε} ,

with a similar definition for K(g ̂  ε). The following two identities
are immediate consequences of the preceding considerations :

( i) K(g ̂  ε) = U {[αv-i, x,]: veq)

(π) jBΓ(ί3f ^ ε) = U {[ ŝ-i, α j : s e p } .

Since δ > ε, it follows from (30) that flf(^) > ε for any θ e Σm, so that

(31) K(g^ε)czK~Σmcz[J^m;

see 2.2 (3) for the last inclusion. But (i) and (31) imply that [xv-lf xv] c
U ^S; on the other hand, m is constant on U ^ (see 2.4 and 2.2),
so that m(%v-i) — w(a?v) = 0 from 3.7 (19) therefore μ[xv-ι, xv[ = O
whenever v 6 g. Since {A —* μA} is an additive set-function defined on
all finite unions of disjoint intervals, it follows that

(32)

where

Bq =

Set

(33) £ P = U{[a?.-i,a?.[: sep};

since [α0, 60[ = 5 ^ ΰ g , it again follows from the additivity of μ that
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/4α0, bo[ = βBp + μBq) from (32) and (29) it therefore results that
/ = μBp; since (ii) and (33) show that Bp c K(g ^ ε), the conclusion

(34) μ[K(g ^ e)] = /

is now an immediate consequence of 3.7(18).
Take 8 e p, and call As = [xa-u xs]. From (ii) we see that

(35) [K(g^ε)] = Σ[A8]
sBP

and AaczK(g Ξ ε̂); in other words, g(θ) = | λ — h(θ) | ^ ε for each
0 e As. Accordingly, there exists a function F, e 3>z such that
(λ - MΘ))F.(Θ) = 1 for all θeAs; that is, (λ[X] - h)-[A.] F. = [A.].
Set

f=Σ>[A.] F.
sev

and note that fe 2$x. From what has just been seen, it results that

(36) (λ[Z] - h) f = Σ [ΛJ = [K(g > ε)]
6

the last equality comes from (35). By applying the operator μ to
both sides of (36), we obtain that (XI - μ(h)) o μ(f) = μ[ίΓ(flr ^ e)];
setting Q = μ(f), a glance at (34) now establishes (28)—this concludes
the proof.

4. Spectral permanence. When 2) and X are topological spaces,
we write 2) < £ to indicate that 2) is a subset of 2 such that the
identity-mapping of 2) into % is continuous. Let {33fc: k = 0,1, 2} be
a family of Banach spaces such that 93O Π 33i c S32. Let ©*. denote
the Banach algebra of all bounded endomorphisms of 93̂  (i.e., all
continuous linear mappings of S3fc into itself). If k = 0,1, 2, let \\x\\k

be the norm of a member a? of 33Λ; if .£7 is a linear subset of 33ft, then
[E, 33fc] will consist of all linear mappings π of E into 33fc such that

co =£ I π |fc - sup {|| 7rβ |U: x e E and || x \\k g 1}

the linear space [£7, 33*.] is endowed with the norm {π —> | π |Λ}.

4.1. HYPOTHESES. Henceforth, we presuppose the following three
conditions:

(iii) there exists α linear set D such that D is a dense subset of
®κ for k = 0,1, 2.

(iv) there exists a topological space % such that 33fc < X for k =•
0,1, 2.

(v) there exists a semi-norm 5ίί[ ] on Gf0 n @i ̂ wcί ίΛere eίuisί two



1300 GREGERS L. KRABBE

points τ, r in ]0,1[ suck that

yi[π] ^ I π | Π π \l and \π\t£ \π\l-rW[π]r

whenever π e G?o Π @x.

4.2. REMARKS. Conditions (iv)-(v) are equivalent to the prop-
erty 330 < 332 < S3j that was defined in § 1. In view of (iii), we may
identify [D, 93̂ ] with @fc (for k = 0,1, 2); this identification is assumed
throughout. All the above conditions are satisfied in the case 33̂  =
L(pk), where 1 ^ p0 <p2 < px S <*> or I S pλ< p2< pQS <*> (cf. 0.2);

to see this, take % to be the space of measurable functions, and take
D to be the linear space of simple functions.

We now prepare to state our main theorem. Let Te@0 be a
scalar operator with σ(T; @0) c R = (— oo, co). The boundedness of
T7 insures the existence of a compact interval X containing the spec-
trum σ(T; 6?0). Let M be the resolution of the identity for the oper-
ator T (see [2, p. 325]). Theorem 4 in [14] states that

(37) SuppikΓ-σ(Γ; ©0) ,

where Supp ikf denotes the support (also called the spectrum) of M.
Since therefore Supp I d , the mapping

is a continuous representation into 6f0 of the Banach algebra
of bounded Baire functions. If XeR, let χ(— co,λ) be the character-
istic function of the open interval ] —oo,λ[; that is:

(1 If -oo < θ < λ
Λ l ' Λ 7 (0 if λ ^ ff < oo .

The spectral resolution m is defined for any λ e R by the identity
m(λ) = C7χ(— oo, λ); the function m is clearly a bounded mapping into
@0 We suppose henceforth that m is a bounded mapping into G?lβ

In other words, there must exist a number k0 > 0 such that

SBx and U

whenever j/ef l and XeR.

4.3. THEOREM. If h is a continuous function with h e

(38) φ ( T ) ; e0) = h(Σm) -

The proof is given in 4.7.
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Note that the relation

Σm = Supp M

is obtained from (37) by replacing in (38) the function h by the
identity-function.

4.4. LEMMA. The mapping U is a continuous representation of
££?x into the Banach algebra Gc0.

Proof. Observe that 3$x < ^?(X)\ since U is a continuous
mapping of &(X), it is therefore a continuous mapping of 2$x.
Since U is a homomorphism of ^ ( X ) ID &X, it follows that ί7 is a
homomorphism of 2fx%

4.5. LEMMA. U is a continuous linear mapping of &x into G?2.

Proof. The space Go consists of all complex-valued functions g
on R having only simple discontinuities and such that | g(x + 0) | +
I g(X — 0) I < co whenever — co <Ξ; X < co and •— co < λ <Ξ; CO . The space
Wa consists of all g eG0 such that

CO φ M = sup ( t I flf(«.-0 - 8(z.) I11")*
z \β=l /

where « runs over all partitions — oo < z0 < z± < < ^w_x < «n < co.
The space WΛ is endowed with the norm {g —>\\g\\ + Va(g)}9 where

Observe that GQ < &(X); as in 4.4, it is therefore readily inferred
that U is a continuous mapping of GQ into G?o = [D, S50], Note that
ϋf = Z7̂  whenever / and # belong to &{X) and f = g almost-
everywhere; thus, we have the situation enviseaged in [8, 1.11].
Consequently, from Theorem B in [8] we conclude that the operator
is a continuous mapping of Gτ — U {Wa: τ < a ^ 1} into [D, 332] = Gf2;
since Gτ is endowed with the inductive limit-topology, it follows that
U is a continuous mapping of Wa whenever τ < a ^ 1. In particular,
C7 is a continuous mapping of TFx into (£2: there exists a number
cί > 0 such that

Since {gr—> | | # | | + V1{g)} is a norm of the subspace £&x of Wlf it
results that ?7 is a continuous linear mapping of 3fx into @a.

4.6. LEMMA. Z7 is α homomorphism of 3ϊx into @2
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Proof. Take g and / in &x and set Ti = Ug, T2 = £7/, and
Tz=U(g-f); from 4.4 we see that Twe@0 (w = 1,2,3) and that
Tλo T2= Γ8. Set JE7 = £ 0 Π J?2; consequently,

(39) T^Ta) = T9y (when j e £ ) .

Set i = 0,2. Since 85,3 2(7 and 2?=) A the denseness of 2) in S3*
implies that 2£ is dense in 33̂  accordingly, we may identify [E, S5J
with <£,. Set n = l,2, 3; from 4.4 and 4.5 we see that Tn e @0 Π ©2 =
[2£, S30] Π [2?, S5a]; therefore Tn is an endomorphism of E, and both
2\ o T2 and T3 belong to [E, 35a]. In view of (39), i7is a homomorphism
of &x into [#, 332] = @2.

4.7. Proo/ o/ 4.1. Set i = 0, 2. From 4.4, 4.5 and 4.6 it follows
that U is a continuous representation of ^ x into Ĝ ; 3.10 therefore
shows that σ(Uh; Ĝ ) = h(Σm). Since Λί is the resolution of the
identity for Γ, we have that

Uh= \ h-dM=h(T).

The identity (38) is now immediate.

Added in proof. An extension of Theorem III is found in the
author's announcement "Sur la permanence spectrale," C. R. Acad.
Sci. Paris, 225 (1962), 1326-1328.
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