
A REMARK ON ANALYTICITY OF
FUNCTION ALGEBRAS

I. GLICKSBERG

1. Let A be a closed separating subalgebra of C(X), X compact,
with maximal ideal space WlΛ and Silov boundary dA. Naturally A
can also be viewed as a closed subalgebra of C(yJlA) or C(dΛ).

Call A analytic on X if the vanishing of / e A on a non-void open
subset of X implies / = 0, or simply analytic if this holds for X =
9Jl̂ . Recently Kenneth Hoffman asked if the analyticity of A on dΛ

implied analyticity on 30 ;̂ the present note is devoted to a counter-
example.1 Evidently such an example, analytic on its Silov boundary,
must be an integral domain, so our algebra is a non-analytic integral
domain.

The example was suggested by, and utilizes, an interpolation theo-
rem of Rudin and Carleson [5, 9], recently generalized by Bishop [3],
which in fact permits the construction of a variety of unfamiliar
tractable subalgebras of familiar algebras; consequently we shall dis-
cuss the construction in more generality than is absolutely necessary.
Finally we give a slightly more complicated example which is also
dirichlet.

NOTATION. M(X) will denote the space of (finite complex regular
Borel) measures μ on X; for such a μ, μ is orthogonal to A(μ _1_ A) if

Kf) — \fdft = 0, / in A. And μF will denote the usual restriction
of μ to Fa X, while /1 F will be the restriction of a function /, A \ F
the set {/| F :fe A}. An algebra A will always be assumed to con-
tain the constants.

2. Our construction is based on the following fact.
(2.1) Suppose F is a closed subset of X, and μF = 0 for all μ in
M(X) orthogonal to A. Then2

(2.1.1) A\F = C(F) [3]
(2.1.2) if X is metric, F is a peak set of A, i.e., there is an f in
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1 After this note was completed, I found that analyticity of A on WIA implies analy-
ticity on 3A; this will appear in a subsequent paper.

2 (2.11) is Bishop's generalization of the Rudin-Carleson result mentioned before,
which applies to the special case in which A is the "disc algebra" and F a subset of
measure zero of the unit circle. (2.12) will actually be avoided in the specific examples
we construct.
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A with f(F) = 1 and \f\ < 1 on X\F [7, 4.8].
Now suppose we are given two uniformly closed algebras Alt A2,

.as subalgebras of C(3Jix), C(3tt2), where a», = SR^ is metric, i = 1, 2.
Further suppose 02 = < 2̂ is homeomorphic to a (compact) subset F of
.8X satisfying the hypothesis of (2.1) with A~ Ax, X = dlf so that AJ F =
C(i^). Identifying F and 02 (via some homeomorphism) we may form
a compact metric space 3Jt = 2ϊii U 3K* containing each 2)1* as a sub-
,space, with ^ Π 9Ji2 = i*7 = 0a. Now form the closed subalgebra A of
C(W) consisting of those / with /|SW4 in Aiy i = 1, 2. (Since d2ddlf

A may also be viewed as a closed subalgebra of Ax.)

The consequences of (2.1) for A are the following facts.

<2.2) 3Ji4 = 2tt
(2.3) ^ = θx
{2.4) fc3Ji2 = { / e A : /(2Ra) = 0} separates the points of 3Ji\9Ji2.

In particular (2.4) implies there are many functions in A vanish-
ing on the (possibly void) open subset W^Sl1 = Wl2\d2 of 501 = %flA.

Note that since ^ 1 ^ = C(F), for any / in A*, f\09=f\F has
an extension to SO?! in Ax; consequently / itself has an extension to
UJl in A. Thus

<2.5) A 19JΪ2 = A2 ,

and A separates the points of 9Dΐ2. On the other hand trivially
v(2.6) / in Λ αwd / ( F ) = f(d2) = 0 i m p ^ / has an extension

(== 0 on 3Jl2) m A.
Now the / in Ax satisfying the hypothesis of (2.6) form an ideal

kF of Al9 and of course the quotient algebra AJtcF has the hull of
JcF as its maximal ideal space. But AJkF is naturally isomorphic to
Ax IF — C(F), so that F is the maximal ideal space, hence the hull of
.kF. So (as is well known and easily proved) the Banach algebra kF has

{2.7) dkF = d\F = d\d2, 2Kfc, - ^ F .

Hence from the trivial relation (2.6), MR2 = {/e A :/(2Jϊ2) = 0} sepa-
rates the points of <$il\F = 3K\aJi2, yielding (2.4), and separates any
element of 2Ji\9K2 from one of 2Jϊ2. Since A separates the points of
M2 by (2.5), A separates 2Ji, and 9Ji is a subspace of $JlA. Moreover
by (2.6) kF and fc3K2 are isomorphic, whence dm2 = d\dif so that

<2.8) d1\d2adΛ .

The remainder of (2.2) now follows by a standard argument: if a
multiplicative linear functional φ on A vanishes on kyjl2, hence cor-
responds to an element of ^ / f c ^ , then the isomorphism of A/Λ2Ji2

-and A19Ji2 = A2 shows φ arises from a point in 9Ji2 c 2/1. But if φ
«does not vanish on kSSSl2 it provides a nonzero functional on this algebra,
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hence on kF, and (since SΰlkF — 9Ki\F) we have some x in Wlx for
which φ(f) = f(x), f in kWl2. Choosing / in kWl2 with f(x) = φ(f) = 1,
we have /# in Jfc9Jί2 for any g in 4̂, so φ(g) = <£>(/#) = /#(#) = */(&)•

For (2.3), we already have dΛcd1 (since feA assumes its maxi-
mum modulus on dx by the definition of A) and d\d2adA by (2.8).
Consequently (2.3) follows immediately if F — d2 is nowhere dense in
dx (as in the case of our examples to follow) since dx — (d\d2)~ czdA.

For the general case we need only show x in θ2 lies in dA, and
for this part of the argument we shall restrict our attention to dx

and regard A and Aλ as subalgebras of C(dx), A2 as one of C(d2). By
(2.12) (with X = dlf F = d2 and Ax our algebra) we have an element
/ of Ax peaking on F, so f(F) = 1, | / | < 1 on d\F; and of course
feA. For our x in d2 and any open neighborhood U of x in ^ we
know there is a g2 in A2 assuming its maximum modulus over d2 — 1
say—only within d2 f] U, and by (2.5) g2 has an extension g in A.
Moreover for some ε > 0, | g2 \ < 1 — e on θa\ U, so | gf | < 1 — ε on some
open subset V of dλ containing 92\l7. Since 02 is contained in the open
subset Ul) V of dl9 sup |/(9A(ί7U F)) | < 1, so | / ^ | < l - ε on
#i\(I7U F) for some w, while \fng\ S \g\ < 1 - ε on F. Thus
\fng I < 1 — ε on d^U; since /*flf = g on 02 the element / n # of A as-
sumes its maximum modulus 1 only within U, whence xedA and d2 c dA

as desired.

2.2 REMARK. (2.2)-(2.4) apply to a more general construction;
for with F czd1 having μF = 0 for all /ί in M(flx) orthogonal to Ax as
before, and /> any (not one-to-one) continuous map of F onto d2 we
can set

and again arrive at the same conclusions. Here, of course, in forming
9K there is some identification of points in F, while dA is dx with just
such identifications. (An appropriate modification of (4.1) below can
also be obtained in this setting.)

3. We can now write down our example. Let A1 be the disc
algebra of all functions continuous in the disc D = {z : | z \ ̂  1} and
analytic on \z\ < 1. Let A2 be Rudin's algebra [10] of all functions
continuous on the Riemann sphere S and analytic off a compact
perfect O-dimensional subset E of the plane with E Π U void or of
positive plane measure for each open U. Then3 E — d2 and W12 = S [2].

3 This follows from the argument of [10, p. 826]. For if U is open in S and
En U ±F φ is open and closed in E then—with EΠ U in place of E—[1O] shows there
are non-constant / in C(S) analytic off EΓ\U, hence elements of A assuming their
maximum modulus only within EΓ\U.
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Now pick a Cantor set F of measure 0 on the unit circle T1 = dx so
μF = 0 for each μ in M{TX) orthogonal to Ax by the F. and M. Riesz
theorem [8]. E = d2 and F are homeomorphic so we may identify
these sets as before, in effect tacking S onto D along F. Our algebra
A on the resulting space 2Jϊ = D U S consists of all functions continuous
on an open subset of dA = d1= T1 must vanish on 9Ji and analytic off T\

Now S\E — W12\F is a non-void open subset of 9JΪ4 = 3JΪ on which
nonzero elements of A do vanish by (2.4); but an / in A which vanishes
on all of T\ being analytic on the interior of D, whence / = 0.

4Φ We conclude with a modification of our example in which our
nonanalytic integral domain is also a dirichlet algebra on its Silov
boundary [8]. In order to see the example is dirichlet, we require
the following additional information, which holds in the context of § 2

Let At Alf A2 again be as in § 2. Let At denote the measures
on di orthogonal to Aif and A1 those on dA = dx orthogonal to A.
(Since d2adlt we shall view At as consisting of measures on β1#)
Then

(4.1) A± = At + At .

(4.1) is a consequence of an argument of Browder and Wermer
[4], To obtain it, consider the weak* closed subspaces AL, At of the
dual M(θ1) of (7(00. Clearly At c A\ so At + At c A1-. On the other
hand any / in C{dλ) orthogonal to At + At has /1 dt in At \ dif so /1 9< has
an extension Q{ in Aif ί = 1, 2; and evidently ^ and #2 combine to yield
an extension g oί f, ge A. So fe A\dl9 which shows At + At is weak*
dense in A^.

So it suffices to prove At + At is weak* closed in ikf(#i). But by
hypothesis ft2 = 0 for all μ in At, so /£ in Ai1 and v in A^ are mutually
singular, and | | ^ + ^| | = 11/̂11 + 11̂ 11. Consequently the argument
of Browder and Wermer [4] applies to complete the proof of (4.1).

Now let Z2 be the lattice points in the plane, a an irrational
real number, and H the half-space of Z* of all (m, n) with

ma + n ^ 0 .

Let Ax be the closed algebra of continuous functions on the torus T2

spanned by the characters of T2 corresponding to the elements of the
semigroup H; alternatively A1 consists of those / in C( T2) with Fourier
coefficients vanishing off H. A description of 20̂  can be found in [1];
but here we only need the fact that dx = T2 [1], and that Aλ is a
dirichlet algebra on T2.

Let F be the subset T1 x {1} of T2. Then from an extension of the
F. and M. Riesz theorem obtained recently by K. de Leeuw and the
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author [6] we have4 (i) μF = 0 for all μ in M{T2) orthogonal to Ax

[6, Th. 3.1], while (ii) any / in Aλ which vanishes on an open subset
of T2 vanishes identically [6, Th. 4.1]. From (i) we can apply our con-
struction, identifying F with the boundary of the disc D, taking A2

as the disc algebra. The resulting algebra A again contains nonzero
elements vanishing on an open subset of 2DΪ4—the interior of D— and
again is analytic on dΛ = T2 by (ii).

And A is dirichlet on T2 by (4.1): for if λ is any real measure
in M(T2) orthogonal to A, so that λ — μx + μ2, μ{ in Aj-, then μ2 = XFf

μx = χF,9 by (i). Consequently μt is a real measure on 0< orthogonal
to Ai9 hence zero since A{ is dirichlet on dit

Finally, note that A has a simple description as a subalgebra of
C(T2): viewing T1 as the reals mod 2τr, A consists of all / with

Γ Γ/(#> φ)e-UmΘ+nφ)dθdφ = 0 , ma + n < 0 ,
Jo Jo

Γ/(0, φ)e~inφdφ = 0 , n < 0 .
J
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4 Here the map φ of [6] taking Z2 into R is (m, n) -> ma + n.






