
ON A CLASS OF EQUIVALENT SYSTEMS OF
LINEAR INEQUALITIES

I. HELLER

O Summary. This note is concerned with the question of when
a matrix A of mn columns and rank m + n — 1 is transformable
into a matrix of a special class known as the constraint matrices of
an m by n transportation program. The question is of practical
significance in the solution of linear programs. The main result, a
set of necessary and sufficient conditions on the matrix A, is formulated
in § 3 (Theorem 3.3), and proved in §§ 4-5. As application, § 6
outlines a method of testing for the conditions of the theorem and
of effectuating the transformation when the conditions are satisfied.

1- Introduction. A finite system of linear inequalities can, in
general, be reexpressed in the form

(1.6) Ax = 6, x ^ 0.

The objective is to characterize among the systems (1.6) those that
are equivalent (in a sense to be defined in § 2) to the systems
occurring as constraints of a special type of linear optimization pro-
grams, known heuristically as "transportation" programs, which
admit relatively simple and efficient algorithms of solution (see for
instance Dantzig [1] and [2] and Ford and Fulkerson [3]).

We shall refer to a system of the form

(1.7) Σ εiJχiJ = ci> Σ eiJχiJ = Tif χiJ ^ 0
ί=l • j=l

where εi3 = ±1 (i — 1, 2, , m; j = 1, 2, , n), as " the constraints
of a transportation program," the special case eo = 1 representing
the constraints of a " standard " transportation program.

Interpreting x = (α^ ) as vector in Rmn, (1. 7) can also be written
in the form

(1.8) Dx = c, x ^ 0

where c' = (rl9 r2, , rm, clf c2, , cn), hence, ceRm+n and D is a
matrix of m + n rows and mn columns dv (v = 1, 2, , mn), also
denotable as da (ί = 1, 2, , m; j — 1, 2, , n) in lexicographic
order, with
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(1.9) diS = dv = ε^βi + em+j) where v = n(i - 1) + j

eμ denoting the μth unit vector in Rm+n.
It should be noted that D is of rank m + n — 1: first, the

subset of columns dil9 d13- (i = 1, 2, , m; j = 2, 3, , w) is in-
dependent, hence, the rank ^ m + n — 1; second, if e — eλ +
• + β m - βm+1 — . . . — ew+%, then consideration of the inner products

efdiό = 0, β'βί = 1 when i ^ m, e'βi = — 1 when i > m

shows that, say, βx is not representable in terms of columns of D,
since e1 = Σ ^ϋ^ϋ would imply

1 = β ' β l = 2 αiiβ'd^ = 0.

For later reference we also mention the geometric interpretation
of the set S of columns of D. Setting

the et and f3? (i = 1, 2, , m; j — 1, 2, , w), interpreted as points
in affine space, are the m + n vertices of an (m + n — 1)—simplex
and appear thus partitioned into two disjoint sets

S = { e 4 | i = l,2, -- ,m}, F - {fd \ j = 1, 2, . . . f n} .

By (1.9) S consists of all vectors of the form e^fa — /,•), that is of
all those edges of the simplex that connect a vertex of E with a
vertex of F, the orientation being determined by eiά. In the special
case where all ε^ — 1 the orientation is always from F to E.

2. Equivalence. When it is necessary to distinguish between a
matrix and the ordered set of its columns, and this distinction is
not clear from the context, we shall write (A) for the ordered set
of columns of the matrix A.

Denoting by VA the linear span of (A) we pose for the purpose
of this note the following

(2.1) DEFINITION TWO systems of linear inequalities

(i) Ax = 6, x ^ 0
(ii) Cy = d, y^O

are strongly equivalent, in symbols

(A, b) ~ (C, d)

if and only if there exist a permutation matrix P, a positive diagonal
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matrix Q, and a nonsingular linear mapping T : ViA h) —> V{0 d) such
that

T(APQ) = (C), Th = d.

The last two relations in the definition should be read to mean: the
indicated operations are meaningful and equality holds. By a positive
diagonal matrix is meant a matrix Q — (qμv) such that

<2Vv > 0 when μ = v, gμv = 0 when μφv.

Clearly, if the two systems in (2.1) are strongly equivalent,
then A and C necessarily have the same number of columns and the
same rank, and the substitution

x = PQy

establishes a one-to-one correspondence between the solutions of (i)
and (ii).

In order to see that the equivalence relation defined in (2.1) is
reflexive, symmetric and transitive, it is sufficient to observe that
for a given order n all matrices R of the form R = PQ constitute
a group, since, first the P and the Q each form a group, second
PQP-1 = Qu hence PQ == QλP, and

QA - P3Q4 = R3.

If the sets {A, b) and (C, d) are in the same Rn, the existence of
a nonsingular linear T: VUtb) —* V{0 d) satisfying the last relation in
(2.1) is equivalent to the existence of a nonsingular linear trans-
formation on Rn satisfying the same relation.

If the two sets are not in the same Rn and A, 6, C, d denote the
sets and vectors obtained from A, b, C, d by adjoining zero rows to A
and b or to C and d such that (A, b) and (C, d) are in the same space,
then, obviously

(2.2) (A, b) ~ (C, d) — (A, b) - (C, d)

and hence
(2.3) (A, 6) — (C, ώ) if and only if there exist a permutation

matrix P, a positive diagonal matrix Q and a nonsingular
matrix T such that

TAPQ = C, Γδ = d.

3 Conditions^ The question whether a given system (1.6) is
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strongly equivalent to the constraints of some transportation program
as described in (1.7) through (1.9), amounts to the question of
existence of T, P and Q in the sense of (2.3) such that

(3.1) TAPQ = D

for some D of (1.8-9).
One trivially necessary condition for such equivalence is that

there exist a D of (1.8-9) with the same rank and the same number
of columns as A. Hence, if A has 7 columns and rank p, then it is
necessary that there exist two positive integers m and n such that

mn = Ύ m + n = p + 1;

or, equivalently, that the expression for (m — nf be the square of
an integer, that is

(3.2) (p + I)2 - 4τ = k2, k an integer .

The values for m and n are then

m = hp + 1 + k) , n = hp + l-k);
Δ Δ

that the expressions in parentheses are even numbers follows from

(p + I)2 - k2 = (p + 1 + lc)(ρ + 1 - k) = 47 ΞΞ 0 (mod 2)

and
p + l + k = ρ + l - k ( m o d 2) .

We therefore restrict our consideration to matrices which satisfy
(3.2), that is, matrices of mn columns and rank m + n — 1.

(3.3) THEOREM. Let m ^ 3, w ^ 3. A system of the form (1.6),
where the matrix A has mn columns and rank m + n — 1, is
strongly equivalent to the system (1.8-9) if and only if the set S of
columns of A satisfies the following conditions :

(i) every three distinct elements of S are linearly independent
(ii) for every two distinct elements α, c of S the equation

(a) a + ζc + ξx + ηy = 0

has a nontrivial solution in S, that is there exist elements x, y in
S and real numbers ξ, η, ζ such that (a) is satisfied and {—a, —ζc}Φ

(iii) if four distinct elements alf α2, α3, α4 of S satisfy a non-
trivial relation

(b) axax + a2a2 + a3a3 + α 4α 4 = 0 ,
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and ft (v = 2, 3, 4) is the number of nontrivial solutions in S to
the equation

(c) aλax + ζvαv + ξx + ηy = 0 ,

then

(d) {ft, ft, ft} = {1, m - 1, n - 1}

(e) ζv = <xv m eαcΛ, solution of (c) .

Note that when (i) holds, then for every nontrivial solution of
equation (a) in (ii) it follows that the four vectors α, c, x, y are
distinct. Also note that in (iii) two solutions of (c) related to each
other by exchange of x and y are considered as the same solution
and counted only once.

Proof. That the conditions are necessary is proved in § 4. The
sufficiency, which is the essential part of the theorem, is proved in § 5.

4. Proof of necessity. Let the two systems be strongly equi-
valent, that is, for some T and Q,

(4.1) T(AQ) = (D).

We observe first that Q merely multiplies each column av of A
by a number qv Φ 0, and hence a glance at the conditions in (3.3)
shows that each of these conditions is satisfied by the set S — (A)
if it is satisfied by the set (AQ).

Second, since the nonsingular linear T preserves linear relations
both ways, the conditions of the theorem are satisfied by (AQ) if
and only if they are satisfied by (D).

Finally, if .D* denotes the matrix obtained from D by setting
βij = 1 in (1.9), then the argument used in our first observation
shows that the conditions are satisfied by (D) if and only if they are
satisfied by (Z>*).

Therefore it is sufficient to prove that (.D*) satisfies the condi-
tions of (3.3).

That (D*) satisfies the conditions is almost obvious from the
geometric interpretation of (D*) outlined at the end of § 1. However,
for the sake of completeness we shall give a detailed proof.

For brevity we write

hence for the elements of (D*)

et + em+j = βt +fj (i = 1, 2, , m j = 1, 2, , n) ,
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and make first an observation regarding the set (D*).
Let {dv} be a subset of (D*), c£v = eiv + / v Then

(4.2) Σ M v = 0 =>

(a) Σ λ A v = 0 , (b) Σ λ v / i v = 0 , (c) Σ λ v = O

The first two implications are obvious. To see the third, let

Then the inner product

(0, dv) = 2 ,

hence

0 = (flf, 0) = to,

We now proceed to prove that (D*) satisfies the conditions of
(3.3).

Condition (i). Assume that three distinct elements of (D*),

d, = eiv+fjv (y = l ,2,3)

satisfy

λ A + X2d2 + X3d3 = 0 (λx φ 0) .

If, say, λ3 = 0, then by (4.2), \ = — λ2, hence dx = d2, con-
tradicting that the dv were distinct.

If χ2 Φ 0 and λ3 ^ o, then, by (4.2)

h + X2eh + X2eh = 0

and, obviously, the β<v cannot be distinct. If, say, eijL — eh, then

= 0

implies eh = β<χ. By the same argument on the fJy we obtain fjl =
fj2 = /i 3 . Hence ^ = d2 — d3, again contradicting the assumption that
the dv were distinct.

Condition (ii). Let a = β< + //, c = eμ + / v, and a Φ c. Then
(μ, y) ^ (ί, j ) . Say μ Φ i, and consider separately the two possibilities
for v, j .

If D t= j , then for j * ^ i , i* ^ w (which exists, since ^ ^ 2),

a? = βμ + fj* and 2/ = #i + fi*t the vectors α, c, a?, ?/ are distinct and
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α — c + x — y = 0 .

If v Φ j , then, for x = e{ + fv and y = eμ + /,-, the vectors
α, c, a?, y are distinct and

α + c — x — y = 0.

Condition (iii). Let four distinct vectors αv = eίv + fjv of (D*)
satisfy (iiib). Then, since (D*) satisfies condition (i),

(4.3) αv Φ 0 (v = 1, 2, 3, 4) .

First, among the three vectors α2, α3, α4 there is one, say αλ,
which satisfies

(4.4) ikΦk, 3k Ψ 3i .

To see this, let a2 not satisfy (4.4). Say j 2 = j u Then a2φ a1=>i2φ ix

and (4.2-3) => {i3, i4} = {ilf i2}. Say i3 = i l f i4 = i2. Then α4 ̂  α2 =» i 4 =̂ j 2 .
Thus i 4 ^ ia = j \ and i4 = i2 Φ ilf hence i4 Φ ix and i 4 ^ ju which
proves (4.4).

Second, keeping aλ fixed, we may assume the index 2 so assigned
to one of the other three vectors that alf a2 satisfy (4.4), that is

^1 ^ % 9 Jl Φ U2

Then (4.2-3) =» {%, j4} — {iu i2}, and we assume the numbering of
α3, α4 such that

Then a3φ a,=> j \ Φ j l f a,φa2=> j 4 Φ j 2 j and (4.2-3) => {ilf i2} = {i3, j,}.
Hence

Jd == U2 t Ji — Jl

Thus

(4.5) αx = e4l + / ^ , a2 = β,2 + / i a

α3 = e ή + /i 2 f α* = ^i2 + A

ii ^ ia, ii Φ 3% aλ^a2^ -a, = -a,.

We now consider the equation (iiic)

<XIOΊ + ζvdv + ξ X + VV = 0

separately for v — 2, 3, 4 denoting by

» = «<+/,-, 2/ = e,* + /,-•

the two vectors of a nontrivial solution.
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For v = 2, (4.2), (4.3) and (4.5) imply

(4.6) {ξei,ηei,} = {-a1eil,-

Since the solution is assumed nontrivial, (4.6) leaves, apart from an
interchange of x and y, the only possibility

ξβi = -axeil9 ψi* = -ζeh

ξfi = -CΛv VU = - « i A
Hence

£ = -« i = -C = 7

β» — e ή » e;* = e*2 > fj = fj2 f fj* — fjλ

is the only nontrivial solution. Thus p2 = 1 and ζ2 = oί± = α2.
For y = 3, (4.2), (4.3) and (4.5) imply

If «! + ζ ^ 0, then the first relation implies et = e{* = eh, and the
second relation above then implies that the solution is trivial. Hence,
the only nontrivial solutions (apart from interchange of x and y) are

«i = - ζ = -ξ = V

and the last relation shows that their number ps = m — 1.
For v = 4, the argument used for v = 3, with interchange of

role between eμ and / μ , shows that (iiic) has n — 1 nontrivial solutions
in (-D*), and again with constant ζ. This completes the proof that
(D*) satisfies condition (iii), and hence that all conditions of (3.3)
are necessary.

5* Sufficiency*
Outline of sufficiency proof. In this proof we pursue a two-fold

objective: besides establishing the truth of the theorem we wish to
obtain a practical method of testing for possible equivalence and of
actually finding the transformations T, P and Q when equivalence
holds. For this reason, the proof will be by construction.

The idea of the proof is roughly as follows. Let S be the set
of columns of A. Visualizing an (ordered) basis Do among the columns
of D, we seek a basis So in S which has the same structural (linear)
relation to the rest of S as Do has to the rest of D in other words
So should be such that among the transformations Γ, Q that map So

onto Do there is at least one pair that maps S onto D.
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The scheme of construction is the following. After choosing a
set Bo of two distinct vectors in S, the conditions of the theorem
are used to first extend Bo to a certain set Bx of 4 distinct vectors
in S and subsequently extend B1 to a set B2 of m + n — 1 distinct
vectors in S. The next objective is to prove that B2 is a basis for
S. This is done by first extending B2 to a set B3 of mn vectors in S
in such a way that each vector of Bz appears represented in terms
of B2, and subsequently showing that the vectors in j?3 are all
distinct, so that Bz = S and hence B2 is a basis for S. Implicitly B2

has been so modeled after a particular basis A in •£> as to insure
that transformations T, Q which adequately map B2 onto Do will also
map S onto D. The construction of T, Q and P is then straight-
forward.

From the above it is clear that much of the proof is concerned
with existence and number of solutions, with strong emphasis on
distinctness of certain sets of vectors obtained from solutions.

REMARK. The basis Do which implicitly serves as model for the
construction of B2 = SOf is one whose linear relation to D shows a
maximum of symmetry; in other words, Do has been so chosen, that
among the tranformations that leave D invariant the number of those
that also leave Do invariant is a maximum. In the geometric inter-
pretation Do represents what in graph theoretical terms may be called
a twin star, that is two stars with a common link. Heuristically,
the columns of Do correspond to shipping routes which connect a
fixed source with all destinations plus those which connect a fixed
destination with all sources.

Proof of sufficiency. We first show a particular consequence of
(i), (ii) and (iii), which will be of frequent use in the subsequent
proof.
(5.1) Let aλ eS, cxe S, aλ Φ cl9 ax Φ 0, k ^ 2. If the equation

(a) axax + ζc, + ξx + ηy = 0

has k — 1 distinct nontrivial solutions in S given by

(b) axax + 7Λ + a^ + T A = 0 (ί = 2, , k) ,

then the 2k vectors

^ i > ®2> * * * f Q>k 9 c u c29 , ck

are distinct and
oii Φ 0, Ύi Φ 0 (i = 1, 2, k) .

Indeed, by (i), for every fixed i > 1 the four vectors al9 c19 aif c{
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are distinct and their coefficients Φ 0. Hence

α. ψ o , ji Φ 0 (i = 1, 2 , k)

a>i Φ Ci ( i = 1 , 2 , •••, fc)

α^ ^ α x ^ Ci , a,i Φ ct Φ Ci (ί — 2, 3, ••, k) .

Further, for 2 ^ ί < v ^ fc, the relation (b) implies

This is a nontrivial relation, since the two sides belong to distinct
solutions of (a). Therefore by (i) the four vectors are distinct,
hence, in particular

a{ Φ α v , a,i Φ c v , ^ Φ α v , CiΦ cv ( 2 g i < v ^ k) .

This completes the verification of (5.1).
Further we note

(5.2) If the equation

(a) axax + ζa2 + ξ x + ηy = 0

has the unique solution in S

(b) axax + α2α2 + a3a3 + α4α4 = 0 ,

then the equation

(c) a3a3 + ζα4 + ξ x + ηy = 0

has a unique solution in £.
Indeed, if (c) had a solution in S in addition to and distinct from the
one exposed in (b), say

α3α3 + a,a, + jc + 3d = 0 ,

this would imply

aλax + a2a2 — yc — δd = 0

and thus contradict the premise on (a).
Now let xn be an arbitrary but fixed element of S.
By condition (ii) and the assumption on m and n there are

elements x12, x21, x22 in S and real number am a21, a22 such that

(5.3) xn + a12x12 + a21x21 + a22x22 = 0 .

By (5.1) the # t i are distinct, and the aiό Φ 0.
In view of (iii) we assume the numbering of the last three

terms on the left hand side of (5.3) so chosen that
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(5.4) xn + ζ22x22 + ξx + W = 0 has a unique solution in S

(5.5) xn + ζ12x12 + ξx + ηy = 0 has (m — 1) solutions in S

(5.6) a?u + ζ21x21 + fa? + rjy = 0 has (w — 1) solutions in S .

While the unique solution of (5.4) is given by (5.3), let the
solutions to (5.5) and (5.6) be given by

(5.5*) xn + a12x12 + aiλxix + ai2xi2 = 0 (i = 2, 3, , m)

(5.6*) xn + α21£21 + α^ α^ + a2jx2j = 0 (i - 2, 3, , n)

where the coefficients of x12 and x21 have been taken from (5.3),
since, for i = 2 and for j = 2, (5.5*) and (5.6*) specialize to (5.3),
and the four vectors in (5.3) are all distinct, so that (iii) and hence
in particular (iiie) applies.

We note that by condition (i) the four vectors in (5.5*) are
distinct for fixed i and those in (5.6*) are distinct for fixed j .

Application of (iii) to (5.5*) asserts, in view of (5.5), that exactly
one of the two equations

Xn + &i2 + ξ % + vy = o

has a unique solution in S. Application of (iii) to (5.6*) yields, in
view of (5.6), a similar assertion. We assume the notation in (5.5*)
and (5.6*) so chosen that
(5.7) each of the m + n — 2 equations

Xn + &i2 + ξ % + W = 0

Xn + &2j + ξ % + vy = o

has a unique solution in S.
These solutions are obviously given by (5.5*) and (5.6*), and we note
that, then, by (5.2), also
(5.8) each of the m + n — 2 equations

#12̂ 12 + ζXa + ξ oo + ηy = 0

a21x21 + ζχu + ξ x + ηy = 0

has a unique solution in S,
(which is again given by (5.5*) and (5.6*)).

Next, using (5.5*) as premise of (iii), (iiid) in conjunction with
assumptions (5.5) and (5.7) implies that, for each i such that
2 ^ i ^ m, the equation

(5.9) xn + ζXn + ηy + ξx = 0 has n — 1 solutions in S
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and (iiie) implies that the solutions are of the form

(5.9*) xn + aixxix + βi5y{i + aiάxiά = 0 (i = 2,3, , m; j = 2,3, , n)

where

(5.10) β i 2 = a12, y i 2 = α?u (ΐ = 2, 3, , m)

β2j = α w , j / a i = α^ (i = 2, 3, , n) .

By (iiid) and (5.2) we may assume the notation in (5.9*) so
chosen that

(5.11) xn + ζxi3- + ξx + ηy — 0 has a unique solution in S

(XiiXii + ζVa + f» + VV = 0 has a unique solution in S

for each (i, i) such that 2 ^ i ^ m, 2 ^ i ^ n.
The set of vectors in (5.9*) shall now be investigated for dis-

tinctness.
Let F denote the formal set of vectors exposed in (5.9*), that

is the set of those symbols in (5.9*) which denote vectors in S, and
let F{ denote the subset of F for a fixed i in (5.9*). When G is a
subset of F such that distinct symbols in G denote distinct vectors
in S, we shall say briefly that " t h e vectors in G are distinct."

For easy reference we note the following implications of (5.1)
when applied to (5.9*) and (5.6*).

(5.12) (a) The vectors in F{ are distinct

(b) xn Φ yiS xn = xi3 => i = j = 1

(c) α ί y Φ 0, βi3- Φ 0

and consider the sets

(5.13) Ex = {αWl ύi^m}

E2 = W 2 ύj^n}

G2 = {yij/2 ^i^m, 2^j^n}

Ed = {Xij/2 ^i^m, 2^jSn)

E = Ex U E2 U E3 .

Formally E consists of m + (n — 1) + (m — ΐ)(n — 1) = mn vec-
tors, that is E consists of mn distinct symbols denoting vectors in S.
We shall prove

(5.14) (a) In each Ea the vectors are distinct {a = 1, 2, 3)

(b) El9 G2,1?3 are pairwise disjoint

(c) the vectors in E are distinct
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where (c), as obvious consequence of (a) and (b), is merely noted for
reference.

Proof of (5.14a).
From (5.1) it follows that the xn are distinct, since they are

among the vectors of (5.5*) that the y2j are distinct and that the
Xa are distinct for each fixed i follows from (5.12a). That the xiS

are distinct for distinct i's, we show indirectly. Assume

for some particular i, j, μ, v with i φ μ. Then by (5.9*)

»u + αα»ii + βiά/a + oCijXu = 0

X1X + (XμlXμ1 -\- P/χvl/μv ~Γ (XμvXij — U

Since these two relations can be interpreted as representing two
solution in S to the equation

»u + ζXij + ξX + W = 0 ,

the first assumption in (5.11) implies

(5.15) aiS = αμ v

CCHXH + βijVa Ξ= a^x^ + β^y^

where = is to signify that the vectors and their coefficients are the
same on both sides.

Certainly xix Φ α?μl, since both belong to Ex and i Φ μ. There-
fore the only possibility is

(5.16) ai&H = β^VμV, aμlxμl = β^y^ .

On the other hand, subtraction of the μth from the ίth relation in
(5.5*) yields

(5.17) aixxix - aμlxμl + ai2xi2 - a^x^ = 0 ,

which relation, after replacement of the second term by its ex-
pression from (5.16), reads

(5.18) aiλxiλ - βijVij + ai2xi2 - a^x^ = 0 .

By (5.12a, c) xix Φ yih aix Φ 0, βiό Φ 0. Hence (5.18) and (5.9*) can
each be interpreted as representing a solution in S to the equation

(5.19) aixxix + ζVij + ξx + yy = 0.

The solution (5.18) is not trivial, since the first three vectors are
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distinct by (5.12a). Then (iiie) implies βi3 = — βi3 , contradicting
βis Φ 0. {Remark. In order to dissipate a possible feeling of uneasi-
ness about hinging the rather boresome proof on a mere—possibly
erroneous!—sign, we still note this alternative argument: By (5.11),
the equation (5.19) has a unique solution in S; this solution is
exposed in (5.9*); hence either xi2 = xn or xμ2 = xn; either case
contradicts (5.12b)). This completes the proof of (5.14a).

Proof of (5.14b). First, to see that Ex Π G2 = 0 assume that for
some i ^ 2, j ^ 2 and μ,

Then, by (5.12b), μ^2.
Substitution in (5.9*) yields

(5.20) xn + aixxix + βuXn + atij-Xij = 0 .

Since xn, xil9 xi3 are in Fif they are by (5.12a) distinct. Then by
(i) and (5.12c) all four vectors in (5.20) are distinct and (5.20) can be
interpreted as exposing a nontrivial solution in S to the equation

#ii + ζfl̂ i + ξ% + ηy = 0 .

Hence by (iiie) and (5.9*)

and subtraction of (5.20) from the μth relation in (5.5*) yields

(5.21) a12x12 - aixxix + α μ 2 ^ μ ? - ai5xiά = 0 .

The first 3 vectors in (5.21) are distinct since they are among
the vectors of (5.5*) which, by (5.1), are all distinct. Hence (5.21)
exposes a nontrivial, by (5.2), (5.7) and (5.5*) unique, solution in S
to the equation

#12̂ 12 + ζXil + ξ% + W = 0 .

Therefore either x^ — xn or xiS = xn either case contradicts (5.12b),
since i ^ 2. This proves E1f)G2= 0 .

To see that E1Γ\Ei= 0 , assume that for a particular triple
μ, i, j, such that i ^ 2, i ^ 2,

Then, by (5.12b), μ ^ 2. By (5.11) the equation

#ii + ζ#ϋ + ξ x + VV — 0

has a unique solution in S, whereas by (iiid), (5.7) and (5.5*) the
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same equation has n — 1 solutions, thus contradicting the assumption
n ^ 3.

To see that G2 Π E3 = 0 , assume

for some particular i, j, μ, v, all ^ 2. By (5.11) the equation

has a unique solution in S, whereas by (iiid), (5.9), (5.9*) and (5.11)
the same equation has m — 1 solutions in S, thus contradicting that
m ^ 3. This completes the proof of (5.14b).

Proof of (5.14c). Obvious, from (5.14a, b) and E2aG2. This
completes the proof of (5.14).

Since EaS and each consists of mn distinct elements it follows,
that

(5.22) E = S .

Considering now the set G2 — E2, that is

(5.23) {yJS ^i^m , 2 ^ j ^ n)

it is clear from (5.14b) that each vector of (5.23) must equal some
vector of E2f that is

(5.24) ^3,i^2

where the second implication is, in view of (5.9*) and (Hie), a direct
consequence of the first.

Further, noting that for every fixed i ^ 2 the yi5 belong to F{.
and therefore by (5.12a) are distinct, we have

(5.25) If yiS = y2v and yi3 * = y^9 t h e n

0 — 3* <=> v = v*.

Thus by (5.24) and (5.25), for each i such that 3 ^ i ^ m, there
is a permutation π{ on the set of integers {2,3, •• ,w} such that

Vij = V2v <=> 3 = Ki(v)

Noting that besides assumption (5.10) for the case i — 2 or j = 2 no
determination has been made concerning the numbering of the
solutions to (5.9) in (5.9*), we shall now, in order to obtain a con-
venient notation, assume that for each i ^ 3
(5.26) the numbering in (5.9*) is so chosen that
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Vu = V*j (3 = 2, 3, , n)

with the obvious consequence

(5.27) βiS = β2j ,

and this is consistent with the choice (5.10) for j = 2, namely yi2 =
î2 = 2/22. Renaming these vectors and their coeflBcients in (5.9*) by

(5.28) V2j = Xi, f &/ = #!,•

(5.9*) can be re-written in the form

(5.29) xn + aiλxiλ + alάxλj + a^xia = 0 (i = 2, , m; i = 2, , n) .

By (5.22) the mw vectors in (5.29) are the mn distinct vectors
of S, and by (5.29) they appear represented in terms of the set

(5.30) B = Ex\jE2 = {xjl ^ i ^ ra} U foy/2 ̂  i ^ u} .

Hence

(5.31) J5 is a basis in S.

It is now a simple matter to construct the matrices T, P and Q
such that Γ-APQ = D.

First we set, for i = 2, 3, , m and i = 2, 3, •••,%,

(5.32) 7 ί l = " " α ί l

7iy = -OTiy

To = ««

so that (5.29) reads

(5.33) Tί^ίi = 7<i&<i + 7ii»ϋ - 7iΛi .

Then, assuming that the m + n + k rows of A have been so
arranged that

(5.34) the rows numbered 2, 3, , m + n are linearly independent,

and denoting by ev the vth unit vector in R™+n+k

f we define m + n + k
vectors:

(5.35) Ui = 7Λί&<i - 1*1 (ί = 2, 3, , m)

Vj = 7χ^ii - %! (i = 2, 3, , n)

wr = e m + % + r ( r = 1,2, ••-,&).
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Then

(5.36) Ίi&m = Ui + Vj (i = 1, 2, , m; j = 1, 2, , n) .

By (5.31) and (5.34) the set

βl9 x119 x2ι, , # m i , ί^i2, ΛJ13, , Xin, em+n+19 , em+n+k

is a basis in .βm+w+fc. Hence by (5.12c) the set defined in (5.35) is
also a basis. Therefore the transformation T~x defined by

T-% =u< (i = l , 2 , . . . , m )

<5.37) T-'e^j = vj (j = 1, 2, •, n)

Γ-1βm+n+r = em+n+r (r = 1, 2, , Λ)

is nonsingular.
It follows from (5.35) and (5.36) that

<5.38) Wit = T-Hβt + en+j) = Γ - ^ ,

where d ίy denotes the (ii)-column of D, that is the column of D in
position n(i — 1) + j .

If the vector xiS of S is the μth column of A, and

((5.39) μ = 9>(n(i - 1) + i)

denotes this permutation on the set of numbers {1,2, « ,mw}, then
let P denote the matrix of the transformation on Rmn which carries
the unit vector βv into eφ{v) (v = 1, 2, , mn), that is, P is a permu-
tation matrix defined by

P = (i%); Pμv = 1 when μ = ^(v)
<5.40) Λ _

pμ v = 0 otherwise .

Finally let Q denote the nonsingular diagonal matrix of mn rows
and mn columns

Q =(?μv)

{5.41) gvv = I Ίa I where (w - l)i + j = v

gμv = o when μ Φ v ,

Then, obviously, AP is the matrix whose columns are the vectors
ζCij arranged in lexicographic order. APQ is the matrix with the
columns ί | yiS \xi3> in the same order. Lastly, by (5.38) the trans-
formation T whose inverse was defined in (5.37), carries each column
17ΐi \Xij into Sijdij where

.(5.42 6iS = I Ίu \hu .
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Hence

(5.43) TAPQ = D .

This completes the proof of the theorem (3.3).

6* Remarks* First, it is clear from (5.41) and (5.42) that the
equivalence is to the constraints of the standard transportation pro-
gram if and only if the yu are all of the same sign:

In (5.43) D is of the form {̂  + em+i}

if and only if the yi3 are all of the same sign

where obviously — T is used when they are all negative.
Second, we remark that in applications the following method of

test for equivalence and construction of the transformations ensues
directly from the proof.

1. Find 4 columns in A satisfying (5.3), denote them so as to
satisfy (5.4-6), and expose the solutions (5.5*) and (5.6*) to (5,5) and
(5.6), denoted to satisfy (5.7).

2. Establish that the set xn, x21, , xml, x12, ---,xln is in-
dependent.

3. Establish that each vector — xn + ynx{1 + ΎIJ^U = %n is a:
multiple of a column of A, that is zi3 = yi3xi3 with xi3 a column of A.,

4. Construct T~\ P and Q as defined in (5.32) to (5.41).
5. Invert T"1 and compute TAPQ to obtain D.
If either of the steps 1 through 3 can logically not be performed,,

there is no equivalence in the sense of (2.1).
The computational algorithm is discussed in detail in a forth-

coming self-contained note where the direct proof of the algorithm
is naturally considerably shorter due to the significantly stronger
conditions of the algorithm as compared to those of the theorem in
the present note.

Finally, it is obvious that a concept of equivalence in a more
general sense, where it is merely required that the optimal vectors,
of the two linear-optimization programs be in one-to-one linear re-
lation, is of greater practical significance; it includes the case where
A in (1.5) has less than mn columns and hence can be mapped only
onto a proper subset Do of D. Methodologically, the treatment of
this case requires a different mechanism: in particular, the choice
of a structurally simple basis in D as used in the present note is~
not generally possible in the general case since such basis may not
exist in Do, and moreover Do is not given. In other words, whereas
in the case of the present note there is equivalence if and only if
the linear structure of A is the same as the linear structure of DQ
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for a given D and some diagonal matrix Q, equivalence in the other
case will exist whenever A has the same linear structure as D0QQ,
for some subset Do of D of rank m + n — 1 and some diagonal Qo;
there are thus as many structurally different matrices A equivalent
to a subset of D as there are structurally different subsets Do in D
(of the same rank as D); therefore, whereas in the present case the
method is simply a mechanism for testing whether A has the struc-
ture of DQ, the first objective in the study of the general case is a
-characterization of the structure of A (in a form suitable for com-
parison with the structures of the sets D0Q), and hence requires an
altogether different method. A study of the general case will be
presented in a forthcoming note.
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