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1Φ Everyone is familiar with the ordinary conformal structure
on oriented surfaces immersed smoothly in E*. This standard struc-
ture is obtained by using the first fundamental form as metric tensor.
It is possible, however, to define very different conformal structures
which are still vitally connected with the geometry of a surface's
immersion in E3.

Consider, for instance, the conformal structure induced upon a
strictly convex surface (oriented so that mean curvature H > 0) by
using its positive definite second fundamental form as metric tensor.
(See [3] and [4].) This particular structure coincides with the usual
one only on spheres.

The present paper is devoted, principally, to a description of the
corresponding non-standard conformal structure on oriented surfaces
of negative Gaussian curvature immersed smoothly in E\ This new
structure is obtained by using a specific linear combination of the
first and second fundamental forms as metric tensor. It will be seen
that our new structure coincides with the usual one only on minimal
surfaces.

Also included below is a section describing the arithmetic of
certain expressions associated with the various fundamental forms on
an immersed surface. These expressions become quadratic differentials
whenever any paticular conformal structure is introduced on a surface.

The paper closes with a theorem which generalizes a well known
fact about minimal surfaces. For investigations related to the material
which follows, see [5].

2 Consider an oriented surface S which is C3 immersed in E\
We may number the principal curvatures so that

(1) K ^ k2

holds over all of S. For convenience of notation, lines of curvature
coordinates x, y will always be chosen so that kλ is the principal
curvature in the y = constant direction, while k2 is the principal
curvature in the x = constant direction.

We now define the function
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Note that the zeros of 27' coincide with the umbilics on S, that 27'
is never positive, and that the value of 27' (unlike 27) is independent
of the orientation on S. If we set

(2) HΊΓ = KI- HII,

we obtain a new "fundamental form" 27', defined at all non-umbilic
points on S.1 Of course, 7 is determined by 77 and IV wherever
K φ 0, and 27 is determined by 7 and 27' wherever 27 Φ 0. Moreover,
27' (unlike 77) is independent of the orientation on S. The relation-
ship of 77 to 77' can be more clearly seen in the following lemma.

LEMMA 1. If x, y are lines of curvature coordinates on S, so
that

I=Edx2

(3) II = k.Edx2 + kfidy*,

then, where IV is defined,

(4) IV = k.Edx2 - k2Gdy2.

Proof. Suppose IV = Udx2 + 2M'dxdy + M'dy\ Then (2) yields

H'U = ΊcJCtE - (kl + kAkxE - H%E .

If 27' is defined at all, 27' Φ 0, so that U = kλE. Similarly, M' = 0,
and N' — —k2G, as claimed.

COROLLARY. IV is positive definite on S if and only if K < 0.

Proof. Wherever IV is defined or K < 0, there are no umbilics
to consider. Thus (4) applies, and, using (1), the result is obvious.

LEMMA 2. Just as H' = 0 charcterizes points where la II, H = 0
characterizes points where la IV, and K = 0 characterizes points where
II a IV.

Proof. The first fact merely recalls the definition of an umbilic
point. The remaining facts follow easily from (2), recalling that
27' Φ 0 wherever IV is defined.

REMARK. Elementary application of (2) reveals that lines of

1 By continuity, // ; could be sensibly defined at certain umbilics. We assume through-
out this paper, however, that IΓ is defined only at non-umbilics.
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curvature coordinates are characterized by Mf = F — 0 wherever HΦO,
and by M' — M = 0 wherever K Φ 0.

3 Suppose now that ϋΓ < 0 on the surface S discussed above,

so that IΓ is a C1 positive definite form on S. Then C2 coordinates

x, y may be found in the neighborhood of any point on S in terms

of which

IΓ = μ'(x, y){dx2 + dy2} ,

with μf > 0. (See § 4 of [1].) Such coordinates will be called
disothermal. It is well known that distinct pairs of disothermal
coordinates are related by the Cauchy Riemann equations, and that
coordinates so related to a pair of disothermals are themselves
disothermal. Thus we obtain on S the structure of a Riemann surface
R[, with conformal parameters z = x + ίy corresponding to disother-
mals x, y.

Of course, there is still the usual structure of a Riemann surface
i?i on S, determined by using conformal parameters z = x + iy cor-
responding to isothermal coordinates x, y in terms of which

I=X(x,y){dx2+dy2} .

By Lemma 2, R1 and R'2 coincide on S if and only if S is a minimal
surface. (We will also have occasion to mention below the Riemann
surface R2 determined on strictly convex surfaces by using conformal
parameters z — x + iy corresponding to bisothermal coordinates x, y
in terms of which

// = μ(x, y){dx2 + dy2}

with μ > 0.)
Assume now that x, y are disothermals on S. Then (2) becomes

HL + H'μ' = KE,

(5) HN+H'μ' = KG,

HM = KF.

Thus, for instance, the equation for the directions of principal curva-
ture reads

(6) -Fdx2 + (E-G) dxdy + Fdy2 = 0 .

This is, incidentally, exactly the form which the same equation takes
when using bisothermal coordinates on a strictly convex surface. (See
[3] or [4].) Note that (6) depends only on /.

REMARK. Recalling the remark which closes §2, we see that all
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conjugate disothermals are lines of curvature coordinates. And, where
H Φ 0, all orthogonal disothermals are lines of curvature coordinates.

It will be helpful to note that since

κ _ LN- M2

(7) * " " * "
v ; EN-2FM+GL

2(EG - F2)

asymptotic coordinates, which are characterized by L — N = 0, always
yield the third equation of (5), so that M' = 0. Moreover, by (2),
coordinates are asymptotic if and only if H'U = KE9 H'N' — KG.
Thus the following can be said.

REMARK. Asymptotic coordinates are disothermal if and only if
Ϊ2J = VJΓ.

The previous remark and the two results which follow character-
ize disothermal coordinates on S in terms of the coefficients of I and
II. Lemma 3 is a trivial consequence of (2), (5), and the fact that
U L < 0 o n S .

LEMMA 3. Coordinates are disothermal on S if and only if

H(L - N) = K(E - G) ,

HM = KF.

LEMMA 4. Nonasymptotic coordinates are disothermal on a C3

immersed surface if and only if

L=-NΦ0,
V ; HM=KF.

Proof. Using (7), we obtain

(9) 2H(LN - M2) = K(EN - 2FM + GL) .

If x, y are disothermals, (5) holds. Thus HM = KF, and we may
multiply the equations of (5) by N, L and M respectively, and com-
bine the resulting expressions so as to obtain the right side of (9).
This yields

2H(LN - M2) = 2H(LN - M2) + Hfμ\L + N) .

Since H'μr Φ 0, assuming x, y to be nonasymptotic, we have L =
— NφO. Suppose, on the other hand, that (8) holds when using
coordinates x, y. Then multiplying the equations of (2) by L, N and
M respectively, and proceeding as above, we obtain
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2H{LN - M2) = -2H(U + M2) + LH'{N' - U) .

Since L=-NΦθ while H'ΦO, it follows that U = N'. But
M' = 0 by (8) and (2), so that x, y are disothermals.

Many formulas may be simplified, of course, by using disothermals
and (8). We note here only that

while

4 In [2] and [6], use is made of the quadratic differential Ω2 =
φ2dz2 on J?i, where

In [4], use is made of the quadratic differential Ω1 — φxdz2 on R2 (for
a strictly convex surface), where

We prove the following lemma in order to fascilitate the definition
of similar quadratic differentials on the various Riemann surfaces of
interest here.

LEMMA 5. Let A — Adx2 + 2Bdxdy + Cdy2 be a quadratic form
on an oriented C1 surface S. Suppose R is a Riemann surface
defined on S. Then Ω = φdz2 with

is a quadratic differential on R.

Proof. Let z = x -j- iy and w = u + ίv be conformal parameters
on R. Then

A = Adu2 + 2Bdudv + Cdv2

where

A = Ax\ + 2Bxuyυ> + Cy\ ,
B = AxuxΌ + B(xuyv + xΌyu) + Cyuyυ,
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C = Ax\ + 2BxυyΌ + Cy*

Since

while,

dw

simple computation yields

J I
_ .j

dwJ

as required.

REMARK. The quadratic differential Ω on R associated with A Ξ£ 0
on S is identically zero if and only if R is determined by choosing
conformal parameters z = x + iy on S corresponding to coordinates
x, y in terms of which A = \(x, y){dx2 + cfo/2}. Thus, for example, there
is no R on which Ω ~ 0 if A is indefinite somewhere on S.

REMARK. Let R and ^ be Riemann surfaces defined on S. Suppose
the identity mapping on S is not conformal from R to R at p. Then
Ω = 0 at p on both iϋ and .β if and only if A = 0 at p.

We are now free to discuss Ωx and 422 on Ru R2 or i?2'. We may
also define the quadratic differential Ω[ = ^^a; on any umbilic free
portion of Ru R2 or R[ with

And, for the sake of completeness, we will consider Ω3, the quadratic
differential associated with

(10) III = 2flIΓ - KI

on S. As is well known, III yields, wherever K Φ 0, the first funda-
mental form on the unit spherical image of S. The relation (2) implies
that

(11) III = HII - HΊΓ = KI - 2HΊΓ ,

so that /// is determined by any pair of the forms /, // and IΓ.
All linear relations, such as (2), (10) or (11), among the forms I,
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II, IV and III hold also for their associated quadratic differentials.
However, simplified versions of these relations are satisfied by Ωu

Ω2, Ω2 and Ω3 on Rlf R2, R2, and on the Riemann surface Rz deter-
mined on S by using the spherical image map (where K Φ 0) to carry
back onto S the ordinary conformal structure of the sphere. For on
each of the Riemann surfaces Ru R2, R[ or Rz, at least one of the
quadratic differentials Ωlf Ω2, Ω2 or Ω3 vanishes identically.

LEMMA 6. Let R be a Riemann surface on the oriented surface
S immersed C3 in E\ Suppose K, H, H' Φ 0. Then R^RX if
and only if

2HΩ2 = -2HΏ'2 = Ω3

on R; R = R2 if and only if

KΩλ = HΉr

2 = -Ω5

on R; R — R2 if and only if

KΩX = HΩ2 = Ω3

on R; and R = Rz if and only if

X = 2HΩ2 = 2WΩ'2
on R.

Proof. Use (2), (10), (11), and the remarks which follow Lemma 5.

REMARK. By Lemma 4, Ω2 = (L - %M)dz% on R2'. By (2) and (7),
Ω2 = (1/ - iM')dz2 on R2.

5* In [2] it is shown that Ω2 is holomorphic on Rλ if and only
if S is of constant mean curvature. In [3] it is shown that Ωλ is
holomorphic on R2 if and only if S is of constant (positive) Gaussian
curvature. We have the following (somewhat less satisfying) result
of a similar nature.

THEOREM. ΩX is holomorphic on R2 if and only if the vector X
describing the immersion of S in Ez is a harmonic function of
disothermal coordinates.

Proof. By the definition of /, it is easily checked, using

X = JJJL-iJL
Θz 2\dx dy

that
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(12) Φr = 2XZ-XZ .

But ΩT, is holomorphic on Rl if and only if

(Φά = 0 ,

that is, by (12), if and only if

(13) Xx-Xzz = 0 ,

where £ = a? + iyr is any conformal parameter on i?2', and

0z 2 I to % J

And (13) is equivalent to

(14) (Xxx + Xyy)-Xx = (X,, + X ^ X, - 0 .

On the other hand, by Lemma 4, the Gauss equations in disothermals
yield

±
XXχ — Γ\\Xχ + ΓlyXy + LX,

1

where X is the unit normal to S. Thus (14) holds if and only if X
is a harmonic function of disothermal coordinates.

Note, however, that disothermal coordinates are isothermal on a
minimal surface. Thus Ωx = 0 is trivially holomorphic on E[ if S is
minimal. Our theorem therefore includes the well known fact that
the vector immersing a minimal surface is a harmonic function of
isothermal coordinates. It would be nice, of course, to have a geo-
metric characterization of all surfaces for which X is a harmonic
function of disothermals.
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