THE METHOD OF INTERIOR PARALLELS APPLIED TO POLYGONAL OR MULTIPLY CONNECTED MEMBRANES

JOSEPH HERSCH

1. Introduction.

1.1. The scope of this paper is (a) to discuss the possibilities of the method of interior parallels (*Makai*, *Pólya*, *Payne-Weinberger*) by considering the case of polygonal membranes (§ 2); (b) to extend it to multiply connected domains in a more satisfactory manner than has hitherto been proposed (§ 3); to this end we use a result of H. F. Weinberger [7] on the existence of an "effectless cut", published immediately after the present paper.

1.2. We consider the problem of a vibrating membrane covering a plane domain G and fixed along the boundary Γ . We are interested in the first eigenvalue λ_1 of the problem $\Delta u + \lambda u = 0$ in G, u = 0along Γ ; by Rayleigh's principle,

$$\lambda_1 \leq R[v] \equiv rac{D(v)}{\iint_\sigma v^2 dA} \quad ext{ if } v = 0 ext{ along } arGamma \ .$$

dA = dxdy is the element of area; $D(v) = \iint_{\sigma} grad^2v dA$, Dirichlet's integral; R[v], Rayleigh's quotient.

The method of interior parallels consists in using trial functions v whose level lines are parallel to Γ . It was first introduced by E. Makai [2, 3]: using the trial function $v(Q) = \delta_{qr}$ ($Q \in G$, δ = Euclidean distance), he obtained, for every simply or doubly connected membrane G of area A, fixed along its boundary Γ of total length L_r , the bound

$$(1)$$
 $\lambda_1 \leq 3rac{L^2_{arGamma}}{A^2}$.

His proof makes use of B. Sz.-Nagy's [6] inequality

$$(2) q(\delta) \leq L_{\Gamma}$$

bounding the total length $q(\delta)$ of the "interior parallel at distance δ " in a simply or doubly connected domain; as Sz.-Nagy proved, this length exists for almost all values of δ .

Received August 23, 1962.

JOSEPH HERSCH

1.3. Refining Makai's method, G. Pólya [5] admits a priori for v any regular function $v(\delta_{qr})$ satisfying v(0) = 0.

Let us call $a = a(\delta)$ the area of the subdomain $\{Q \mid Q \in G, \delta_{Qr} < \delta\}$ of G; $q(\delta) = da/d\delta$. By Rayleigh's principle,

$$(3) \qquad \lambda_{1} \leq R[v] = \frac{\int_{a=0}^{4} \left(\frac{dv}{d\delta}\right)^{2} da}{\int_{a=0}^{4} v^{2} da} = \frac{\int_{a=0}^{4} q^{2} \left(\frac{dv}{da}\right)^{2} da}{\int_{a=0}^{4} v^{2} da} \quad \text{if } v(0) = 0 \; .$$

Let $\lambda_1^+ = \operatorname{Min}_{v(\delta)} R[v]$; $\lambda_1 \leq \lambda_1^+$; if G is simply or doubly connected inequality (2) gives

$$(4) \qquad \lambda_1 \leq \lambda_1^+ \leq \lambda_1^{++} \equiv L_{\Gamma}^2 \operatorname{Min}_{v(0)=0} \frac{\int_{a=0}^{A} \left(\frac{dv}{da}\right)^2 da}{\int_{a=0}^{A} v^2 da} = \left(\frac{\pi}{2} \cdot \frac{L_{\Gamma}}{A}\right)^2;$$

this is $P \circ lya's$ inequality (sharper than (1)).

1.4. For a simply connected domain G, L. E. Payne and H. F. Weinberger [4] made use of the sharp inequality of B. Sz.-Nagy [6]:

$$(\,5\,) \qquad \qquad q(\delta) \leq L_{\scriptscriptstyle \Gamma} - 2\pi\delta$$

it follows by integration that $q^2 \leq L_{\Gamma}^2 - 4\pi a$ (see also [1]), whence by (3):

Payne and Weinberger remarked that all inequalities (1), (2), (3), (4), (5), (6) remain valid if G is allowed to have also interior boundary curves γ along which the membrane is free ("holes"): L_{Γ} is then the total length of the "fixed" boundaries Γ , A the area of G (without the holes); $q(\delta)$ is the length of that part of the "interior parallel" to Γ (not γ !) which lies inside G.

Inequality (4) is valid if Γ is formed by the outer boundary Γ_0 and at most one inner boundary curve Γ_1 ; along the other interior boundary curves $\gamma_2, \gamma_3, \dots, \gamma_n$ the membrane is free; $L_{\Gamma} = L_{\Gamma_0} + L_{\Gamma_1}$. —(5) and (6) are valid only if $\Gamma = \Gamma_0$ and all inner boundaries are free.

If G is a circular ring fixed along its outer boundary Γ_0 and free along its inner boundary γ_1 , its first eigenfunction $u_1 = u_1(r)$, whence

1230

 $\lambda_1 = \lambda_1^+$, and $q^2 = L_{\Gamma_0}^2 - 4\pi a$, whence $\lambda_1^+ = \lambda_1^{++}$. Therefore $\lambda_1^{++} \equiv \lambda_{P-W}^{++}$. $\lambda_{1ext}^{++}(A, L_{\Gamma_0})$ is equal to the first eigenvalue of an annular membrane fixed along Γ_0 , free along γ_1 .

 $\lambda_{\text{text}}^{++}(A, L_{r_o})$ is the root of an equation involving Bessel functions; its solution is indicated graphically in Jahnke-Emde's Tables of functions, pp. 207-8.

The inequality $\lambda_1 \leq \lambda_1^{++} \atop {P-W} = 0$ thus expresses an "isoperimetric" extremal property of such annular membranes.

1.5. In another paper [1] one can find a "unified" and more detailed discussion of Makai's, Pólya's and Payne-Weinberger's methods; and furthermore the proof of an analogous "isoperimetric" theorem, which we shall essentially use in § 3:

Of all multiply connected membranes of given area A, fixed along one inner boundary Jordan curve Γ_1 of given length L_{Γ_1} and free along all others (γ_0 exterior; $\gamma_2, \gamma_3, \dots, \gamma_n$ interior), the annulus has highest λ_1 .

Let $\delta = \delta_{qr_1}$ (Euclidean distance), and $q = q(\delta)$ as before; the proof of our theorem becomes easy once we introduce the new parameter

(7)
$$t(\delta) = \int_0^{\delta} \frac{d\delta}{q}$$

instead of $a(\delta) = \int_{0}^{\delta} q d\delta$ (see 1.3 and 1.4). We then have, instead of (3),

$$(3') \qquad \lambda_1 \leq R[v] = rac{\displaystyle \int_{t=0}^T \Bigl(rac{dv}{dt}\Bigr)^2 dt}{\displaystyle \int_{t=0}^T q^2 v^2 dt} \;; \qquad \lambda_1 \leq \lambda_1^+ \equiv \operatorname{Min}_v R[v] \;.$$

(Often $T = \infty$.) This is the Rayleigh quotient of a vibrating string, fixed at its extremity t = 0 and of total mass $\int_{t=0}^{T} q^2 dt = A$. B. Sz.-Nagy proved that here $q(\delta) \leq L_{r_1} + 2\pi\delta$; whence by inte-

gration:

$$q(t) \leq L_{{\scriptscriptstyle \Gamma_1}} e^{{}_{2\pi t}} ~~{
m for}~~t \leq t_{\scriptscriptstyle 1} = rac{1}{4\pi} {
m ln} \Big(1 + rac{4\pi A}{L^2_{{\scriptscriptstyle \Gamma_1}}} \Big) ~~({
m see}~~ {
m [1]}) ~;$$

the proof is completed by a discussion of the effect of displacing the masses along the vibrating string.-We thus have

$$\lambda_1 \leqq \lambda_1^+ \leqq \lambda_{ ext{int}}^{++}(A, L_{arGamma_1})$$
 ,

where $\lambda_{\min}^{++}(A, L_{\Gamma_1})$ is the first eigenvalue of an annular membrane of

JOSEPH HERSCH

area A, fixed along its interior boundary Γ_1 of length L_{Γ_1} , free along γ_0 . To determine $\lambda_{\text{lint}}^{++}$, use again Jahnke-Emde's Tables of functions, pp. 207-8.

2. Membranes with fixed polygonal outer boundary.

2.1. For (simply or multiply connected) membranes, fixed along their polygonal outer boundary Γ_0 but free along the (possible) inner boundaries $\gamma_1, \gamma_2, \dots, \gamma_n$, we shall sharpen Payne-Weinberger's upper bound (§ 1.4).—Also, the new bounds obtained will give us a glimpse of the limits of the method's possibilities.

2.2. The regular polygon with m sides, which is circumscribed to the unit circle, has perimeter $K_m = 2mtg(\pi/m)$, and area $K_m/2$.

Any regular *m*-polygon with area A and perimeter L, is circumscribed to a circle of radius $r_i = L/K_m$; $L^2 = (K_m r_i)^2 = 2K_m (K_m r_i^2/2) = 2K_m (Lr_i/2) = 2K_m A$. Therefore, by the isoperimetric property of regular polygons, any *m*-polygon with area A and perimeter L satisfies

(8)
$$L^2 \ge 2K_m A$$
.

In particular, every *m*-polygon (whether convex or not), which is circumscribed to a circle of radius r_i , satisfies $A = Lr_i/2$; therefore

$$(8') L \ge K_m r_i .$$

Let $p \leq m$; a regular *p*-polygon *is* an irregular *m*-polygon, circumscribed to the same circle, thus $K_p r_i = L \geq K_m r_i$, whence $K_p \geq K_m$; K_m is a decreasing function of *m* (which can be verified directly); when $m \to \infty$, $K_m \searrow 2\pi$.

2.3. Let the membrane cover a plane domain G and be fixed only along the *m*-polygonal outer boundary Γ_0 ; let us call $\tilde{G}(\supset G)$ the polygonal domain bounded by Γ_0 ; the line $\tilde{\Gamma}_0^{(\delta)}$ parallel to Γ_0 in \tilde{G} is composed of $p \leq m$ straight segments and possibly (if Γ_0 is not convex) some circular arcs of radius δ . The length $\tilde{q}(\delta)$ of $\tilde{\Gamma}_0^{(\delta)}$ is a piecewise differentiable function of δ ; $\tilde{q}(\delta) \geq q(\delta)$. If the domain $\tilde{G}^{(\delta)}$, bounded by $\tilde{\Gamma}_0^{(\delta)}$, is convex, it is readily seen that, for $\varepsilon > 0$, $\tilde{q}(\delta) - \tilde{q}(\delta + \varepsilon)$ is equal to the perimeter of a convex *p*-polygon (of sides parallel to Γ_0) with $p \leq m$, circumscribed to a circle of radius ε ; whence $\tilde{q}(\delta) - \tilde{q}(\delta + \varepsilon) \geq K_p \varepsilon \geq K_m \varepsilon$. This remains true if $\tilde{G}^{(\delta)}$ is non-convex: indeed, $\tilde{q}(\delta) - \tilde{q}(\delta + \varepsilon)$ is then *larger* than the perimeter of a non-convex *p*-polygon with $p \leq m$, circumscribed to a circle of radius ε . We thus have always

$$(9) \qquad \qquad -\frac{d\tilde{q}}{d\delta} \ge K_m \; .$$

As in 1.3 and 1.4, we use as parameter the area $a(\delta) = \int_0^{\delta} q d\delta$ of the subdomain $\{Q \mid Q \in G, \delta_{Qr_0} < \delta\}; da/d\delta = q;$

$$rac{-d(\widetilde{q}^{\,2})}{da} = 2\widetilde{q}\Big(rac{-d\widetilde{q}}{da}\Big) \geqq 2q\Big(rac{-d\widetilde{q}}{da}\Big) = 2rac{da}{d\delta}\Big(rac{-d\widetilde{q}}{da}\Big)
onumber \ = 2\Big(rac{-d\widetilde{q}}{d\delta}\Big) \geqq 2K_{m} \; ;$$

whence by integration from 0 to a: $L^2_{\Gamma_0} - \widetilde{q}^2 \ge 2K_m a;$

(10)
$$q^2 \leq \widetilde{q}^2 \leq L_{\Gamma_0}^2 - 2K_m a ,$$

with equality if $G = \tilde{G} = \text{regular } m\text{-polygon.}$ —This evaluation (valid for *m*-polygons) is sharper than $q^2 \leq \tilde{q}^2 \leq L_{r_0}^2 - 4\pi a$ (always valid), which is the basis of Payne-Weinberger's method (see [1]).

Using (3), we thus may write (instead of (6)):

(11)
$$\lambda_1 < \lambda_1^+ \leq \lambda_1^{++}, \quad \text{where} \quad \lambda_1^{++} = \operatorname{Min}_{v(0)=0} \frac{\int_{a=0}^{4} (L_{\Gamma_0}^2 - 2K_m a) \left(\frac{dv}{da}\right)^2 da}{\int_{a=0}^{4} v^2 da}.$$

Note that for polygons λ_1 is always smaller than λ_1^+ : this limits the sharpness obtainable by the method of interior parallels. When $m \to \infty$, $K_m \searrow 2\pi$; thus

(12)
$$\lambda_1^{++} \nearrow \lambda_1^{++} = \lambda_1^{++} \cdot \prod_{(m)}^{(m)} \lambda_{(m)}^{++} = \lambda_1^{++} \cdot \prod_{P=W}^{(m)} \lambda_{(m)}^{++} = \lambda_1^{++} \cdot \prod_{P=W}^{(m)} \lambda_1^{++} \cdots \prod_{P=W}^{(m)$$

We shall construct an annular membrane having exactly the first eigenvalue $\lambda_{(1)}^{++}$:

Instead of a, we introduce a new independent variable r by

$$L_{\Gamma_{0}}^{2} - 2K_{m}a = K_{m}^{2}r^{2}, \quad \text{i.e.} \quad a = \frac{L_{\Gamma_{0}}^{2}}{2K_{m}} - \frac{1}{2}K_{m}r^{2}; \quad \text{then} \quad \frac{da}{dr} = -K_{m}r;$$

$$(13) \qquad \lambda_{1}^{++} = \operatorname{Min}_{v(R_{0})=0} \frac{\int_{r=r_{1}}^{R_{0}} \left(\frac{dv}{dr}\right)^{2}K_{m}rdr}{\int_{r=r_{1}}^{R_{0}} v^{2}K_{m}rdr} = \operatorname{Min}_{v(R_{0})=0} \frac{\int_{r=r_{1}}^{R_{0}} \left(\frac{dv}{dr}\right)^{2}2\pi rdr}{\int_{r=r_{1}}^{R_{0}} v^{2}K_{m}rdr}$$

with $R_0 = L_{\Gamma_0}/K_m$ and $r_1^2 = R_0^2 - 2A/K_m$.

This is the annular membrane we wanted: fixed along its outer circle of radius R_0 , free along its inner circle of radius r_1 .—Consider two homothetic regular *m*-polygons, the outer one of length L_{r_0} , the inner one such that the area comprised between them be A: the first is circumscribed to the circle of radius R_0 , the second to the circle of radius r_1 .

JOSEPH HERSCH

REMARK. The fact that λ_1^{++} increases with *m* thus expresses a property of Bessel functions.

2.4. More precise evaluations in terms of A, L_{Γ_0} and the interior angles $\pi - \alpha_1, \pi - \alpha_2, \dots, \pi - \alpha_m$ of Γ_0 , when \widetilde{G} is convex.

We consider a membrane G fixed only along its convex polygonal outer boundary Γ_0 . We have $\alpha_1 + \cdots + \alpha_m = 2\pi$, $0 < \alpha_i < \pi$.

Let us call $F(\alpha_1, \dots, \alpha_m) = 2 \sum_{i=1}^m tg(\alpha_i/2)$ the perimeter of the (convex) polygon C with interior angles $\pi - \alpha_1, \dots, \pi - \alpha_m$ (in this order), circumscribed to the unit circle. The area of C is $F(\alpha_1, \dots, \alpha_m)/2$. By (8'), $F(\alpha_1, \dots, \alpha_m) \ge K_m$; with equality if $\alpha_1 = \dots = \alpha_m = 2\pi/m$.

Every interior parallel $\widetilde{\Gamma}_{0}^{(\delta)}$ to Γ_{0} in \widetilde{G} is a polygon with $p \leq m$ sides (parallel to those of Γ_{0}) and inner angles $\pi - \beta_{1}, \dots, \pi - \beta_{p}$, where $\beta_{1} + \dots + \beta_{p} = 2\pi$ and each β_{j} is equal either to an α_{i} or to the sum of several consecutive α_{i} . For a sufficiently small $\varepsilon > 0$, $\widetilde{q}(\delta) - \widetilde{q}(\delta + \varepsilon)$ is equal to the length of a (convex) *p*-polygon with angles $\pi - \beta_{1}, \dots, \pi - \beta_{p}$ (in this order), circumscribed to a circle of radius ε ; whence $\widetilde{q}(\delta) - \widetilde{q}(\delta + \varepsilon) = F(\beta_{1}, \dots, \beta_{p}) \cdot \varepsilon$;

$$rac{-d\widetilde{q}}{d\delta}=F(eta_{\scriptscriptstyle 1},\,\cdots,\,eta_{\scriptscriptstyle p})=2\sum\limits_{j=1}^ptgrac{eta_j}{2}\,;$$

since \widetilde{G} is by hypothesis convex, $0 < \alpha_i < \pi$, $0 < \beta_j < \pi$, thus each $tg(\alpha_i/2) > 0$ and

$$tgrac{lpha_i+lpha_{i+1}}{2}=rac{tgrac{lpha_i}{2}+tgrac{lpha_{i+1}}{2}}{1-tgrac{lpha_i}{2}tgrac{lpha_{i+1}}{2}}>tgrac{lpha_i}{2}+tgrac{lpha_{i+1}}{2}$$
 ;

therefore $F(\beta_1, \dots, \beta_p) \ge F(\alpha_1, \dots, \alpha_m)$ (which is also geometrically clear) and always

(9')
$$-\frac{d\tilde{q}}{d\delta} \ge F(\alpha_1, \cdots, \alpha_m);$$

whence

(10')
$$q^2 \leq \tilde{q}^2 \leq L_{\Gamma_0}^2 - 2F(\alpha_1, \cdots, \alpha_m)a$$

and the inequality

(11')
$$\lambda_{1} < \lambda_{1}^{+} \leq \lambda_{1}^{++}, \text{ where}$$
$$(11')$$
$$\lambda_{1}^{++} = \operatorname{Min}_{v(0)=0} \frac{\int_{a=0}^{4} [L_{\Gamma_{0}}^{2} - 2F(\alpha_{1}, \cdots, \alpha_{m})a] (\frac{dv}{da})^{2} da}{\int_{a=0}^{4} v^{2} da}.$$

 $\lambda_1^{++} \leq \lambda_1^{++};$ equality only if $\alpha_1 = \cdots = \alpha_m = 2\pi/m.$

Let us now introduce another independent variable r instead of $a: L_{\Gamma_0}^2 - 2F(\alpha_1, \dots, \alpha_m)a = [F(\alpha_1, \dots, \alpha_m)]^2 \cdot r^2$; we then obtain a formula like (13) with $F(\alpha_1, \dots, \alpha_m)$ instead of K_m , now $R_0 = L_{\Gamma_0}/F(\alpha_1, \dots, \alpha_m)$ and $r_1^2 = R_0^2 - 2A/F(\alpha_1, \dots, \alpha_m)$. The annular membrane with fixed outer circle of radius R_0 and free inner circle of radius r_1 has first eigenvalue λ_1^{++} . $(\alpha_1, \dots, \alpha_m)$.

Let us construct two homothetic m-polygons, circumscribed to concentric circles, with sides parallel to those of Γ_0 (and in the same order), the outer polygon of length L_{Γ_0} , the inner polygon such that the area comprised between them be A; the outer circle has then radius R_0 , the inner circle radius r_1 : this is our auxiliary annulus.

2.5. Remark on the limits of the possibilities of the method of interior parallels.—As follows from the above discussion, if $G = \tilde{G}$ is itself a convex polygon circumscribed to a circle, we have $L^2_{\Gamma_0} = 2F(\alpha_1, \dots, \alpha_m)A$, whence $r_1 = 0$; $R_0 = r_{\text{inscr}}$;

$$egin{aligned} \lambda_1 &< \lambda_1^{++} \ _{({m lpha}_1, \cdots, {m lpha}_m)} = rac{j_0^2}{r_{ ext{inser}}^2} &\leq \lambda_1^{++} < \lambda_1^{++} \ _{({m lpha})} = \lambda_1^{++} < \lambda_1^{++} \ _{P-W} < \lambda_1^{++} \ _{Polya} \ &= \left(rac{\pi}{2} rac{L_{arLambda_0}}{A}
ight)^2 = rac{\pi^2}{r_{ ext{inser}}^2} < \lambda_1^{++} = 3 igg(rac{L_{arLambda_0}}{A}igg)^2 = rac{12}{r_{ ext{inser}}^2} \,. \end{aligned}$$

Observe that here $d\tilde{q}/d\delta = -F(\alpha_1, \dots, \alpha_m)$ and $q^2 = \tilde{q}^2 = L^2_{\Gamma_0} - 2F(\alpha_1, \dots, \alpha_m)a$, i.e. $\lambda_1^+ = \lambda_1^{++}$ is the first eigenvalue of the inscribed circle; the inequality $\lambda_1 < j_0^2/r_{\text{inser}}^2$ is trivial (monotony), but the method of interior parallels is (in this case of a circumscribed polygon) unable to give any sharper bound.

It may be noted that Pólya's bound—and therefore Payne-Weinberger's bound as well as λ_1^{++} and λ_1^{++} —become sharp for the infinite strip considered as the limit of a long rectangle: let b be its breadth, $\lambda_1^{++} \approx (\pi/b)^2$; but, if we consider the strip as the limit of a long rhombus (i.e. circumscribed to a circle), $\lambda_1^{++} \approx (2\pi/b)^2$ and $\lambda_1^{++} \approx j_0^2/r_{\text{inser}}^2 \approx (2j_0/b)^2$, which is trivial by monotony.

3. Multiply connected membranes.

3.1. Let us consider e.g. a doubly connected membrane G, fixed both along its outer boundary Γ_0 and its inner boundary Γ_1 .

(i) Given the area A of G and the lengths L_{Γ_0} and L_{Γ_1} , we are looking for a bound $\lambda_1 \leq \lambda_1^{++}(A; L_{\Gamma_0}, L_{\Gamma_1})$ such that, when Γ_1 reduces to a point, $\lambda_1^{++}(A; L_{\Gamma_0}, 0) = \lambda_{\text{text}}^{++}(A, L_{\Gamma_0})$ (exact bound of Payne-Weinberger); indeed, such is the case for the true λ_1 .

This requirement is not fulfilled by Pólya's -or Makai's- bounds (even if Γ_1 is very small, they consider trial functions depending only on the distance to $\Gamma = \Gamma_0 \cup \Gamma_1$, which does not correspond, qualitatively, to the behavior of the true first eigenfunction of G); nor is it fulfilled by Payne-Weinberger's suggestion to make G simply connected by adding between Γ_0 and Γ_1 a rectilinear constraint (length c), thus replacing L_{Γ} by $L_{\Gamma} + 2c$: indeed, when Γ_1 reduces to a point, this constraint would remain and the bound $\lambda_{\text{lext}}^{++}(A, L_{\Gamma_0} + L_{\Gamma_1} + 2c)$ would become $\lambda_{\text{lext}}^{++}(A, L_{\Gamma_0} + 2c)$ instead of $\lambda_{\text{lext}}^{++}(A, L_{\Gamma_0})$. Any small boundary component Γ_1 has then a disproportionate effect on the bound.—In particular, consider a fixed annular membrane with radii 1 and $\varepsilon \rightarrow 0$; the true λ_1 tends to $j_0^2 \cong 5.78$; λ_1^{++} (Payne-Weinberger) tends to $\lambda_{\text{lext}}^{++}(\pi, 2\pi + 2)$, which is larger than the first eigenvalue of the unit circular sector of aperture 360° , i.e. larger than π^2 ; Pólya's inequality gives (as for the circle) $\lambda_1 \rightarrow \leq ((\pi/2)(2\pi/\pi))^2 = \pi^2$.

(ii) We look for a bound which, for any fixed annular membrane, should coincide with the exact value λ_1 .

From H. F. Weinberger's paper [7], which is printed im-3.2. mediately after the present one, it follows that: Given a multiply connected membrane G which is fixed along its outer boundary Γ_0 and its inner boundary components $\Gamma_1, \Gamma_2, \dots, \Gamma_p$, and free along its other inner boundaries $\gamma_{p+1}, \gamma_{p+2}, \dots, \gamma_n$ (the Γ_i are assumed to have continuous normals and the γ_i to be analytic), then there exists an "effectless cutting" of the membrane G into p+1 sub-membranes G_0, G_1, \dots, G_p , where each G_i has Γ_i as a fixed boundary component and is otherwise free, such that $\lambda_1^{g_0} = \lambda_1^{g_1} = \cdots = \lambda_1^{g_p} = \lambda_1^{g}$. In other The domain G can be cut into G_0, \dots, G_p by means of a words: system of analytic arcs along which $\partial u_1/\partial n = 0$, where u_1 is the first eigenfunction of G; u_1 is then also the first eigenfunction of each G_i (membrane fixed along Γ_i , free along the cuts and the γ_i). We use essentially this result in the following.

3.3. Let A_i be the area of the partial domain G_i ; $A_0 + A_1 + \cdots + A_p = A$; the lengths $L_{\Gamma_0}, L_{\Gamma_1}, \cdots, L_{\Gamma_p}$ are known, but not the individual A_i !—We know that $\lambda_1 \leq \lambda_{\text{text}}^{++}(A_0, L_{\Gamma_0})$ and $\lambda_1 \leq \lambda_{\text{int}}^{++}(A_i, L_{\Gamma_i})$

for $i = 1, 2, \dots, p$. Therefore:

$$\lambda_1 \leq \min \left\{ \lambda_{\text{lext}}^{++}(A_0, L_{\Gamma_0}); \lambda_{\text{lint}}^{++}(A_1, L_{\Gamma_1}); \cdots; \lambda_{\text{lint}}^{++}(A_p, L_{\Gamma_p}) \right\}$$

and hence

$$\lambda_1 \leq \max\left\{_{\text{satisfying } \hat{A}_0 + \dots + \hat{A}_p \geq 4}^{\text{choice of } \hat{A}_0 \geq 0} \min\left\{\lambda_{\text{lext}}^{++}(\hat{A}_0, L_{\Gamma_0}); \lambda_{\text{lint}}^{++}(\hat{A}_1, L_{\Gamma_1}); \cdots\right\}\right\}.$$

Since each of the λ_{iext}^{++} , λ_{iint}^{++} is a monotonous decreasing function of the corresponding \hat{A}_i , the max min is attained when $\hat{A}_0, \dots, \hat{A}_p$ are chosen such that all those λ_1^{++} are equal:

(14)
$$\lambda_{\text{lext}}^{++}(\hat{A}_0, L_{\Gamma_0}) = \lambda_{\text{lint}}^{++}(\hat{A}_1, L_{\Gamma_1}) = \cdots = \lambda_{\text{lint}}^{++}(\hat{A}_p, L_{\Gamma_p});$$

those are p transcendental equations, which together with

(15)
$$\widehat{A}_0 + \widehat{A}_1 + \cdots + \widehat{A}_p = A$$

determine $\hat{A}_0, \dots, \hat{A}_p$; these values are in general NOT equal to the true A_0, \dots, A_p corresponding to Weinberger's "effectless cutting"; but the common value

$$\lambda_{1}^{++}(\widehat{A}_{i}, L_{F_{i}}) = \lambda_{1}^{++}(A; L_{\Gamma_{0}}, L_{F_{1}}, \cdots, L_{\Gamma_{n}})$$

is the upper bound we were looking for.

Indeed: (i) If an inner boundary component Γ_p reduces to a point, i.e. $L_{\Gamma_p} \to 0$, then the corresponding $\hat{A}_p \to 0$ (and also $A_p \to 0$); there remain p-1 transcendental relations in (14) between $\hat{A}_0, \dots, \hat{A}_{p-1}$, which together with (15) determine these p quantities; therefore $\lambda_1^{++}(A; L_{\Gamma_0}, \dots, L_{\Gamma_{p-1}}, 0) = \lambda_1^{++}(A; L_{\Gamma_0}, \dots, L_{\Gamma_{p-1}})$ as we wanted.

In the special case p = 1, we have $\lambda_1^{++}(A; L_{\Gamma_0}, 0) = \lambda_{\text{lext}}^{++}(A, L_{\Gamma_0})$.

(ii) If p = 1 and $L_{\Gamma_0}^2 - L_{\Gamma_1}^2 = 4\pi A$, there exists a circular ring with area A, outer perimeter L_{Γ_0} and inner perimeter L_{Γ_1} ; its first eigenvalue is precisely equal to $\lambda_1^{++}(A; L_{\Gamma_0}, L_{\Gamma_1})$. (Here $\hat{A}_0 = A_0$ and $\hat{A}_1 = A_1$, G_0 and G_1 are separated by the "maximum line" of the annular membrane's first eigenfunction.)—Whence the isoperimetric inequality:

Of all (doubly or multiply connected) membranes which are fixed along their outer boundary Γ_0 and one inner boundary component Γ_1 (and otherwise free), with given A, L_{Γ_0} and L_{Γ_1} satisfying $L_{\Gamma_0}^2 - L_{\Gamma_1}^2$ = $4\pi A$, the annular membrane has maximal λ_1 .

EXAMPLE. A doubly connected fixed membrane, bounded by two circles of given radii, has maximum λ_1 when the circles are concentric.

REMARKS. (a) If Γ_0 is a polygon, $\lambda_{\text{lext}}^{++}$ in (14) can be advantageously replaced by λ_1^{++} or by λ_1^{++} .

(b) If the considered membrane has a free outer boundary γ_0 , the above discussion remains valid, the first term in (14) disappears from the formula, as disappear A_0 , \hat{A}_0 and L_{Γ_0} .

My best thanks are due to *H. F. Weinberger* for his proof [7] of the existence of an "effectless cutting", which allowed the very simple proof given in this § 3; without both Weinberger's kindness and skill, a long and delicate construction and discussion of a continuous trial function in the whole domain *G* (with level lines consisting of arcs parallel to different Γ_i) would have been necessary to get the same (14), (15) and (16) finally.

BIBLIOGRAPHY

1. J. Hersch, Contribution to the method of interior parallels applied to vibrating membranes, Studies in Mathematical Analysis and Related Topics, Stanford University Press (1962), 132-139.

2. E. Makai, On the principal frequency of a convex membrane and related problems, Czechosl. Math. J., **9** (1959), 66-70.

3. _____, Bounds for the principal frequency of a membrane and the torsional rigidity of a beam, Acta Sci. Math. (=Acta Szeged), **20** (1959), 33-35.

4. L. E. Payne and H. F. Weinberger, Some isoperimetric inequalities for membrane frequencies and torsional rigidity, J. Math. Analysis and Appl., 2 (1961), 210-216.

5. G. Pólya, Two more inequalities between physical and geometrical quantities, J. Indian Math. Soc., **24** (1960), 413-419.

6. B. Sz.-Nagy, Ueber Parallelmengen nichtkonvexer ebener Bereiche, Acta Sci. Math. (=Acta Szeged), **20** (1959), 36-47.

 H. F. Weinberger, An effectless cutting of a vibrating membrane, Pacific J. Math., 13 (1963), 1239-1240 (following immediately the present paper).

BATTELLE MEMORIAL INSTITUTE, GENEVA, SWITZERLAND, AND SWISS FEDERAL INSTITUTE OF TECHNOLOGY, ZÜRICH.