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l Introduction*

1.1. The scope of this paper is (a) to discuss the possibilities of
the method of interior parallels (Makaί, Pόlya, Payne- Weinberger) by
considering the case of polygonal membranes (§ 2); (b) to extend it to
multiply connected domains in a more satisfactory manner than has
hitherto been proposed (§ 3); to this end we use a result of H. F.
Weinberger [7] on the existence of an "effectless cut", published im-
mediately after the present paper.

1.2. We consider the problem of a vibrating membrane covering
a plane domain G and fixed along the boundary Γ. We are interested
in the first eigenvalue \ of the problem An + Xu = 0 in G, u = 0
along Γ; by Rayleigh's principle,

\ ^ R[v] = D ^ if v = 0 along Γ .

\\/dA

dA = dxdy is the element of area; D(v) = 11 grad2vdA, Dirichlet's

integral; R[v], Rayleigh's quotient.
The method of interior parallels consists in using trial functions

v whose level lines are parallel to Γ. It was first introduced by E»
Makai [2, 3]: using the trial function v(Q) = δQΓ (QeG, δ = Euclidean
distance), he obtained, for every simply or doubly connected membrane
G of area A, fixed along its boundary Γ of total length Lr, the bound

(1) λ ^ 3 ^

His proof makes use of B. Sz.-Nagy's [6] inequality

(2) Q(d)SLΓ

bounding the total length q(δ) of the "interior parallel at distance δ"
in a simply or doubly connected domain; as Sz.-Nagy proved, this length
exists for almost all values of δ.
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1.3. Refining Makai's method, G Pόlya [5] admits a priori for
D any regular function v(δQΓ) satisfying v(0) — 0.

Let us call a — a(δ) the area of the subdomain {Q \ Q e G, δQΓ < δ}
of G; q(δ) = da/dδ. By Rayleigh's principle,

ί4 (^-Xda \Λ qi^-
(3) \£R[v] } a = ° ) d δ J ^ ^ a

I v2da \ v
Jα=0 Jα=0

da

Let Xt = Min ŝ) R[v]; λx =g Xΐ; if G is simply or doubly connected
inequality (2) gives

Ja=o\das __ (π
t,(θ)=o T2 I-y

Polya I Λ .2Λ~ X ^

this is Pόlya's inequality (sharper than (1)).

1.4. For a simply connected domain G, L. E. Payne and H. F.
Weinberger [4] made use of the sharp inequality of B. Sz.-Nagy [6]:

( 5) q(δ) SLΓ- 2πδ

it follows by integration that q2 S L2

Γ — 4πa (see also [1]), whence
by (3):

X <; \ + <; v++
p—w

[A

 /T2 . Jdv
( 6 ) \ y^r ~~ ^πa)[—

= XΐeϊΛA, LΓ) = Min,(0)=0 - ^
v

Ja=0

v'da

Payne and Weinberger remarked that all inequalities (1), (2), (3),
(4), (5), (6) remain valid if G is allowed to have also interior boundary
curves y along which the membrane is free ("holes"): LΓ is then
the total length of the "fixed" boundaries Γ, A the area of G (with-
out the holes); q(δ) is the length of that part of the "interior parallel"
to Γ (not 7!) which lies inside G.

Inequality (4) is valid if Γ is formed by the outer boundary ΓQ

and at most one inner boundary curve Γx; along the other interior
boundary curves 72, 73, , Ύn the membrane is free; LΓ = LΓ(j + LΓχ.
—(5) and (6) are valid only if Γ = Γo and all inner boundaries are
free.

If G is a circular ring fixed along its outer boundary Γo and free
along its inner boundary yu its first eigenfunction ux — uλ(r)9 whence
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= λ+, and q2 = L I - 4πα, whence λ+ = λ+ + . Therefore λ+ + =
υ p-w P-W

A ^r0) is equal to the first eigenvalue of an annular membrane
fixed along Γ0J free along 7i.

*λΐeit(A, LΓQ) is the root of an equation involving Bessel functions;
its solution is indicated graphically in Jahnke-Emde's Tables of functions,
pp. 207-8.

The inequality \ ^ Xt+ thus expresses an "isoperimetric" extremal
P-W

property of such annular membranes.

1.5. In another paper [1] one can find a "unified" and more
detailed discussion of Makai's, Poly a's and Payne-Weinberger's methods;
and furthermore the proof of an analogous "isoperimetric" theorem,
which we shall essentially use in § 3:

Of all multiply connected membranes of given area A, fixed along
one inner boundary Jordan curve Γ1 of given length LΓχ and free
along all others (γ0 exterior) 72, 73,

 β ,7» interior), the annulus has
highest λ2.

Let 3 — δQΓi (Euclidean distance), and q = q(δ) as before; the proof
of our theorem becomes easy once we introduce the new parameter

( 7 ) ( ) \
Jo q

qdδ (see 1.3 and 1.4). We then have, instead of
0

<3)

Γ (
λ, ^ R[v] = J r ; ^ λ ^ λ + Ξ Min. R[v] .

I q2v
Jί=0

dt

{Often T— co.) This is the Rayleigh quotient of a vibrating string,
q2dt = A.

t=0

B. Sz.-Nagy proved that here q(δ) ̂  LΓl + 2πδ; whence by inte-
gration:

q(t) ^ LΓie™ for t^t, = -p-ln(l + ^f) (see [1])

the proof is completed by a discussion of the effect of displacing the
masses along the vibrating string.—We thus have

λx ^ λ+ ^ λ+n

+

t(A, LΓl) ,

where XS+^A, LΓ%) is the first eigenvalue of an annular membrane of
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area A, fixed along its interior boundary Γx of length LΓl9 free along
70. To determine λίώ, use again Jahnke-Emde's Tables of functions,
pp. 207-8.

2. Membranes with fixed polygonal outer boundary*

2.1. For (simply or multiply connected) membranes, fixed along
their polygonal outer boundary Γo but free along the (possible) inner
boundaries yl9 τ2, •• ,7«, we shall sharpen Payne-Weinberger's upper
bound (§ 1.4).—Also, the new bounds obtained will give us a glimpse
of the limits of the method's possibilities.

2.2. The regular polygon with m sides, which is circumscribed
to the unit circle, has perimeter Km = 2mtg(π/m), and area KJ2.

Any regular m-polygon with area A and perimeter L, is circum-
scribed to a circle of radius r< = L/Km; L2 = (ϋΓmr,)2 = 2KJKmr\\2) =
2i£m(Lrί/2) = 2KmA. Therefore, by the isoperimetric property of regular
polygons, any m-polygon with area A and perimeter L satisfies

(8) U^2KmA.

In particular, every m-polygon (whether convex or not), which is
circumscribed to a circle of radius rif satisfies A = LrJ2; therefore

(8') L ^ Kmr, .

Let p ^ m; a regular p-polygon is an irregular m-polygon, circum-
scribed to the same circle, thus Kpri = L Ξ> ί^r*, whence iίp ^ iίm; iίm

is a decreasing function of m (which can be verified directly); when
m—> co, iΓm\27r.

2.3. Let the membrane cover a plane domain G and be fixed only
along the m-polygonal outer boundary Γo; let us call G(ZDG) the po-
lygonal domain bounded by Γo; the line Γ{

0

8) parallel to Γo in G is
composed of p ^ m straight segments and possibly (if Γo is not convex)
some circular arcs of radius S. The length q(δ) of Γ{

0

8) is a piecewise
differentiate function of δ; q(δ) ̂  q(δ). If the domain G(δ), bounded by
Γ^δ), is convex, it is readily seen that, for ε > 0, q(δ) — q(δ + ε) is
equal to the perimeter of a convex p-polygon (of sides parallel to Γo)
with pt=km, circumscribed to a circle of radius ε; whence q(δ) — q(δ + ε)^
Kpε Ξ> Kmε. This remains true if G(δ) is non-convex: indeed, q(δ) — q(δ + ε)
is then larger than the perimeter of a non-convex p-polygon with
p <̂  m, circumscribed to a circle of radius ε. We thus have always

(9) -*L^Km.
do
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S δ

qdd of
0

the subdomain {Q | Q e G, δQΓQ < δh da/dd = q;

= Oq( ~d%) ^ 2q(
\ da / V

= q( ) ^ 2q( ) = 2 (
da \ da / V da ) dd V da

= 2 d a ( ~~

whence by integration from 0 to a: L2

ΓQ — q2 >̂ 2Kma;

(10) q2 ^ q* ^ L ô - 2ϋΓmα ,

with equality if G = G = regular m-polygon.—This evaluation (valid
for m-polygons) is sharper than q2 ^ q2 ^ L2

ΓQ — 4πα (always valid),
which is the basis of Payne-Weinberger's method (see [1]).

Using (3), we thus may write (instead of (6)):

(11)

λx < λί ^ λ ί + , where Xt+ = MinD(0)=0"
(m) (m) ' ' Γ A „ 71 v2da

Jα=0

Note that for polygons λx is always smaller than Xt: this limits

the sharpness obtainable by the method of interior parallels.

When m-^cx>, Km\2π; thus

(12) λ +

/ / λ 1

+ = λ
(m) (oo) p-w

We shall construct an annular membrane having exactly the
first eigenvalue Xt+:

(»)
Instead of α, we introduce a new independent variable r by

L\ - 2iίmα = ^ r 2 , i.e. a = ^ L - - ί # m r 2 then | ^ - - J5Γmr

Λ++-Min J-n^dr/ _ M i nr r ; iv ιm t , ( Λ o ) = o

v2ίΓwrdr
Jr=r1 Jr=rχ

with i20 = LΓJKm and r2 = i?0

2 - 2A/Km.
This is the annular membrane we wanted: fixed along its outer

circle of radius RΌ, free along its inner circle of radius r lβ—Consider
two homothetic regular m-polygons, the outer one of length LΓQ9 the
inner one such that the area comprised between them be A: the first
is circumscribed to the circle of radius Ro, the second to the circle
of radius rx.
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REMARK. The fact that Xt+ increases with m thus expresses a
(m)

property of Bessel functions.

2.4. More precise evaluations in terms of A, LΓQ and the interior
angles π — au π — a2, , π — am of Γo, when G is convex.

We consider a membrane G fixed only along its convex polygonal
outer boundary Γo. We have <xλ+ + am = 2π, 0 < αr< < TΓ.

Lei ws cαii ί 7 ^ , , αm) = 2 ΣS=i tg(aJ2) the perimeter of the
(convex) polygon C with interior angles π — alf , π — am (in this
order), circumscribed to the unit circle. The area of Cis F(alf ,αm)/2.
By (8'), F(al9 , am) ^ iΓm; with equality if aλ = = am = 2ττ/m.

Every interior parallel Γ{

o

δ) to Γo in G is a polygon with p ^ m
sides (parallel to those of Γo) and inner angles π — βlf , TΓ — βP9

where βx+ + βp = 2ττ and each /9̂  is equal either to an α< or to
the sum of several consecutive ai9 For a sufficiently small ε > 0,
q(δ) — q(δ + ε) is equal to the length of a (convex) p-polygon with
angles π — βlf , π — βp (in this order), circumscribed to a circle of
radius ε; whence q(δ).— q(δ + ε) = F(βl9 , /5P) ε;

since G is by hypothesis convex, 0 < at < TΓ, 0 < β3- < π, thus each
tg(ail2) > 0 and

2 '

therefore -F(/8i, , βp) ^ i^ί^i, , <̂ m) (which is also geometrically
clear) and always

whence

<10') g2 ^ ? 2 ^ L ô - 2F(alf

and the inequality
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î < λί ^ λί+ , where

(11')

Jα=O
v da

λ/+ <Ξ Xt+; equality only if ax = = am — 2πjm.
(oί>ι, ' ,am) (m)

Let us now introduce another independent variable r instead of
a: L2

ΓQ — 2F(alf , am)a = [ l* 7 ^, , α j ] 2 r2; we then obtain a
formula like (13) with F(au , am) instead of Km, now RQ =•
LΓJF(al9 , tfm) and r? = JB0

2 — 2A/F(au , α w ) . ϊ%e annular
membrane with fixed outer circle of radius Ro and free inner circle
of radius rλ has first eigenvalue λx

++ .
<«l. .«m>

Let us construct two homothetic m-polygons, circumscribed to
concentric circles, with sides parallel to those of Γo (and in the same
order), the outer polygon of length LΓQf theinner polygon such that the
area comprised between them be A; the outer circle has then radius
Ro, the inner circle radius rλ\ this is our auxiliary annulus.

2.5. Remark on the limits of the possibilities of the method of
interior parallels.—As follows from the above discussion, if G = G
is itself a convex polygon circumscribed to a circle, we have L2

ΓQ —
2F(au , am)A, whence n ^ 0 ; Ro = r inscr;

,CΓ (w) (°°) P-w

L \ 2 τr2 / 7 " \ 2 1 O

2 A J r2

n s c r MaW V A y r2

n s c r

Observe that here dq/dδ = - 1 ^ , , αm) and q2 = g2 = Z£o -

,α m )α, i.e. λί" = λ ί + is the first eigenvalue of the in-
(#l. .«m)

scribed circle; ίfeβ inequality λx < jllr2

mscr is trivial (monotony), 6u£

ί/̂ β method of interior parallels is (in this case of a circumscribed

polygon) unable to give any sharper bound.

It may be noted that Pόlya's bound—and therefore Payne-Wein-

berger's bound as well as λ ί + and λί"+ —become sharp for the

infinite strip considered as the limit of a long rectangle: let b be its

breadth, Xt+ ^ (πlb)2; but, if we consider the strip as the limit of a
Polya

long rhombus (i.e. circumscribed to a circle), λf+ ^ (2πjb)2 and
Polya

= io/̂ inscr ^ (2jo/by, which is trivial by monotony.
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3. Multiply connected membranes.

3.1. Let us consider e.g. a doubly connected membrane G, fixed
both along its outer boundary Γo and its inner boundary Γlm

(i) Given the area A of G and the lengths LΓQ and LΓχί we are
looking for a bound \ ^ ^t+(A; LΓQ, LΓl) such that, when Γx reduces
to a point, λί+(A; LΓo, 0) = λ£i(A, LΓQ) (exact bound of Payne-Weinber-
ger); indeed, such is the case for the true λ1#

This requirement is not fulfilled by Polya's -or Makai's- bounds
(even if Γx is very small, they consider trial functions depending only
on the distance to Γ — Γo U Γ19 which does not correspond, qualita-
tively, to the behavior of the true first eigenfunction of G); nor is
it fulfilled by Payne-Weinberger's suggestion to make G simply con-
nected by adding between Γo and Γ1 a rectilinear constraint (length
c), thus replacing LΓ by LΓ + 2c: indeed, when Γ1 reduces to a point,
this constraint would remain and the bound Xtit(A, LΓQ + LΓl + 2c)
would become λiίt(Λ, LΓQ + 2c) instead of λ£ίt(A, LΓQ). Any small
boundary component Λ has then a disproportionate effect on the
bound.—In particular, consider a fixed annular membrane with radii
1 and e —> 0; the true \ tends to j \ = 5.78; Xt+ (Payne-Weinberger)
tends to λ£i(τr, 2π + 2), which is larger than the first eigenvalue of
the unit circular sector of aperture 360°, i.e. larger than π2; Pόlya's
inequality gives (as for the circle) \ —> ̂  ((τr/2)(27r/7r))2 = π2.

(ii) We look for a bound which, for any fixed annular membrane,
should coincide with the exact value λlβ

3.2. From H. F. Weinberger's paper [7], which is printed im-
mediately after the present one, it follows that: Given a multiply
connected membrane G which is fixed along its outer boundary Γo

and its inner boundary components Γl9 Γ2, , Γp, and free along its
other inner boundaries yp+l9 yp+2, , yn (the /\ are assumed to have
continuous normals and the Ίό to be analytic), then there exists an
"effectless cutting" of the membrane G into p + 1 sub-membranes
Go, Gi, , Gp, where each G; has Γt as a fixed boundary component
and is otherwise free, such that λf° = λfλ = = λf* = λ?. In other
words: The domain G can be cut into Go, " ,GP by means of a
system of analytic arcs along which dujdn — 0, where ux is the first
eigenfunction of G; uλ is then also the first eigenfunction of each G*
(membrane fixed along Γif free along the cuts and the 7, ). We use
essentially this result in the following.

3.3. Let Ai be the area of the partial domain G*; AQ + At +
• + Ap = A; the lengths LΓQ, LΓl, , LΓ are known, but not the
individual AJ.—We know that \ ^ ^ΐeϊt(AQ, LΓ) and \ g \iίt(Aίf LΓi)
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for i = 1, 2, , p. Therefore:

\ S min {λ++ (Ao, LΓ); λ£+(Ax, LΓl); λJn

+

t(Ap, LΓp)}

and hence

Since each of the λ£ίt, λi!ώ is a monotonous decreasing^ function
of the corresponding Aif the max min is attained when Ao, •••, Ap

are chosen such that all those Xt+ are equal:

lf LΓl) = . . . = λJ+(Ap, LP p)

those are p transcendental equations, which together with

<15) Ao + λx + + Ap = A

determine AQ, •••, Ap; these values are in general NOT equal to the
true Ao, , Ap corresponding to Weinberger's "effectless cutting";
but the common value

, LFi) = \r(A; LΓo, LΓl, , LΓp)

is the upper bound we were looking for.

Indeed: (i) If an inner boundary component Γp reduces to a
point, i.e. LΓp —• 0, then the corresponding Ap —> 0 (and also Ap —> 0);
there remain p—1 transcendental relations in (14) between A,, "9Ap-lf

which together with (15) determine these p quantities; therefore
λ++(A; LΓQ, , LΓj)_1, 0) = λί+(A; LΓo, , LΓp_) as we wanted.

In the special case p = 1, we have λx

++(A; LΓo, 0) = λ£ίt(-A, LΓo).
(ii) If p = 1 and L^o — L^ = 4τrA, there exists a circular ring

with area A, outer perimeter LΓQ and inner perimeter LΓχ; its first
eigenvalue is precisely equal to λi++(A; LΓQ, LΓl). (Here Ao = Ao and
Ax = Aί9 Go and (?i are separated by the "maximum line" of the annular
membrane's first eigenfunction.)—Whence the isoperimetric inequality:

Of all (doubly or multiply connected) membranes which are fixed
along their outer boundary Γo and one inner boundary component
Γ1 (and otherwise free), with given A, LΓQ and LΓχ satisfying L2

ΓQ — L\
= 47rA, the annular membrane has maximal λlβ

EXAMPLE. A doubly connected fixed membrane, bounded by two
•circles of given radii, has maximum \ when the circles are concentric.
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REMARKS, (a) If Γo is a polygon, λ^Jt in (14) can be advantage-
ously replaced by Xt+ or by Xt+ .

(b) If the considered membrane has a free outer boundary y09

the above discussion remains valid, the first term in (14) disappears
from the formula, as disappear AQ, Ao and LΓQ.

My best thanks are due to H. F. Weinberger for his proof [7]
of the existence of an "effectless cutting", which allowed the very
simple proof given in this § 3; without both Weinberger's kindness
and skill, a long and delicate construction and discussion of a continu-
ous trial function in the whole domain G (with level lines consisting
of arcs parallel to different Γ^ would have been necessary to get the
same (14), (15) and (16) finally.
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