
QUANTIFIERS AND ORTHOMODULAR LATTICES

M. F. JANOWITZ

1. Introduction. The "logic" of (non-relativistic) quantum me-
chanics is currently thought of as being the lattice of closed subspaces
of a separable infinite dimensional Hubert space [7, p. 49], It has
been speculated by P. Jordan [5] that this "logic" ought not to be a
lattice at all, but rather what he calls a skew lattice. Given a lattice
L( Π, U), Jordan observes that if one has functions f,F:L-*L satis-
fying the conditions

(α/U&)/=α/U&/

af^a

(a Π bF)F =

then L(Λ, V) is a skew lattice, where the operations Λ, V are defined
by:

a Λ b = a Π bF

a v b = af U b .

Skew lattices themselves will not concern us here; rather we shall be
interested in mappings on lattices having the above properties. Such
mappings turn out to be generalizations of universal and existential
quantifiers. With this thought in mind it seems of interest to begin
an investigation of quantifiers on an orthomodular lattice, and in
particular to consider the lattice L(H) of closed subspaces of a Hubert
space H, determining all mappings /, F defined on L(H) and satisfying
Jordan's prescription.

The remaining part of this section will be devoted to a brief outline
of known definitions and theorems that will prove useful in the sequel.
These results can essentially be found in [1], [2], [9] and [10] but are
included here for convenience. An orthomodular lattice is a lattice
L with 0 and 1 equipped with an orthocomplementation ': L —> L and
which satisfies the orthomodular identity e ^f=>f = e V (/ Λ e')
Henceforth L will always represent an orthomodular lattice. If
e,feL with e 5Ξ / it is easily shown that the interval L(e, f) —
{g e L: e g g S /} is itself an orthomodular lattice with orthocomple-
mentation

g _> g* = e V (/ Λ g') - (e V g') A f .
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The semigroup (under function composition) of all monotone maps
φ: L—> L is denoted by M{L). Two monotone maps φ and ψ are said
to be mutually adjoint in case (eφ)'ψ ^ e' and {eψ)'φ S e' for all
eeL. If φeM(L) has an adjoint then this adjoint is unique [1, p.
651], and is denoted by φ*. The subset of M(L) possessing ad joints
in M(L) is denoted by S(L). It is shown in [l] that S(L) is a Baer
^-semigroup (under function composition) and that every φ e S(L) is
a hemimorphism of L; i.e., that Oφ — 0 and (e V f)φ — eφ \l fφ for
every e,feL. In fact every φeS(L) preserves arbitrary suprema
whenever they exist in L.

There corresponds to each e e L a mapping φe: L —> L given by
f-»f<P. = (fV er) A e, where φ. = φ] = φ* e S(L), fφe = / if and only
if / g e, and /^ β = 0 if and only if / ^ e' (see [1, p. 652] and [10,
pp. 300-301]). The element / is said to commute with e (written
fCe) in case fφe — f A e. For future reference we state the next
results in the form of a lemma.

LEMMA 1. Let e, f, ge L. Then:
( i ) f^e^fCe.
(ii) fCe^eCf.
(iii) fCe=*fCe'.

(iv) If any two of the three conditions eCf, fCg, eCg hold, then

(eVf)Ag = (eAg)V (fΛg) and (e Af) V g - (β V g) A (f V g).
(v) If fCeafor each aeA, and if VaeAea exists then fCyaeΛea...

Proof. See [2] and [9].

In [11, p. 240] J. von Neumann defines the center of a continuous
geometry. This notion can be carried over to an abitrary orthomodular
lattice by decreeing that the center of L, in symbols C{L), is the set
of all those elements of L which commute with every other element.
It then follows [2] that 0, 1 6 C(L), and C(L) is a Boolean sublattice
closed under the formation of orthocomplements and of arbitrary
suprema and infima whenever they exist in L.

The lattice L is said to be irreducible in case 0 and 1 are the
only elements with unique complements. It can easily be shown that
e e C(L) if and only if e has a unique complement, from which it
follows that L is irreducible if and only if C(L) = {0,1}.

Before proceeding the author would like to thank Professor D. J.
Foulis for the many helpful suggestions he has made during the writing
of this paper.

2. Quantifiers. Generalizing a notion of Halmos [3, p. 220] a
mapping φ: L—+ L will be called a quantifier on L in case φ satisfies:
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(Ql) Oφ = 0.
(Q2) e ^ eφ for all e e L.
(Q3) (e A fφ)φ = eφ A fφ for all e, feL.

It should be noted that there are always two special quantifiers on L:
(i) The discrete quantifier = identity map;
(ii) The indiscrete (or as in Halmos [3] simple) quantifier eφ — 1

for e Φ 0, Oφ = 0. We now proceed to investigate some of the
properties of quantifiers and will find all quantifiers on an atomic
orthomodular lattice whose center is complete as a sublattice.

THEOREM 2. Let φ be a quantifier on L. Then:
( i ) lφ = 1.
(ii) φ = φ2.
(iii) e g / =» eφ ^ fφ.
(iv) (eφ)'φ = (eφ)r.
(v) φ is a projection in S(L).
(vi) (L)φ — the set of fixed points of φ is a sublattice of L closed

with respect to the formation of orthocomplements and of arbitrary
suprema and infima whenever they exist in L.

Proof. ( i ) 1 S lφ, so 1 = lφ.
(ii) eφ2 = (eφ)φ — (1 Λ eφ)φ = lφ A eφ — eφ .
(iii) If eSf, then e^fφ, e = eAfφ, eφ = (e A fφ)φ = eφ A fφ,

so that eφ ̂  fφ.
(iv) Note that 0 = Oφ = [(eφy A (eφ)]φ = (e^)'^ Λ β£>. By the

orthomodular identity, (eφ)r ̂  (eφ)fφ implies that (eφ)fφ =
(eφy V [(eφ)fφ A eφ] = (βφ)'.

(v) This follows immediately from (ii), (iii) and the observation
that (eφ)'φ = (eφy ^ e'.

(vi) If eφ = β then β'9> = (eφ)rφ = (eφy — e'. The result is now
clear in view of the fact that φ = φ2 e S(L) and the known properties
of S(L).

LEMMA 3. Let φ be a quantifier on L, a an atom in L, e = aφ.
Then:

( i ) φ Izco e) is indiscrete.
(ii) e is an atom in (L)φ.
(iii) For any feL, either e Af = 0 or e ^ fφ.

Proof. (i) Let b e L(0, e), so bφ ̂  eφ = e. Since α is an atom,
a Abφ ~ a or 0. But if α Λ bφ = a, e = aφ = (a A bφ)φ = aφ Abφ =
e A bφ = bφ; while a A bφ = 0 implies that 0 = Oφ = (a A bφ)φ —
e Abφ — bφ, whence 6 = 0.

(ii) If 6 G (L)φ and b ̂  e, then b = bφ = 0 or e.
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(iii) Suppose e Λ / Φ 0. Then (e A f)ψ = e AfφΦO, and by (ii),

We borrow another idea of Halmos [3] and call a mapping φ: L-^L
a symmetric closure operator in case φ is a hemimorphism, ψ = φ2,
and for each eeL, e ̂  eφ and {eφ)'φ ̂  e'. It is shown by Halmos
[3, Th. 3] that in a Boolean lattice the notions of quantifier and sym-
metric closure operator coincide. It is interesting to observe that in
an orthomodular lattice this result does not quite carry over. By
Theorem 2, every quantifier is a symmetric closure operator. One
can show without difficulty that every center valued symmetric closure
operator is a quantifier; however, if a $ C{L), the mapping aa: L—*L
defined by eaa = (β V a) A (e V ar) is an example of a symmetric closure
operator that is not a quantifier. It follows from this that L is a
Boolean lattice if and only if every symmetric closure operator is a
quantifier.

One can define the central cover of e, in symbols ev, to be the
infimum of the set of central elements z such that e ̂  z, provided
of course that such an infimum exists. Note that if ev exists for all
ee L, then v is a non-trivial example of a quantifier. Clearly Ov = 0,
e ^ ev for every eeL, and e = ev if and only if e e C(L). We also
have that if e ̂  /, then e ̂  fv e C(L), whence ev ̂  fv. It then follows
that ev2 = (ev)v = ev, and (ev)'v = (ev)' <Z e' so that v = v2 = v* 6 S(L).
But then v is a center valued symmetric closure operator, hence a
quantifier.

LEMMA 4. Suppose that ev exists for each eeL. Then φ is a
center valued quantifier on L if and only if φ — v o a, where a is a
quantifier on C(L). The decomposition is unique in that a = φ\0{L).

Proof. Evidently voa is always a center valued quantifier. If
conversely φ is a center valued quantifier, set oc = φ\o{L). Then
e ^ ev ̂  e<p, whence eφ ̂  ev<£> = evoc ^ e<p2 = e<p for all eeL, from
which it follows that φ — voa. The uniqueness of the decomposition
is obvious.

LEMMA 5. Let φ be a quantifier on L, a any atom of L. Then
aφ A f Φ 0 => aφCf.

Proof. If a — aφ the result is obvious, so we can suppose a < aφ.
Suppose that aφ AfΦ 0 and aφCf fails. Routine computation shows
that k = aφφf/ V (aφ A f) is a complement of (aφ)', k Φ aφ, and
kAaφΦO. By Lemma 3, aφ <£ &<p, and since kA(aφ)f — 0, (kA(aφ)')φ =
kφ A (aφ)r = 0. Applying the orthomodular identity to α<£> 5Ξ Λ̂ >, we



QUANTIFIERS AND ORTHOMODULAR LATTICES 1245

have Ίzφ — aφy (kφ/\{aφ)f) — aφ, whence k ̂  aφ. A second application
of the orthomodular identity now produces aφ = fc V (aφ A kr) = k, a
contradiction. Hence aφ A f Φ 0 => aφCf.

LEMMA 6 If φ is a quantifier on an atomic lattice L, then
Q> < &Ψ for a n atom a implies that aφ is central.

Proof. If b is any atom such that b < bφ, then b' < b'φ — 1, so
that if aφ A br = 0, we would have {aφ A b')φ — aφ A b'φ = aφ = 0,
a contradiction. Hence α<£> Λ b' Φ 0, and by Lemma 5, aφCb.

Consider next an atom b — bφ. Since a < α<£>, we can write aφ =
α V (α^ Λ α'). Now a < α<ρ => α/<p = l ^ δ Λ α ' ^ 0 = > 6Cα. Similarly,
(α<P Λ ajφ = [(aφ)' V a]φ = (α<£>)' Vfl? = l, so that 6C(α<̂  Λ α') By
Lemma 1, aφCb. This shows that α<p commutes with every atom.
In an atomic orthomodular lattice each element is the supremum of
the atoms it dominates, so by Lemma 1 (v), aφ e C(L).

COROLLARY. Let L be atomic and irreducible. Then L admits
only the discrete and the indiscrete quantifiers.

If L = Lx x L2, and φlf φ2 are quantifiers on Llf L2, respectively,
it is easily shown that φ — φλ x φ2 is a quantifier on L. It can also
be shown that an element a is central in Lx if and only if (a, 0) is
central in L. Let he C(L), and let us adopt the notation vh — v \m,κ),
ah = a quantifier on C(L(0, h)) = C(L) Π 1/(0, fe), /Λ = the identity map
restricted to L(0, h). We then have:

THEOREM 7. Lei L be atomic with C(L) complete as a sublattice.
Then φ is a quantifier on L if and only ifφ = (vhoah) x Ih, for some
h e C(L).

Proof. Any mapping of the form (vh°och) x Iκ> is evidently a
quantifier on L. If conversely φ is a quantifier on L, set /& =
sup {avφ: αv is an atom, ajp e C(L)}, and write L = L(0, h) x L(0, AΌ.
If b rg /̂  is an atom, then since each avφ is central, b = b Ah = hφb =
(Vv αvφ)^6 = Vv (avφφb) = Vv (αv«^Λδ). Thua for some index μ, 6 ̂  αμφ;
by Lemma 3, bφ = αμ^ G C(L). This shows that ^ |z(0 h) is center valued,
and by Lemma 4 we may write φ\nOh) = ^h°^h By Lemma 6,
Ψ Leo *') = Λ' Hence ^ = (vAoαA) x Ih,.

It should be observed that since Halmos [3] has essentially de-
termined all quantifiers on a Boolean lattice, the above theorem enables
us to find all quantifiers on an atomic orthomodular lattice with complete
center.
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3 Atomic bisection and irreducibility. Generalizing a property
of the lattice of closed subspaces of a Hubert space, let us say that
a pair (6, c) of distinct atoms can be bisected in case there exists an
atom a ^b V c such that a Φ b and a Φ c. The lattice L has the
atomic bisection property if L is atomic and every pair of distinct
atoms can be bisected. The reader will no doubt notice that the
results of this section will go through under the weakened hypothesis
that pairs of orthogonal atoms can be bisected. This, however, is
only an apparent weakening since for non-orthogonal atoms (b, c), we
can write b V c = b V [(b V c) A b']; any atom a S (b V c) A V will
then bisect (b, c).

LEMMA 8. If L has the atomic bisection property, then so does
any interval L(e,f).

Proof. The lemma follows immediately from the fact that the
mapping a-^a A ef is an orthocomplement preserving lattice isomor-
phism of L(e,f) onto L(0,f A e').

LEMMA 9. If L has the atomic bisection property, then L is
irreducible.

Proof. Suppose that L is atomic, and heC(L) with/&=£(), hΦl.
Choose atoms b9 c with b ̂  h, c ^ h'. Then for any atom a ^ b V c,
a = a A 1 = a A (h V hf) = (a A h) V {a A hf), so that a S h or a ̂  hf.
But a ^ h implies that a ^ (b V c) A h — (b A h) V (c A h) = b, and
since b is an atom, a = b. Similarly a ^ hf implies a = c, so atomic
bisection fails.

LEMMA 10. If L is atomic complete and modular then irreduci-
bility of L is both a necessary and sufficient condition for L to have
the atomic bisection property.

Proof. By a theorem of I. Kaplansky [6] every complete modular
orthocomplemented lattice is a continuous geometry. The result now
follows immediately from [8, p. 80, Th. 2.4].

Combining the above results with the observation that if the pair
(6, c) of distinct atoms cannot be bisected, then L(0, b V c) is the
Boolean lattice {0, b, c,b V c), we have the following theorem:

THEOREM 11. Let L be atomic. Then the following conditions
are mutually equivalent:

( i ) L has the atomic bisection property.
(ii) Every interval L(e,f) is irreducible.
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(iii) L(0, b V c) is irreducible for all atoms b, c in L.
If in addition L is complete and modular, we can add:

(iv) L is irreducible.

4» Determination of the weak quantifiers on L{H). By a weak
quantifier on L we will mean a mapping φ: L—>L satisfying axioms
(Q2) and (Q3) of § 2. A glance at the proof of Theorem 2 shows that
parts (i)-(iii) will carry over for weak quantifiers. It should be noted
that the reason for our interest in weak quantifiers is that these
(together with their duals) are precisely the functions needed for
constructing a skew lattice by the method of Jordan.

THEOREM 12. Let φ be a weak quantifier on L. Then:
( i ) Ψ \mφ i) iβ α quantifier.
(ii) φ preserves arbitrary suprema whenever they exist in L.

Proof, (i) By hypothesis φ\Lmi) satisfies axioms (Q2) and (Q3),
so we need only note that (0φ)φ = Oφ.

(ii) Let e,feL. Then e, fS-eVf, so that eφ, fφ^(eV f)φ;
hence eφ V fφ ^ (e V f)φ. The reverse inequality follows from the
fact that e V / S eφ V fφ, so (e V f)φ ύ (eφ V fφ)φ = eφ v fφ, since

is a quantifier.
Suppose now that e = V* ea exists. Then e V Oφ — (V* O V 0<p =

so

= eφ v o^ = (β v θφ)φ

= [ V (β- V 0?>)]?> = V . (ββ V 0φ)φ

= We (e«φ V Oφ) - f Vc eaφ) V Oφ - V e*?> .

It now seems natural to call φ a discrete or an indiscrete weak
quantifier according to whether φ |z(0̂ ,i) is the discrete or the indiscrete
quantifier on L(0φ, 1). Our immediate goal is to determine all weak
quantifiers on a lattice having the atomic bisection property. From
Theorem 11 and the Corollary to Lemma 6, we see that every weak
quantifier on such a lattice is discrete or indiscrete. It suffices then
to find all discrete and indiscrete weak quantifiers on an arbitrary
orthomodular lattice L.

Our labor is greatly diminished by the observation that for any
weak quantifier φ on L, eφ — (e V (0φ))φ for each e e L, where φ —
φ\L{oφ>1). It follows that if φ is indiscrete, eφ = Oφ for all e <Ξ Oφ,
and eφ — 1 otherwise. Conversely for any aeL the prescription
eφ = a for e ̂  a, eφ = 1 for e g£ a, defines an indiscrete weak quanti-
fier, so this completely determines all indiscrete weak quantifiers on L.
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In case φ is discrete it is immediate that eφ = [e V (Oφ)]φ =
e V (Oφ). Our next task is to find necessary and sufficient conditions
on a which will assure us that the mapping e —> e V CL is a discrete
weak quantifier. We will use the notation M(b, c) to indicate that the
pair (δ, c) is modular; i.e., that a ^ c => (a V b) A c = a V (b A c).

THEOREM 13. Given aeL the mapping ψa defined by bψa = bv a
is a discrete weak quantifier if and only if M(e, af) for all eeL.
It then follows that L is modular if and only if ψa is a discrete
weak quantifier for every aeL.

Proof. We clearly need only concern ourselves with axiom (Q3).
Suppose first that ψa is a weak quantifier. Then for any e, feL,
(e ΛffaHa = eψa Afψaf so [e A (f V a)] V a = (e V a) A (f V a). Now
if b ̂  a then b ~ b \J a, whence (e A b) V a = (e V o) A b. With an
obvious change in notation, 6 ̂  ar =* (6 V e) A a' = b V (β Λ α'). Hence
M(β, α') for all eeL.

Suppose conversely that M(e, ar) for all eeL. In particular, if
V ^ α', then (bf V β') Λ α' = 6' V (e' Λ a'), so that 6 ^ α = > ( δ Λ e ) V α =
b A (e V α). Given / e L, /fβ ^ α, so (β Λ /fβ) V a = (β V α) Λ / t . ,
(β Λ fψa)ψa = β^β Λ /^α Thus ψ«β is a weak quantifier. That ^ α is
discrete follows from the observation that if e e L(a, 1), then e —
e\f a = eα/rα.

The only remaining problem is to consider the lattice of closed
subspaces L{H) of a Hubert space H and determine which elements
satisfy the conditions of Theorem 13. If H is finite dimensional, L{H)
is modular, so ψA is a weak quantifier for every A e L(H). The answer
for the infinite dimensional case is contained in the next theorem.

THEOREM 14. Let H be an infinite dimensional Hilbert space.
Then M(E, A) for all EeL(H) if and only if A or A1- is finite
dimensional.

Proof. If A is finite dimensional and B ^ A, we need only show
that for any Ee L(H), (B + E) A A ^ B + (E A A). In case A± is
finite dimensional, we must show that B^A implies that BAiE+A1)^
(B A E) + A1. Both results follow from the standard point wise
argument.

Suppose that both A and A1 are infinite dimensional. Using a
minor variation of the construction outlined in Halmos [4, §15], one
can produce a closed subspace N and a vector y such that

= (A1 + <y» v N1

A1 AN1 = (A1 + <y» AN1 = 0 .
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It is then immediate that modularity fails for the pair (N, A).
The main purpose of this paper was to determine all weak quanti-

fiers on L(H). Since L(H) has the atomic bisection property, this
has essentially been done, but for convenience we assemble the results
into one final theorem.

THEOREM 15. ( i ) Every weak quantifier on L(H) is discrete
or indiscrete.

(ii) Given A e L(H) the mapping Bφ — A if B tk A, Bφ = 1 if
B ^ A is an indiscrete weak quantifier; every indiscrete weak quanti-
fier takes this form.

(iii) The mapping BψA = B V A is a discrete weak quantifier
if and only if A or A1 is finite dimensional. If φ is a discrete
weak quantifier then φ = ψ{Qφ).
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