THE METHOD OF INTERIOR PARALLELS APPLIED TO POLYGONAL OR MULTIPLY CONNECTED MEMBRANES

Joseph Hersch

1. Introduction.

1.1. The scope of this paper is (a) to discuss the possibilities of the method of interior parallels (Makai, Pólya, Payne-Weinberger) by considering the case of polygonal membranes (§2); (b) to extend it to multiply connected domains in a more satisfactory manner than has hitherto been proposed (§3); to this end we use a result of H. F. Weinberger [7] on the existence of an "effectless cut", published immediately after the present paper.
1.2. We consider the problem of a vibrating membrane covering a plane domain G and fixed along the boundary Γ. We are interested in the first eigenvalue λ_{1} of the problem $\Delta u+\lambda u=0$ in $G, u=0$ along Γ; by Rayleigh's principle,

$$
\lambda_{1} \leqq R[v] \equiv \frac{D(v)}{\iint_{\theta} v^{2} d A} \quad \text { if } v=0 \text { along } \Gamma
$$

$d A=d x d y$ is the element of area; $D(v)=\iint_{\theta} g r a d^{2} v d A$, Dirichlet's integral; $R[v]$, Rayleigh's quotient.

The method of interior parallels consists in using trial functions v whose level lines are parallel to Γ. It was first introduced by E . Makai [2, 3]: using the trial function $v(Q)=\delta_{Q \Gamma}(Q \in G, \delta=$ Euclidean distance), he obtained, for every simply or doubly connected membrane G of area A, fixed along its boundary Γ of total length L_{r}, the bound

$$
\begin{equation*}
\lambda_{1} \leqq 3 \frac{L_{\Gamma}^{2}}{A^{2}} \tag{1}
\end{equation*}
$$

His proof makes use of B. Sz.-Nagy's [6] inequality

$$
\begin{equation*}
q(\delta) \leqq L_{\Gamma} \tag{2}
\end{equation*}
$$

bounding the total length $q(\delta)$ of the "interior parallel at distance δ " in a simply or doubly connected domain; as Sz.-Nagy proved, this length exists for almost all values of δ.
1.3. Refining Makai's method, G. Pólya [5] admits a priori for v any regular function $v\left(\delta_{Q r}\right)$ satisfying $v(0)=0$.

Let us call $a=\alpha(\delta)$ the area of the subdomain $\left\{Q \mid Q \in G, \delta_{Q \Gamma}<\delta\right\}$ of $G ; q(\delta)=d a / d \delta$. By Rayleigh's principle,

$$
\begin{equation*}
\lambda_{1} \leqq R[v]=\frac{\int_{a=0}^{A}\left(\frac{d v}{d \delta}\right)^{2} d a}{\int_{a=0}^{A} v^{2} d a}=\frac{\int_{a=0}^{A} q^{2}\left(\frac{d v}{d a}\right)^{2} d a}{\int_{a=0}^{A} v^{2} d a} \text { if } v(0)=0 \tag{3}
\end{equation*}
$$

Let $\lambda_{1}^{+}=\operatorname{Min}_{v(\delta)} R[v] ; \lambda_{1} \leqq \lambda_{1}^{+}$; if G is simply or doubly connected inequality (2) gives

$$
\begin{equation*}
\lambda_{1} \leqq \lambda_{1}^{+} \leqq \lambda_{\substack{1 \\ \text { Polya }}}^{++} \equiv L_{\Gamma}^{2} \operatorname{Min}_{v(0)=0} \frac{\int_{a=0}^{A}\left(\frac{d v}{d a}\right)^{2} d a}{\int_{a=0}^{A} v^{2} d a}=\left(\frac{\pi}{2} \cdot \frac{L_{\Gamma}}{A}\right)^{2} \tag{4}
\end{equation*}
$$

this is Pólya's inequality (sharper than (1)).
1.4. For a simply connected domain G, L. E. Payne and H. F. Weinberger [4] made use of the sharp inequality of B. Sz.-Nagy [6]:

$$
\begin{equation*}
q(\delta) \leqq L_{\Gamma}-2 \pi \delta ; \tag{5}
\end{equation*}
$$

it follows by integration that $q^{2} \leqq L_{\Gamma}^{2}-4 \pi a$ (see also [1]), whence by (3):

$$
\lambda_{1} \leqq \lambda_{1}^{+} \leqq \lambda_{P-W}^{++}
$$

$$
\equiv \lambda_{\text {lext }}^{++}\left(A, L_{\Gamma}\right) \equiv \operatorname{Min}_{v(0)=0} \frac{\int_{a=0}^{4}\left(L_{\Gamma}^{2}-4 \pi a\right)\left(\frac{d v}{d a}\right)^{2} d a}{\int_{a=0}^{A} v^{2} d a}\left(\leqq \begin{array}{c}
\lambda_{\text {Polya }}^{++} \tag{6}\\
\text {P' } \\
\hline
\end{array}\right)
$$

Payne and Weinberger remarked that all inequalities (1), (2), (3), (4), (5), (6) remain valid if G is allowed to have also interior boundary curves γ along which the membrane is free ("holes"): L_{Γ} is then the total length of the "fixed" boundaries Γ, A the area of G (without the holes); $q(\delta)$ is the length of that part of the "interior parallel" to Γ (not γ !) which lies inside G.

Inequality (4) is valid if Γ is formed by the outer boundary Γ_{0} and at most one inner boundary curve Γ_{1}; along the other interior boundary curves $\gamma_{2}, \gamma_{3}, \cdots, \gamma_{n}$ the membrane is free; $L_{\Gamma}=L_{\Gamma_{0}}+L_{\Gamma_{1}}$. -(5) and (6) are valid only if $\Gamma=\Gamma_{0}$ and all inner boundaries are free.

If G is a circular ring fixed along its outer boundary Γ_{0} and free along its inner boundary γ_{1}, its first eigenfunction $u_{1}=u_{1}(r)$, whence
$\lambda_{1}=\lambda_{1}^{+}$, and $q^{2}=L_{\Gamma_{0}}^{2}-4 \pi \alpha$, whence $\lambda_{1}^{+}=\lambda_{P-W}^{++}$. \quad Therefore $\underset{P-W}{\lambda_{1}^{++}} \equiv$ $\lambda_{\text {1ext }}^{++}\left(A, L_{\Gamma_{0}}\right)$ is equal to the first eigenvalue of an annular membrane fixed along Γ_{0}, free along γ_{1}.
$\lambda_{\text {1ext }}^{++}\left(A, L_{r_{0}}\right)$ is the root of an equation involving Bessel functions; its solution is indicated graphically in Jahnke-Emde's Tables of functions, pp. 207-8.

The inequality $\lambda_{1} \leqq{ }_{P-W}^{\lambda_{1}^{++}}$thus expresses an "isoperimetric" extremal property of such annular membranes.
1.5. In another paper [1] one can find a "unified" and more detailed discussion of Makai's, Pólya's and Payne-Weinberger's methods; and furthermore the proof of an analogous "isoperimetric" theorem, which we shall essentially use in § 3 :

Of all multiply connected membranes of given area A, fixed along one inner boundary Jordan curve Γ_{1} of given length $L_{\Gamma_{1}}$ and free along all others (γ_{0} exterior; $\gamma_{2}, \gamma_{3}, \cdots, \gamma_{n}$ interior), the annulus has highest λ_{1}.

Let $\delta=\delta_{Q r_{1}}$ (Euclidean distance), and $q=q(\delta)$ as before; the proof of our theorem becomes easy once we introduce the new parameter

$$
\begin{equation*}
t(\delta)=\int_{0}^{\delta} \frac{d \delta}{q} \tag{7}
\end{equation*}
$$

instead of $a(\delta)=\int_{0}^{\delta} q d \delta$ (see 1.3 and 1.4). We then have, instead of (3),

$$
\lambda_{1} \leqq R[v]=\frac{\int_{t=0}^{T}\left(\frac{d v}{d t}\right)^{2} d t}{\int_{t=0}^{T} q^{2} v^{2} d t} ; \quad \lambda_{1} \leqq \lambda_{1}^{+} \equiv \operatorname{Min}_{v} R[v]
$$

(Often $T=\infty$.) This is the Rayleigh quotient of a vibrating string, fixed at its extremity $t=0$ and of total mass $\int_{t=0}^{T} q^{2} d t=A$.
B. Sz.-Nagy proved that here $q(\delta) \leqq L_{\Gamma_{1}}+2 \pi \delta$; whence by integration:

$$
q(t) \leqq L_{\Gamma_{1}} e^{2 \pi t} \quad \text { for } \quad t \leqq t_{1}=\frac{1}{4 \pi} \ln \left(1+\frac{4 \pi A}{L_{\Gamma_{1}}^{2}}\right) \quad \text { (see [1]) ; }
$$

the proof is completed by a discussion of the effect of displacing the masses along the vibrating string.-We thus have

$$
\lambda_{1} \leqq \lambda_{1}^{+} \leqq \lambda_{1 \text { int }}^{++}\left(A, L_{\Gamma_{1}}\right),
$$

where $\lambda_{\text {lint }}^{++}\left(A, L_{\Gamma_{1}}\right)$ is the first eigenvalue of an annular membrane of
area A, fixed along its interior boundary Γ_{1} of length $L_{\Gamma_{1}}$, free along γ_{0}. To determine $\lambda_{\text {lint }}^{++}$, use again Jahnke-Emde's Tables of functions, pp. 207-8.

2. Membranes with fixed polygonal outer boundary.

2.1. For (simply or multiply connected) membranes, fixed along their polygonal outer boundary Γ_{0} but free along the (possible) inner boundaries $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}$, we shall sharpen Payne-Weinberger's upper bound (§ 1.4).-Also, the new bounds obtained will give us a glimpse of the limits of the method's possibilities.
2.2. The regular polygon with m sides, which is circumscribed to the unit circle, has perimeter $K_{m}=2 m t g(\pi / m)$, and area $K_{m} / 2$.

Any regular m-polygon with area A and perimeter L, is circumscribed to a circle of radius $r_{i}=L / K_{m} ; L^{2}=\left(K_{m} r_{i}\right)^{2}=2 K_{m}\left(K_{m} r_{i}^{2} / 2\right)=$ $2 K_{m}\left(L r_{i} / 2\right)=2 K_{m} A$. Therefore, by the isoperimetric property of regular polygons, any m-polygon with area A and perimeter L satisfies

$$
\begin{equation*}
L^{2} \geqq 2 K_{m} A \tag{8}
\end{equation*}
$$

In particular, every m-polygon (whether convex or not), which is circumscribed to a circle of radius r_{i}, satisfies $A=L r_{i} / 2$; therefore

$$
L \geqq K_{m} r_{i}
$$

Let $p \leqq m$; a regular p-polygon is an irregular m-polygon, circumscribed to the same circle, thus $K_{p} r_{i}=L \geqq K_{m} r_{i}$, whence $K_{p} \geqq K_{m} ; K_{m}$ is a decreasing function of m (which can be verified directly); when $m \rightarrow \infty, K_{m} \searrow 2 \pi$.
2.3. Let the membrane cover a plane domain G and be fixed only along the m-polygonal outer boundary Γ_{0}; let us call $\widetilde{G}(\supset G)$ the polygonal domain bounded by Γ_{0}; the line $\widetilde{\Gamma}_{0}^{(\delta)}$ parallel to Γ_{0} in \widetilde{G} is composed of $p \leqq m$ straight segments and possibly (if Γ_{0} is not convex) some circular arcs of radius δ. The length $\widetilde{q}(\delta)$ of $\widetilde{\Gamma}_{0}^{(\delta)}$ is a piecewise differentiable function of $\delta ; \widetilde{q}(\delta) \geqq q(\delta)$. If the domain $\widetilde{G}^{(\delta)}$, bounded by $\widetilde{\Gamma}_{0}^{(\delta)}$, is convex, it is readily seen that, for $\varepsilon>0, \widetilde{q}(\delta)-\widetilde{q}(\delta+\varepsilon)$ is equal to the perimeter of a convex p-polygon (of sides parallel to Γ_{0}) with $p \leqq m$, circumscribed to a circle of radius ε; whence $\widetilde{q}(\delta)-\widetilde{q}(\delta+\varepsilon) \geqq$ $K_{p} \varepsilon \geqq K_{m} \varepsilon$. This remains true if $\widetilde{G}^{(\delta)}$ is non-convex: indeed, $\widetilde{q}(\delta)-\widetilde{q}(\delta+\varepsilon)$ is then larger than the perimeter of a non-convex p-polygon with $p \leqq m$, circumscribed to a circle of radius ε. We thus have always

$$
\begin{equation*}
-\frac{d \widetilde{q}}{d \delta} \geqq K_{m} \tag{9}
\end{equation*}
$$

As in 1.3 and 1.4, we use as parameter the area $a(\delta)=\int_{0}^{\delta} q d \delta$ of the subdomain $\left\{Q \mid Q \in G, \delta_{Q r_{0}}<\delta\right\} ; d a / d \delta=q$;

$$
\begin{aligned}
\frac{-d\left(\widetilde{q}^{2}\right)}{d a}=2 \widetilde{q}\left(\frac{-d \widetilde{q}}{d a}\right) \geqq 2 q\left(\frac{-d \widetilde{q}}{d a}\right) & =2 \frac{d a}{d \delta}\left(\frac{-d \widetilde{q}}{d a}\right) \\
& =2\left(\frac{-d \widetilde{q}}{d \delta}\right) \geqq 2 K_{m} ;
\end{aligned}
$$

whence by integration from 0 to a : $L_{\Gamma_{0}}^{2}-\tilde{q}^{2} \geqq 2 K_{m} a$;

$$
\begin{equation*}
q^{2} \leqq \widetilde{q}^{2} \leqq L_{\Gamma_{0}}^{2}-2 K_{m} a, \tag{10}
\end{equation*}
$$

with equality if $G=\widetilde{G}=$ regular m-polygon.-This evaluation (valid for m-polygons) is sharper than $q^{2} \leqq \widetilde{q}^{2} \leqq L_{\Gamma_{0}}^{2}-4 \pi a$ (always valid), which is the basis of Payne-Weinberger's method (see [1]).

Using (3), we thus may write (instead of (6)):
$\lambda_{1}<\lambda_{1}^{+} \leqq \underset{(m)}{\lambda_{1}^{++}}, \quad$ where $\underset{(m)}{\lambda_{1}^{++}}=\operatorname{Min}_{v(0)=0} \frac{\int_{a=0}^{4}\left(L_{\Gamma_{0}}^{2}-2 K_{m} a\right)\left(\frac{d v}{d a}\right)^{2} d a}{\int_{a=0}^{4} v^{2} d a}$.
Note that for polygons λ_{1} is always smaller than λ_{1}^{+}: this limits the sharpness obtainable by the method of interior parallels. When $m \rightarrow \infty, K_{m} \searrow 2 \pi$; thus

$$
\begin{equation*}
\underset{(m)}{\lambda_{(m)}^{++}} \nearrow_{(\infty)}^{\lambda_{1}^{++}}=\underset{P-W}{\lambda_{1}^{++}} . \tag{12}
\end{equation*}
$$

We shall construct an annular membrane having exactly the first eigenvalue $\underset{(m)}{\lambda_{1}^{++}}$:

Instead of a, we introduce a new independent variable r by

$$
L_{\Gamma_{0}}^{2}-2 K_{m} a=K_{m}^{2} r^{2}, \text { i.e. } a=\frac{L_{\Gamma_{0}}^{2}}{2 K_{m}}-\frac{1}{2} K_{m} r^{2} ; \text { then } \frac{d a}{d r}=-K_{m} r ;
$$

$$
\begin{equation*}
\underset{(m)}{\lambda_{(m)}^{++}}=\operatorname{Min}_{v\left(R_{0}\right)=0} \frac{\int_{r=r_{1}}^{R_{0}}\left(\frac{d v}{d r}\right)^{2} K_{m} r d r}{\int_{r=r_{1}}^{R_{0}} v^{2} K_{m} r d r}=\operatorname{Min}_{v\left(R_{0}\right)=0} \frac{\int_{r=r_{1}}^{R_{0}}\left(\frac{d v}{d r}\right)^{2} 2 \pi r d r}{\int_{r=r_{1}}^{R_{0}} v^{2} 2 \pi r d r} \tag{13}
\end{equation*}
$$

with $R_{0}=L_{\Gamma_{0}} / K_{m}$ and $r_{1}^{2}=R_{0}^{2}-2 A / K_{m}$.
This is the annular membrane we wanted: fixed along its outer circle of radius R_{0}, free along its inner circle of radius r_{1}.-Consider two homothetic regular m-polygons, the outer one of length $L_{r_{0}}$, the inner one such that the area comprised between them be A : the first is circumscribed to the circle of radius R_{0}, the second to the circle of radius r_{1}.

Remark. The fact that $\underset{(m)}{\lambda_{1}^{++}}$increases with m thus expresses a property of Bessel functions.
2.4. More precise evaluations in terms of $A, L_{\Gamma_{0}}$ and the interior angles $\pi-\alpha_{1}, \pi-\alpha_{2}, \cdots, \pi-\alpha_{m}$ of Γ_{0}, when \widetilde{G} is convex.

We consider a membrane G fixed only along its convex polygonal outer boundary Γ_{0}. We have $\alpha_{1}+\cdots+\alpha_{m}=2 \pi, 0<\alpha_{i}<\pi$.

Let us call $F\left(\alpha_{1}, \cdots, \alpha_{m}\right)=2 \sum_{i=1}^{m} \operatorname{tg}\left(\alpha_{i} / 2\right)$ the perimeter of the (convex) polygon C with interior angles $\pi-\alpha_{1}, \cdots, \pi-\alpha_{m}$ (in this order), circumscribed to the unit circle. The area of C is $F\left(\alpha_{1}, \cdots, \alpha_{m}\right) / 2$. By (8^{\prime}), $F\left(\alpha_{1}, \cdots, \alpha_{m}\right) \geqq K_{m}$; with equality if $\alpha_{1}=\cdots=\alpha_{m}=2 \pi / m$.

Every interior parallel $\widetilde{\Gamma}_{0}^{(\delta)}$ to Γ_{0} in \widetilde{G} is a polygon with $p \leqq m$ sides (parallel to those of Γ_{0}) and inner angles $\pi-\beta_{1}, \cdots, \pi-\beta_{p}$, where $\beta_{1}+\cdots+\beta_{p}=2 \pi$ and each β_{j} is equal either to an α_{i} or to the sum of several consecutive α_{i}. For a sufficiently small $\varepsilon>0$, $\widetilde{q}(\delta)-\widetilde{q}(\delta+\varepsilon)$ is equal to the length of a (convex) p-polygon with angles $\pi-\beta_{1}, \cdots, \pi-\beta_{p}$ (in this order), circumscribed to a circle of radius ε; whence $\widetilde{q}(\delta)-\widetilde{q}(\delta+\varepsilon)=F\left(\beta_{1}, \cdots, \beta_{p}\right) \cdot \varepsilon$;

$$
\frac{-d \widetilde{q}}{d \delta}=F\left(\beta_{1}, \cdots, \beta_{p}\right)=2 \sum_{j=1}^{p} \operatorname{tg} \frac{\beta_{j}}{2}
$$

since \widetilde{G} is by hypothesis convex, $0<\alpha_{i}<\pi, 0<\beta_{j}<\pi$, thus each $t g\left(\alpha_{i} / 2\right)>0$ and

$$
\operatorname{tg} \frac{\alpha_{i}+\alpha_{i+1}}{2}=\frac{\operatorname{tg} \frac{\alpha_{i}}{2}+\operatorname{tg} \frac{\alpha_{i+1}}{2}}{1-\operatorname{tg} \frac{\alpha_{i}}{2} \operatorname{tg} \frac{\alpha_{i+1}}{2}}>\operatorname{tg} \frac{\alpha_{i}}{2}+\operatorname{tg} \frac{\alpha_{i+1}}{2}
$$

therefore $F\left(\beta_{1}, \cdots, \beta_{p}\right) \geqq F\left(\alpha_{1}, \cdots, \alpha_{m}\right)$ (which is also geometrically clear) and always

$$
-\frac{d \widetilde{q}}{d \delta} \geqq F\left(\alpha_{1}, \cdots, \alpha_{m}\right) ;
$$

whence

$$
q^{2} \leqq \widetilde{q}^{2} \leqq L_{\Gamma_{0}}^{2}-2 F\left(\alpha_{1}, \cdots, \alpha_{m}\right) a
$$

and the inequality
$\lambda_{1}<\lambda_{1}^{+} \leqq \lambda_{\left(\alpha_{1}, \cdots, \alpha_{m}\right)}^{++} \quad$ where

$$
\begin{equation*}
\underset{\substack{\left.\lambda_{1}, \cdots, \alpha_{m}\right) \\ \lambda_{1}^{++}}}{\lambda_{1}^{+}} \operatorname{Min}_{v(0)=0} \frac{\int_{a=0}^{A}\left[L_{\Gamma_{0}}^{2}-2 F\left(\alpha_{1}, \cdots, \alpha_{m}\right) a\right]\left(\frac{d v}{d a}\right)^{2} d a}{\int_{a=0}^{A} v^{2} d a} . \tag{11'}
\end{equation*}
$$

$\underset{\left(\alpha_{1}, \cdots, \alpha_{m}\right)}{\lambda_{1}^{++}} \leqq \lambda_{(m)}^{++}$; equality only if $\alpha_{1}=\cdots=\alpha_{m}=2 \pi / m$.
Let us now introduce another independent variable r instead of $a: \quad L_{\Gamma_{0}}^{2}-2 F\left(\alpha_{1}, \cdots, \alpha_{m}\right) a=\left[F\left(\alpha_{1}, \cdots, \alpha_{m}\right)\right]^{2} \cdot r^{2}$; we then obtain a formula like (13) with $F\left(\alpha_{1}, \cdots, \alpha_{m}\right)$ instead of K_{m}, now $R_{0}=$ $L_{\Gamma_{0}} / F\left(\alpha_{1}, \cdots, \alpha_{m}\right)$ and $r_{1}^{2}=R_{0}^{2}-2 A / F\left(\alpha_{1}, \cdots, \alpha_{m}\right)$. The annular membrane with fixed outer circle of radius R_{0} and free inner circle of radius r_{1} has first eigenvalue $\underset{\left(\alpha_{1}, \cdots, \alpha_{m}\right)}{\lambda_{1}^{++}}$.

Let us construct two homothetic m-polygons, circumscribed to concentric circles, with sides parallel to those of Γ_{0} (and in the same order), the outer polygon of length $L_{\Gamma_{0}}$, the inner polygon such that the area comprised between them be A; the outer circle has then radius R_{0}, the inner circle radius r_{1} : this is our auxiliary annulus.
2.5. Remark on the limits of the possibilities of the method of interior parallels.-As follows from the above discussion, if $G=\widetilde{G}$ is itself a convex polygon circumscribed to a circle, we have $L_{\Gamma_{0}}^{2}=$ $2 F\left(\alpha_{1}, \cdots, \alpha_{m}\right) A$, whence $r_{1}=0 ; R_{0}=r_{\text {inscr }} ;$

$$
\begin{aligned}
\lambda_{1}<\underset{\left(\alpha_{1}, \cdots, \alpha_{m}\right)}{\lambda_{1}^{++}} & =\frac{j_{0}^{2}}{r_{\text {inser }}^{2}} \leqq \underset{(m)}{\lambda_{1}^{++}}<\underset{(\infty)}{\lambda_{1}^{++}}=\underset{P-W}{\lambda_{1}^{++}}<\underset{\text { Pólya }}{\lambda_{1}^{++}} \\
& =\left(\frac{\pi}{2} \frac{L_{\Gamma_{0}}}{A}\right)^{2}=\frac{\pi^{2}}{r_{\text {inscr }}^{2}}<\underset{\text { Makai }}{\lambda_{1}^{++}}=3\left(\frac{L_{\Gamma_{0}}}{A}\right)^{2}=\frac{12}{r_{\text {inscr }}^{2}} .
\end{aligned}
$$

Observe that here $d \widetilde{q} / d \delta=-F\left(\alpha_{1}, \cdots, \alpha_{m}\right)$ and $q^{2}=\widetilde{q}^{2}=L_{r_{0}}^{2}-$ $2 F\left(\alpha_{1}, \cdots, \alpha_{m}\right)$ a, i.e. $\lambda_{1}^{+}=\underset{\left(\alpha_{1}, \cdots, \alpha_{m}\right)}{\lambda^{++}}$is the first eigenvalue of the inscribed circle; the inequality $\lambda_{1}<j_{0}^{2} / r_{\text {inscr }}^{2}$ is trivial (monotony), but the method of interior parallels is (in this case of a circumscribed polygon) unable to give any sharper bound.

It may be noted that Pólya's bound-and therefore Payne-Weinberger's bound as well as $\underset{(m)}{\lambda_{1}^{++}}$and $\underset{\left(\alpha_{1}, \cdots, a_{m}\right)}{\lambda^{++}}$-become sharp for the infinite strip considered as the limit of a long rectangle: let b be its breadth, $\underset{\text { Polya }}{\lambda_{1}^{++}} \approx(\pi / b)^{2}$; but, if we consider the strip as the limit of a
 $\underset{(\varepsilon, \pi-\varepsilon, \varepsilon, \pi-\varepsilon)}{\lambda_{1}^{++}}=j_{0}^{2} / r_{\text {inser }}^{2} \approx\left(2 j_{0} / b\right)^{2}$, which is trivial by monotony.

3. Multiply connected membranes.

3.1. Let us consider e.g. a doubly connected membrane G, fixed both along its outer boundary Γ_{0} and its inner boundary Γ_{1}.
(i) Given the area A of G and the lengths $L_{\Gamma_{0}}$ and $L_{\Gamma_{1}}$, we are looking for a bound $\lambda_{1} \leqq \lambda_{1}^{++}\left(A ; L_{\Gamma_{0}}, L_{\Gamma_{1}}\right)$ such that, when Γ_{1} reduces to a point, $\lambda_{1}^{++}\left(A ; L_{\Gamma_{0}}, 0\right)=\lambda_{\text {leett }}^{++}\left(A, L_{\Gamma_{0}}\right)$ (exact bound of Payne-Weinberger); indeed, such is the case for the true λ_{1}.

This requirement is not fulfilled by Pólya's -or Makai's- bounds (even if Γ_{1} is very small, they consider trial functions depending only on the distance to $\Gamma=\Gamma_{0} \cup \Gamma_{1}$, which does not correspond, qualitatively, to the behavior of the true first eigenfunction of G); nor is it fulfilled by Payne-Weinberger's suggestion to make G simply connected by adding between Γ_{0} and Γ_{1} a rectilinear constraint (length c), thus replacing L_{Γ} by $L_{\Gamma}+2 c$: indeed, when Γ_{1} reduces to a point, this constraint would remain and the bound $\lambda_{\text {1ext }}^{++}\left(A, L_{\Gamma_{0}}+L_{\Gamma_{1}}+2 c\right)$ would become $\lambda_{\text {leet }}^{++}\left(A, L_{\Gamma_{0}}+2 c\right)$ instead of $\lambda_{\text {lest }}^{++}\left(A, L_{\Gamma_{0}}\right)$. Any small boundary component Γ_{1} has then a disproportionate effect on the bound.-In particular, consider a fixed annular membrane with radii 1 and $\varepsilon \rightarrow 0$; the true λ_{1} tends to $j_{0}^{2} \cong 5.78 ; \lambda_{1}^{++}$(Payne-Weinberger) tends to $\lambda_{\text {lext }}^{++}(\pi, 2 \pi+2)$, which is larger than the first eigenvalue of the unit circular sector of aperture 360°, i.e. larger than π^{2}; Pólya's inequality gives (as for the circle) $\lambda_{1} \rightarrow \leqq((\pi / 2)(2 \pi / \pi))^{2}=\pi^{2}$.
(ii) We look for a bound which, for any fixed annular membrane, should coincide with the exact value λ_{1}.
3.2. From H. F. Weinberger's paper [7], which is printed immediately after the present one, it follows that: Given a multiply connected membrane G which is fixed along its outer boundary Γ_{0} and its inner boundary components $\Gamma_{1}, \Gamma_{2}, \cdots, \Gamma_{p}$, and free along its other inner boundaries $\gamma_{p+1}, \gamma_{p+2}, \cdots, \gamma_{n}$ (the Γ_{i} are assumed to have continuous normals and the γ_{j} to be analytic), then there exists an "effectless cutting" of the membrane G into $p+1$ sub-membranes $G_{0}, G_{1}, \cdots, G_{p}$, where each G_{i} has Γ_{i} as a fixed boundary component and is otherwise free, such that $\lambda_{1}^{\sigma_{0}}=\lambda_{1}^{G_{1}}=\cdots=\lambda_{1}^{G_{p}}=\lambda_{1}^{G}$. In other words: The domain G can be cut into G_{0}, \cdots, G_{p} by means of a system of analytic arcs along which $\partial u_{1} / \partial n=0$, where u_{1} is the first eigenfunction of G; u_{1} is then also the first eigenfunction of each G_{i} (membrane fixed along l_{i}^{\prime}, free along the cuts and the γ_{j}). We use essentially this result in the following.
3.3. Let A_{i} be the area of the partial domain $G_{i} ; A_{0}+A_{1}+$ $\cdots+A_{p}=A$; the lengths $L_{\Gamma_{0}}, L_{\Gamma_{1}}, \cdots, L_{\Gamma_{p}}$ are known, but not the individual A_{i} ! -We know that $\lambda_{1} \leqq \lambda_{\text {lext }}^{++}\left(A_{0}, L_{\Gamma_{0}}\right)$ and $\lambda_{1} \leqq \lambda_{\text {lint }}^{++}\left(A_{i}, L_{\Gamma_{i}}\right)$
for $i=1,2, \cdots, p$. Therefore:

$$
\lambda_{1} \leqq \min \left\{\lambda_{\text {lext }}^{++}\left(A_{0}, L_{\Gamma_{0}}\right) ; \lambda_{\text {lint }}^{++}\left(A_{1}, L_{r_{1}}\right) ; \cdots ; \lambda_{\text {1int }}^{++}\left(A_{p}, L_{r_{p}}\right)\right\}
$$

and hence

$$
\lambda_{1} \leqq \max \left\{\begin{array}{c}
\text { choice of } \hat{A}_{0} \geq 0, \hat{A}_{p} \geq 0 \\
\text { satisfying } \\
\hat{A}_{0}+\cdots+\hat{A}_{p}=A
\end{array}\right\} \min \left\{\lambda_{\text {1ext }}^{++}\left(\hat{A}_{0}, L_{\Gamma_{0}}\right) ; \lambda_{\text {int }}^{++}\left(\hat{A}_{1}, L_{\Gamma_{1}}\right) ; \cdots\right\}
$$

Since each of the $\lambda_{\text {lext }}^{++}, \lambda_{\text {int }}^{++}$is a monotonous decreasing function of the corresponding \hat{A}_{i}, the $\max \min$ is attained when $\hat{A}_{0}, \cdots, \hat{A}_{p}$ are chosen such that all those λ_{1}^{++}are equal:

$$
\begin{equation*}
\lambda_{\text {lext }}^{++}\left(\hat{A}_{0}, L_{r_{0}}\right)=\lambda_{\operatorname{lint}}^{++}\left(\hat{A_{1}}, L_{r_{1}}\right)=\cdots=\lambda_{\operatorname{lint}}^{++}\left(\hat{A}_{p}, L_{r_{p}}\right) ; \tag{14}
\end{equation*}
$$

those are p transcendental equations, which together with

$$
\begin{equation*}
\hat{A}_{0}+\hat{A}_{1}+\cdots+\hat{A}_{p}=A \tag{15}
\end{equation*}
$$

determine $\hat{A}_{0}, \cdots, \hat{A}_{p}$; these values are in general NOT equal to the true A_{0}, \cdots, A_{p} corresponding to Weinberger's "effectless cutting"; but the common value

$$
\begin{equation*}
\lambda_{1}^{++}\left(\hat{A}_{i}, L_{r_{i}}\right)=\lambda_{1}^{++}\left(A ; L_{\Gamma_{0}}, L_{r_{1}}, \cdots, L_{r_{p}}\right) \tag{16}
\end{equation*}
$$

is the upper bound we were looking for.
Indeed: (i) If an inner boundary component Γ_{p} reduces to a point, i.e. $L_{\Gamma_{p}} \rightarrow 0$, then the corresponding $\hat{A}_{p} \rightarrow 0$ (and also $A_{p} \rightarrow 0$); there remain $p-1$ transcendental relations in (14) between $\widehat{A_{0}}, \cdots, \hat{A}_{p-1}$, which together with (15) determine these p quantities; therefore $\lambda_{1}^{++}\left(A ; L_{\Gamma_{0}}, \cdots, L_{r_{p-1}}, 0\right)=\lambda_{1}^{++}\left(A ; L_{\Gamma_{0}}, \cdots, L_{r_{p-1}}\right)$ as we wanted.

In the special case $p=1$, we have $\lambda_{1}^{++}\left(A ; L_{\Gamma_{0}}, 0\right)=\lambda_{\text {lext }}^{++}\left(A, L_{\Gamma_{0}}\right)$.
(ii) If $p=1$ and $L_{\Gamma_{0}}^{2}-L_{T_{1}}^{2}=4 \pi A$, there exists a circular ring with area A, outer perimeter $L_{\Gamma_{0}}$ and inner perimeter $L_{\Gamma_{1}}$; its first eigenvalue is precisely equal to $\lambda_{1}^{++}\left(A ; L_{\Gamma_{0}}, L_{\Gamma_{1}}\right)$. (Here $\hat{A}_{0}=A_{0}$ and $\hat{A}_{1}=A_{1}, G_{0}$ and G_{1} are separated by the "maximum line" of the annular membrane's first eigenfunction.)-Whence the isoperimetric inequality:

Of all (doubly or multiply connected) membranes which are fixed along their outer boundary Γ_{0} and one inner boundary component Γ_{1} (and otherwise free), with given $A, L_{\Gamma_{0}}$ and $L_{\Gamma_{1}}$ satisfying $L_{\Gamma_{0}}^{2}-L_{\Gamma_{1}}^{2}$ $=4 \pi A$, the annular membrane has maximal λ_{1}.

Example. A doubly connected fixed membrane, bounded by two circles of given radii, has maximum λ_{1} when the circles are concentric.

Remarks. (a) If Γ_{0} is a polygon, $\lambda_{\text {iext }}^{++}$in (14) can be advantageously replaced by $\underset{(m)}{\lambda_{1}^{++}}$or by $\underset{\left(\alpha_{1}, \cdots, \alpha_{m}\right)}{\lambda^{++}}$.
(b) If the considered membrane has a free outer boundary γ_{0}, the above discussion remains valid, the first term in (14) disappears from the formula, as disappear A_{0}, \hat{A}_{0} and $L_{\Gamma_{0}}$.

My best thanks are due to H. F. Weinberger for his proof [7] of the existence of an "effectless cutting", which allowed the very simple proof given in this § 3; without both Weinberger's kindness and skill, a long and delicate construction and discussion of a continuous trial function in the whole domain G (with level lines consisting of arcs parallel to different Γ_{i}) would have been necessary to get the same (14), (15) and (16) finally.

Bibliography

1. J. Hersch, Contribution to the method of interior parallels applied to vibrating membranes, Studies in Mathematical Analysis and Related Topics, Stanford University Press (1962), 132-139.
2. E. Makai, On the principal frequency of a convex membrane and related problems, Czechosl. Math. J., 9 (1959), 66-70.
3. -, Bounds for the principal frequency of a membrane and the torsional rigidity of a beam, Acta Sci. Math. (=Acta Szeged), 20 (1959), 33-35.
4. L. E. Payne and H. F. Weinberger, Some isoperimetric inequalities for membrane frequencies and torsional rigidity, J. Math. Analysis and Appl., 2 (1961), 210-216.
5. G. Pólya, Two more inequalities between physical and geometrical quantities, J. Indian Math. Soc., 24 (1960), 413-419.
6. B. Sz.-Nagy, Ueber Parallelmengen nichtkonvexer ebener Bereiche, Acta Sci. Math. (=Acta Szeged), 20 (1959), 36-47.
7. H. F. Weinberger, An effectless cutting of a vibrating membrane, Pacific J. Math., 13 (1963), 1239-1240 (following immediately the present paper).

Battelle Memorial Institute, Geneva, Switzerland,
and Swiss Federal Institute of Technology, Zürich.

