# CONVERGENCE OF EXTENDED BERNSTEIN POLYNOMIALS IN THE COMPLEX PLANE 

J. J. Gergen, F. G. Dressel, and W. H. Purcell, Jr.

1. Introduction. Let $f(x)$ be defined on $[0,1]$. The following two theorems on the Bernstein polynomials corresponding to $f$,

$$
\begin{equation*}
B_{n}(x ; f)=\sum_{\lambda=0}^{n} f\left(\frac{\lambda}{n}\right)\binom{n}{\lambda} x^{\lambda}(1-x)^{n-\lambda}, \quad n=1,2, \cdots, \tag{1.1}
\end{equation*}
$$

are well known.
Theorem I. If $f(x)$ is continuous on $[0,1]$, then $B_{n}(x ; f) \rightarrow f(x)$ as $n \rightarrow \infty$ uniformly on $[0,1]$.

Theorem II. If $f(z), z=x+i y$, is analytic in the interior $E^{\prime}$ of the ellipse with foci at $z=0$ and $z=1$, then $B_{n}(z ; f) \rightarrow f(z)$ as $n \rightarrow \infty$ on $E$, this convergence being uniform on each closed subset of $E$.

The first of these results is due to S. Bernstein [1], the second to L. V. Kantorovitch [6] (See also [4], [7]).

For $f(x)$ defined on $[0, \infty)$ the functions

$$
\begin{equation*}
P_{k}(x ; f)=e^{-k x} \sum_{\lambda=0}^{\infty} \frac{(k x)^{\lambda}}{\lambda!} f\left(\frac{\lambda}{k}\right), \quad 0<k \tag{1.2}
\end{equation*}
$$

form a natural extension of the Bernstein polynomials, the terms of (1.2) corresponding to a Poisson distribution in much the same manner as the terms of (1.1) correspond to a binomial distribution. The functions (1.2) have been considered by Favard [5], Szász [9], and Butzer [3] for the real case. The results of Favard and Szász include the following analogue of Theorem I.

Theorem III. If $f(x)$ is continuous on $[0, \infty)$, and if $f(x)=O\left(x^{A}\right)$. [Szász], or more generally, if $f(x)=O\left(e^{4 x}\right)$ [Favard] as $x \rightarrow \infty$, where $A$ is a positive, real constant, then $P_{k}(x ; f) \rightarrow f(x)$ as $k \rightarrow \infty$ for $x$ on $[0, \infty)$, this convergence being uniform on each finite subinterval of $[0, \infty)$.

[^0]The order condition $f(x)=O\left(x^{A}\right)$ can be replaced by $O\left(e^{4 x}\right)$ in Szasz' proof without difficulty through the application of the inequality

$$
\begin{aligned}
& \sum_{|(\lambda \lambda)-x| \geqq \delta} \frac{(t u x)^{\lambda}}{\lambda!} \leqq \frac{1}{\delta^{2} u^{2}} \sum_{\lambda=0}^{\infty} \frac{(\lambda-u x)^{2}(t u x)^{\lambda}}{\lambda!} \\
& \quad=\frac{x}{\delta^{2} u}\left[u x(t-1)^{2}+t\right] e^{t u x},
\end{aligned}
$$

valid for $0<u, x, \delta, t$, in Szász' treatment [9, p. 240] of $S_{4}$.
In this paper our objective is to obtain an analogue of Theorem II. Our principal results are stated in § 2 below. In our analysis we depend heavily upon the work [10] of Szász and Yeardley. Bohman [2] considers polynomials of the form $e^{-N z} \sum_{\lambda=0}^{n}\left((N z)^{\lambda} / \lambda!\right) f(\lambda / n), N=$ $N(n)$, in the complex plane, but there seems to be no existing treatment of the series (1.2) for the complex case.
2. Principal results Corresponding to the positive number $d$, let $p(d)$ denote the parabolic set $\left\{z\left||z|<x+2 d^{2}\right\}\right.$. We will say that a function $f(z)$ defined in $p(d)$ has property $B$ in $p(d)$ if there corresponds to each $b, 0<b<d$, a positive number $B(b)$ such that for $z \in p(b)$

$$
\begin{equation*}
|f(z)| \leqq B(b) \exp \left\{\frac{1}{2} x-|x|^{1 / 2}\left[b^{2}-\frac{1}{2}(|z|-x)\right]^{1 / 2}\right\} \tag{2.1}
\end{equation*}
$$

A collection of functions $\left\{f_{k}(x)\right\}_{0<k}$, each defined in $p(d)$, will be said to have property $B$ uniformly in $p(d)$ if there corresponds to each $b$, $0<b<d$, a positive number $B(b)$, independent of $k$, such that (2.1) holds for each $f_{k}$. Our principal theorem is then

Theorem IV. Suppose that $f(z)$ is analytic and has property $B$ in $p(d)$, where $d$ is a positive number. Then the functions

$$
\begin{equation*}
P_{k}(z ; f)=e^{-k z} \sum_{\lambda=0}^{\infty} \frac{(k z)^{\lambda}}{\lambda!} f\left(\frac{\lambda}{k}\right), \quad 0<k, \tag{2.2}
\end{equation*}
$$

satisfy the following four conditions. (1) $P_{k}(z ; f)$ is an entire function of $z$ for each $k$. (2) $P_{k}(z ; f) \rightarrow f(z)$ as $k \rightarrow \infty$ in $p(d)$. (3) The convergence in (2) is uniform on each compact subset of $p(d)$. (4) The functions $\left\{P_{k}\left(z / \chi_{k} ; f\right)\right\}_{0<k}$, where $\chi_{k}=\exp [1 /(2 k)]$, have property $B$ uniformly in $p(d)$.

We note the result of Pollard [8] and Szász and Yeardley [10] that, in order that a function $f(z)$ be analytic and have property $B$ in $p(d), 0<d$, it is necessary and sufficient that $f(z)$ possess a Laguerre series (of order 0),

$$
f(z) \sim \sum_{n=0}^{\infty} a_{n} L_{n}(z), a_{n}=\int_{0}^{\infty} e^{-x} L_{n}(x) f(x) d x
$$

which converges to it in $p(d)$. As a consequence of this result, the hypothesis in Theorem IV that $f(z)$ be analytic and have property $B$ in $p(d)$ can be replaced by the hypothesis that $f(z)$ possess a Laguerre series which converges to it in $p(d)$. The result of Szász and Yeardley [10] is valid as well for general Laguerre series.
3. Lemmas for Theorem $I V$. It is convenient to develop the proof of Theorem IV in lemmas. Unless the contrary is stated we assume $z$ arbitrary and $0<k$.

Lemma 1. If $f(z)$ is a polynomial, then $P_{k}(z ; f)$ is a polynomial of the same degree as $f$.

Proof. We can suppose $f \equiv z^{n}$, where $n$ is a nonnegative integer. We have

$$
e^{-z} \sum_{\lambda=0}^{\infty} \frac{z^{\lambda}}{\lambda!} \lambda^{n}=e^{-z}\left(z D_{z}\right)^{n} e^{z}=\sum_{j=0}^{n} c_{j}^{(n)} z^{j},
$$

where the $c_{j}^{(n)}$ are constants. We obtain then

$$
P_{k}(z ; f)=e^{-k z} \sum_{n=0}^{\infty} \frac{(k z)^{\lambda}}{\lambda!}\left(\frac{\lambda}{k}\right)^{n}=\frac{1}{k^{n}} \sum_{j=0}^{n} c_{j}^{(n)}(k z)^{j}
$$

and the lemma follows.
We may observe that $c_{n}^{(n)}=1$. It follows that $P_{k}(z ; f) \rightarrow z^{n}$ as $k \rightarrow \infty$ for every $z$, the convergence being uniform on each compact set. The same result then holds for any polynomial.

Lemma 2. Denote by $G_{k}^{(n)}(z)$ the polynomial

$$
G_{k}^{(n)}(z)=P_{k}\left(z ; L_{n}\right), \quad n=0,1,2, \cdots,
$$

where $L_{n}$ is the nth Laguerre polynomial of order 0 . Then

$$
\begin{equation*}
\left|G_{k}^{(n)}(z)\right| \leqq \exp \left(-k x+k \chi_{k}|z|\right), \quad n=1,2, \cdots, \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} G_{k}^{(n)}(z) w^{n}=\frac{1}{1-w} \exp \left\{-k z+k z \exp \left[\frac{-w}{k(1-w)}\right]\right\},|w|<1 \tag{3.2}
\end{equation*}
$$

Proof. The inequality (3.1) follows from the fact that [11, p. 162]

$$
\begin{equation*}
\left|L_{n}(x)\right| \leqq \exp \left(\frac{1}{2} x\right), \quad 0 \leqq x, n=1,2, \cdots \tag{3.3}
\end{equation*}
$$

For the Laguerre polynomials $L_{n}$ we have [11, p. 100]

$$
\sum_{n=0}^{\infty} L_{n}(z) w^{n}=\frac{1}{1-w} \exp \left(\frac{-z w}{1-w}\right), \quad|w|<1
$$

from which we obtain

$$
\begin{aligned}
e^{-k z} \sum_{\lambda=0}^{\infty} \frac{(k z)^{\lambda}}{\lambda!} \sum_{n=0}^{\infty} L_{n}\left(\frac{\lambda}{k}\right) w^{n} & =\frac{e^{-k z}}{1-w} \sum_{\lambda=0}^{\infty} \frac{(k z)^{\lambda}}{\lambda!} \exp \left[\frac{-\lambda w}{k(1-w)}\right] \\
& =\frac{1}{1-w} \exp \left\{-k z+k z \exp \left[\frac{-w}{k(1-w)}\right]\right\}
\end{aligned}
$$

For $z, k, w$, fixed, $|w|<1$, the double series on the left here is absolutely convergent. Interchanging the order of summation in this series we get (3.2).

Lemma 3. Let

$$
H_{k}(z, w)=\mathscr{R}\left\{-k z+k z \exp \left[\frac{-w}{k(1-w)}\right]\right\} .
$$

Then

$$
\begin{equation*}
H_{k}(z, w) \leqq \chi_{k} r(|z|-r x) /\left(1-r^{2}\right), \quad|w|=r<1 \tag{3.4}
\end{equation*}
$$

This is a principal lemma for the proof of Theorem IV. We show that

$$
\begin{equation*}
H_{k}(z, w) \leqq \alpha r(|z|-r x) /\left(1-r^{2}\right), \quad|w|=r<1 \tag{3.5}
\end{equation*}
$$

where $\alpha=\alpha(r, k)=\exp \{r /[k(1+r)]\}$. This inequality is slightly stronger than (3.4). The proof is based on the representation (3.6), the use of which was suggested by the referee and results in a simpler proof than that originally submitted by the authors for (3.4).

Proof. The inequality (3.5) is trivial for $z=0$ or $w=0$. We assume then $|z|,|w|, k$ fixed with $z \neq 0,0<r<1$. We write

$$
\begin{array}{ll}
z=|z| e^{i \phi}, & \rho=r /\left(1-r^{2}\right), \quad e^{i \theta}=w(1-\bar{w}) /[r(1-w)] \\
a=1 / k, & \Phi=\phi-a \rho \sin \theta
\end{array}
$$

We have then

$$
\begin{equation*}
w /(1-w)=\rho\left(r+e^{i \theta}\right) \tag{3.6}
\end{equation*}
$$

and we find that (3.5) holds provided

$$
\begin{equation*}
T(\theta, \phi)=(\alpha \alpha r \rho-1) \cos \phi+e^{-a_{\rho}(r+\cos \theta)} \cos \Phi \leqq \alpha \alpha \rho \tag{3.7}
\end{equation*}
$$

for $|\theta|,|\phi| \leqq \pi$. Since $T$ is symmetric in the origin in the $(\theta, \phi)-$
plane, it is enough to show that (3.7) holds for $(\theta, \phi)$ in the rectangle $R: 0 \leqq \theta \leqq \pi,|\phi| \leqq \pi$.

Suppose first that $1 \leqq \alpha \alpha r \rho$. Since $e^{t} \leqq 1+t e^{t}, 0 \leqq t$, we then. have

$$
T \leqq a \alpha r \rho-1+\alpha \leqq a \alpha r \rho+a \alpha r /(1+r)=a \alpha \rho
$$

which is (3.7) for this case.
Suppose then that $\operatorname{a\alpha rp}<1$. Let $(\theta, \phi)$ denote a maximal point. of $T$ on $R$. We consider three possible cases

$$
\theta=0, \quad \theta=\pi, \quad 0<\theta<\pi
$$

If $\theta=0$, then

$$
T=\left(\alpha \alpha r \rho-1+e^{-a r /(1-r)}\right) \cos \phi .
$$

If the coefficient of $\cos \phi$ here is nonnegative, we have immediately

$$
T \leqq \alpha \alpha r \rho \leqq \alpha \alpha \rho
$$

If this coefficient is negative, we have

$$
\begin{aligned}
T & \leqq e^{\operatorname{arl} /(1-r)}\left(e^{a r /(1-r)}-1\right)-\operatorname{a\alpha r} \rho \\
& \leqq \operatorname{ar} /(1-r)-\operatorname{a\alpha r} \rho \leqq \operatorname{a\alpha \rho } \rho
\end{aligned}
$$

If $\theta=\pi$, then

$$
T=(\alpha \alpha r \rho-1+\alpha) \cos \phi \leqq \alpha \alpha \rho
$$

Accordingly, to complete the proof it remains to consider the case: $0<\theta<\pi$.

At $(\theta, \phi)$ both first partial derivatives of $T$ vanish. Accordingly we obtain

$$
\begin{align*}
& \sin (\theta+\Phi)=\sin \theta \cos \Phi+\cos \theta \sin \Phi=0,  \tag{3.8}\\
& (\operatorname{a\alpha r} \rho-1) \sin \phi+e^{-a_{\rho}(r+\cos \theta)} \sin \Phi=0 .
\end{align*}
$$

From these relations we then get

$$
\begin{aligned}
T \sin \theta & =(a \alpha r \rho-1) \sin \theta \cos \phi+e^{-a \rho(r+\cos \theta)} \sin \theta \cos \Phi \\
& =(\alpha \alpha r \rho-1) \sin \theta \cos \phi-e^{-a \rho(r+\cos \theta)} \cos \theta \sin \Phi \\
& =(a \alpha r \rho-1) \sin (\theta+\phi) .
\end{aligned}
$$

Now from (3.8) $\theta+\Phi=n \pi$, where $n=0, \pm 1, \cdots$. Thus $\theta+\phi=$ $\theta+\Phi+a \rho \sin \theta=n \pi+a \rho \sin \theta$, and

$$
\begin{equation*}
T \sin \theta=(a \alpha r \rho-1) \sin (n \pi+a \rho \sin \theta) \tag{3.9}
\end{equation*}
$$

From (3.9) we get, since $\operatorname{a\alpha r} \rho<1$ and $0<\theta<\pi$,

$$
\begin{equation*}
T \sin \theta \leqq(1-\alpha \alpha r \rho) \alpha \rho \sin \theta \leqq \alpha \rho \sin \theta \tag{3.10}
\end{equation*}
$$

The inequality (3.10) gives $T \leqq \alpha a \rho$, which completes the proof.
Lemma 4. Let $\alpha, \beta, \gamma$ be positive constants such that $\alpha \leqq \beta$. Put $u(t)=4 \alpha^{2} / t+t \beta^{2} /(4+t)$. Then
$I(\alpha, \beta, \gamma)=\int_{0}^{\infty} \frac{1}{1-e^{-t}} \frac{1}{t^{3 / 2}} \exp \left[-u(t)-\frac{4 \gamma^{2}}{t}\right] d t \leqq M_{1}(\gamma) \exp \left(\alpha^{2}-2 \alpha \beta\right)$, where

$$
M_{1}(\gamma)=e\left[2+\sqrt{\pi} /\left(16 \alpha^{3}\right)\right] /(e-1)
$$

This lemma and the next two are closely related to results obtained by Szász and Yeardley [10]. Our proofs are somewhat different from theirs. The precise bound $M_{3}$ appearing in Lemma 6 does not occur in their article.

Proof. If $\alpha=\beta$, then $u(t)=\alpha^{2}+16 \alpha^{2} /[t(4+t)]>\alpha^{2}=2 \alpha \beta-\beta^{2}$ for $0<t$. If $\alpha<\beta$, then $u(t)$ has the minimum value $2 \alpha \beta-\alpha^{2}$ on this interval. Thus

$$
I \leqq \exp \left(\alpha^{2}-2 \alpha \beta\right) \int_{0}^{\infty} \frac{1}{1-e^{-t}} \frac{1}{t^{3 / 2}} \exp \left(-\frac{4 \gamma^{2}}{t}\right) d t
$$

For $0<t \leqq 1$ we have $t(1-1 / e) \leqq 1-e^{-t}$, and for $1 \leqq t$ we have $1-1 / e \leqq 1-e^{-t}$. This gives

$$
\begin{aligned}
I \leqq & {[e /(e-1)] \exp \left(\alpha^{2}-2 \alpha \beta\right) } \\
& \times\left[\int_{0}^{1} t^{-5 / 2} \exp \left(-4 \alpha^{2} / t\right) d t+\int_{1}^{\infty} t^{-3 / 2} \exp \left(-4 \alpha^{2} / t\right) d t\right]
\end{aligned}
$$

Now

$$
\begin{aligned}
& \int_{0}^{1} t^{-5 / 2} \exp \left(-4 \alpha^{2} / t\right) d t \leqq \int_{0}^{\infty} t^{-5 / 2} \exp \left(-4 \alpha^{2} / t\right) d t=\sqrt{\pi} /\left(16 \gamma^{3}\right) \\
& \int_{1}^{\infty} t^{-3 / 2} \exp \left(-4 \gamma^{2} / t\right) d t \leqq \int_{1}^{\infty} t^{-3 / 2} d t=2
\end{aligned}
$$

and the lemma follows.
Lemma 5. If $0<b<c$, and

$$
J(b, c, z)=\int_{0}^{\infty} \frac{1}{1-e^{-t}} \frac{1}{t^{3 / 2}} \exp \left[-\frac{4 c^{2}}{t}+\frac{2 e^{-t / 2}}{1-e^{-t}}\left(|z|-x e^{t / 2}\right)\right] d t
$$

then

$$
J(b, c, z) \leqq M_{2}(b, c) \exp \left\{x-2|x|^{1 / 2}\left[b^{2}-\frac{1}{2}(|z|-x)\right]^{1 / 2}\right\}
$$

for $z \in p(b)$, where

$$
M_{2}(b, c)=e^{4 b^{2}} M_{1}\left(\left(c^{2}-b^{2}\right)^{3 / 2}\right)
$$

Proof. Suppose $z \in p(b)$, so that $0<b^{2}+x$. From the inequalities $e^{-t / 2} /\left(1-e^{-t}\right) \leqq 1 / t, e^{-t / 2}\left(1-e^{-t / 2}\right) /\left(1-e^{-t}\right) \leqq 2 /(4+t)$, valid for $0<t$, we then obtain for $0<t$

$$
\begin{aligned}
\frac{2 e^{-t / 2}}{1-e^{-t}}\left(|z|-x e^{-t / 2}\right) & =\frac{2 e^{-t / 2}}{1-e^{-t}}\left[|z|-x+x\left(1-e^{-t / 2}\right)\right] \\
& \leqq \frac{2 e^{-t / 2}}{1-e^{-t}}\left[|z|-x+\left(x+b^{2}\right)\left(1-e^{-t / 2}\right)\right] \\
& \leqq 2(|z|-x) / t+4\left(x+b^{2}\right) /(4+t) \\
& =2(|z|-x) / t+x+b^{2}-t\left(x+b^{2}\right) /(4+t)
\end{aligned}
$$

Thus

$$
\begin{aligned}
J \leqq e^{x+b^{2}} \int_{0}^{\infty} \frac{1}{1-e^{-t}} \frac{1}{t^{3 / 2}} \exp \left\{\frac{-4\left(c^{2}-b^{2}\right)}{t}\right. & -\frac{4}{t}\left[b^{2}-\frac{1}{2}(|z|-x)\right] \\
& \left.-\frac{t\left(x+b^{2}\right)}{4+t}\right\} d t
\end{aligned}
$$

Since $b^{2}-\frac{1}{2}(|z|-x) \leqq x+b^{2}$, Lemma 4 is applicable. Applying this lemma we then get for $z \in p(b)$

$$
\begin{aligned}
J \leqq & e^{x+b^{2}} M_{1}\left(\left(c^{2}-b^{2}\right)^{3 / 2}\right) \\
& \cdot \exp \left\{b^{2}-\frac{1}{2}(|z|-x)-2\left(x+b^{2}\right)^{1 / 2}\left[b^{2}-\frac{1}{2}(|z|-x)\right]^{1 / 2}\right\}
\end{aligned}
$$

Now $|x|^{1 / 2}-b \leqq\left(x+b^{2}\right)^{1 / 2}$ for $z \in p(b)$, and the lemma follows readily.
Lemma 6. Suppose $0<b<c$. Then

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left|G_{k}^{(n)}\left(z / \chi_{k}\right)\right|^{2} \exp (-4 c \sqrt{n}) \\
& \leqq M_{3}(b, c) \exp \left\{x-2|x|^{1 / 2}\left[b^{2}-\frac{1}{2}(|z|-x)\right]^{1 / 2}\right\}
\end{aligned}
$$

for $z \in p(b)$, where

$$
M_{3}(b, c)=(2 c \sqrt{\pi}) M_{2}(b, c) .
$$

Proof. Let $C_{r}, 0<r<1$, denote the circle of radius $r$ about the origin in the $w$-plane. Making use of Lemmas 2 and 3 and a classical
integral formula we obtain

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left|G_{k}^{(n)}(z)\right|^{2} r^{2 n} & =\frac{1}{2 \pi r} \int_{\sigma_{r}} \frac{1}{|1-w|^{2}}\left|\exp \left\{-k z+k z \exp \left[\frac{-w}{k(1-w)}\right]\right\}\right|^{2}|d w| \\
& =\frac{1}{2 \pi r} \int_{\sigma_{r}} \frac{1}{|1-w|^{2}} \exp \left[2 H_{k}(z ; w)\right]|d w| \\
& \leqq \frac{1}{2 \pi r} \int_{\sigma_{r}} \frac{1}{|1-w|^{2}} \exp \left\{2 \chi_{k} r(z-r x) /\left(1-r^{2}\right)\right\}|d w| \\
& =\frac{1}{1-r^{2}} \exp \left[2 \chi_{k} r(|z|-r x) /\left(1-r^{2}\right)\right]
\end{aligned}
$$

Thus, if $0<t$, then

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left|G_{k}^{(n)}\left(z / \chi_{k}\right)\right|^{2} e^{-n t} \\
& \quad \leqq\left[1 /\left(1-e^{-t}\right)\right] \exp \left\{2 e^{-t / 2}\left(|z|-x e^{-t / 2}\right) /\left(1-e^{-t}\right)\right\}
\end{aligned}
$$

On the other hand,

$$
\exp (-4 c \sqrt{n})=(2 c / \sqrt{\pi}) \int_{0}^{\infty} t^{-3 / 2} \exp \left(-n t-4 c^{2} / t\right) d t
$$

Hence, applying Lemma 5, we get

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left|G_{k}^{(n)}\left(z / \chi_{k}\right)\right|^{2} \exp (-4 c \sqrt{n}) \\
&=(2 c / \sqrt{\pi}) \sum_{n=0}^{\infty}\left|G_{k}^{(n)}\left(z / \chi_{k}\right)\right|^{2} \int_{0}^{\infty} t^{-3 / 2} \exp \left(-n t-4 c^{2} / t\right) d t \\
&=(2 c / \sqrt{\pi}) \int_{0}^{\infty} t^{-3 / 2} \exp \left(-\left(4 c^{2} / t\right)\left[\sum_{n=0}^{\infty}\left|G_{k}\left(z / \chi_{k}\right)\right|^{2} \exp (-n t)\right] d t\right) \\
& \leqq(2 c / \sqrt{\pi}) \int_{0}^{\infty} \frac{t^{-3 / 2}}{1-e^{-t}} \exp \left[\frac{-4 c^{2}}{t}+\frac{2 e^{-t / 2}}{1-e^{-t}}\left(|z|-x e^{-t / 2}\right)\right] d t \\
& \leqq(2 c / \sqrt{\pi}) M_{2}(b, c) \exp \left\{x-2|x|^{1 / 2}\left[b^{2}-\frac{1}{2}(|z|-x)\right]^{1 / 2}\right\}
\end{aligned}
$$

for $z \in p(b)$. This is the required inequality.
4. Proof of Theorem IV. Assume the hypotheses of Theorem: IV hold. We note first that under these hypotheses $f(x)$ satisfies

$$
\begin{equation*}
|f(x)| \leqq A e^{x / 2}, \quad 0 \leqq x \tag{4.1}
\end{equation*}
$$

for some positive constant $A$. It is seen then that the series in (2.2) converges for $z, k$ arbitrary, $0<k$. Thus conclusion (1) of Theorem IV holds.

Next, by the theorem of Pollard, and Szász and Yeardley noted in $\S 2$ above, the hypotheses of Theorem IV imply that $f$ can be repre--
sented in $p(d)$ by a convergent Laguerre series:

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n} L_{n}(z), z \in p(d) ; \quad a_{n}=\int_{0}^{\infty} e^{-x} L_{n}(x) f(x) d x \tag{4.2}
\end{equation*}
$$

From the convergence in $p(d)$ of the series (4.2) it follows that, if $\varepsilon$ is an arbitrary positive number, then

$$
\begin{equation*}
\left|a_{n}\right| \leqq A_{\varepsilon} \exp [2 n(-d+\varepsilon)], \quad n=1,2, \cdots \tag{4.3}
\end{equation*}
$$

for a suitably chosen positive constant $A_{\varepsilon}$. From (4.3) we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|a_{n}\right|<\infty, M(c ; f)=\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} \exp (4 c \sqrt{n})<\infty \tag{4.4}
\end{equation*}
$$

the latter provided $0<c<d$.
Now consider $P_{k}(z ; f)$. We have formally

$$
\begin{align*}
P_{k}(z ; f) & =e^{-k z} \sum_{\lambda=0}^{\infty} \frac{(k z)^{\lambda}}{\lambda!} \sum_{n=0}^{\infty} a_{n} L_{n}(\lambda / k)  \tag{4.5}\\
& =\sum_{n=0}^{\infty} a_{n}\left[e^{-k z} \sum_{\lambda=0}^{\infty} \frac{(k z)^{\lambda}}{\lambda!} L_{n}\left(\frac{\lambda}{k}\right)\right] \\
& =\sum_{n=0}^{\infty} a_{n} G_{k}^{(n)}(z)
\end{align*}
$$

Making use of (3.3) and the first inequality in (4.4) we see that the series in the first line of (4.5) converges absolutely for $z, k$ arbitrary, $0<k$. This justifies the formal manipulation in (4.5) and we accordingly have

$$
\begin{equation*}
P_{k}(z ; f)=\sum_{n=0}^{\infty} a_{n} G_{k}^{(n)}(z) \tag{4.6}
\end{equation*}
$$

for $z, k$ arbitrary, $0<k$. From (4.6) we get

$$
\left|P_{k}(z ; f)\right|^{2} \leqq \sum_{n=0}^{\infty}\left|a_{n}\right|^{2} \exp (4 c \sqrt{n}) \sum_{n=0}^{\infty}\left|G_{k}^{(n)}(z)\right|^{2} \exp (-4 c \sqrt{n})
$$

Thus, by Lemma 6 , if $0<b<c<d$, then

$$
\left|P_{k}\left(z / \chi_{k} ; f\right)\right|^{2} \leqq M(c ; f) \cdot M_{3}(b, c) \cdot \exp \left\{x-2|x|^{1 / 2}\left[b^{2}-\frac{1}{2}(|z|-x)\right]^{1 / 2}\right\}
$$

for $z \in p(b)$. For a fixed $b, 0<b<d$, on taking $c=\frac{1}{2}(b+d)$, say, we find then that conclusion (4) holds with

$$
B(b)=\left[M(c ; f) M_{3}(b, c)\right]^{1 / 2}, \quad c=\frac{1}{2}(b+d) .
$$

It remains to consider conclusions (2) and (3). It is enough to show
that, if $S$ is a compact subset of $p(d)$, then $P_{k}(z ; f) \rightarrow f(z), k \rightarrow \infty$, uniformly on $S$. For $0<b, 0<x_{0}$ let

$$
U\left(b, x_{0}\right)=\left\{z| | z \mid<x+2 b^{2}, x<x_{0}\right\} .
$$

Choose $b_{1}, b_{2}, b_{3} ; x_{1}, x_{2}, x_{3}$ such that $0<b_{1}<b_{2}<b_{3}<d, 0<x_{1}<x_{2}<x_{3}$, and $S \subset U\left(b_{1}, x_{1}\right)$. Making use of conclusion (4), we infer that there exists a constant $M^{*}$ such that

$$
\left|P_{k}\left(z / \chi_{k} ; f\right)\right| \leqq M^{*}, z \in U\left(b_{3}, x_{3}\right) .
$$

Choose $k_{0}=\max \left\{\left[4 \cdot \ln \left(b_{3} / b_{2}\right)\right]^{-1},\left[2 \cdot \ln \left(x_{3} / x_{2}\right)\right]^{-1}\right\}$. Then for $k_{0}<k$ and $z \in U\left(b_{2}, x_{2}\right)$ we have $z \chi_{k} \in U\left(b_{3}, x_{3}\right)$. Thus

$$
\begin{equation*}
\left|P_{k}(z ; f)\right|=\left|P_{k}\left(z \chi_{k} \mid \chi_{k} ; f\right)\right| \leqq M^{*}, k_{0}<k, z \in U\left(b_{2}, x_{2}\right) . \tag{4.7}
\end{equation*}
$$

Recalling (4.1), we have also, by Theorem III,

$$
P_{k}(x ; f) \rightarrow f(x), k \rightarrow \infty, 0<x<x_{2} .
$$

By an application of Vitali's theorem, $\left\{P_{k}(z ; f)\right\}_{k_{0}<k}$ converges uniformly on $U\left(b_{1}, x_{1}\right)$ to a function $F(z)$, analytic on $U\left(b_{1}, x_{1}\right)$. Since $f(z)$ is. analytic on $U\left(b_{1}, x_{1}\right)$ and $F(x)=f(x), 0<x<x_{1}$, it follows that $F(z)=$ $f(z)$ throughout $U\left(b_{1}, x_{1}\right)$, and the proof of complete.

## References

1. Serge Bernstein, Démonstration du théorème de Weierstrass, fondeé sur le calcul des: probabilitiés, Kharkov Universitet. Kharkovskoe Matematicheskoe Obshchestvo. Soobshchenîa, 13 (series 2) (1912-1913) 1-2.
2. Harold Bohman, On approximation of continuous and analytic functions, (series 2). (1952-1954), 43-56.
3. P. L. Butzer, On the extensions of Bernstein polynomials to the infinite interval, Amer. Math. Soc. Proc., 5 (1954), 547-553.
4. P. L. Butzer, Summability of generalized Bernstein polynomials, I, Duke Mathematical Journal, 22 (1955) 617-623.
5. Jean Favard, Sur les multiplicateurs d'interpolation, Journal de Mathematiques. Pures et Appliquees, 23 (series 9), (1944), 219-247.
6. L. V. Kantorovitch, $O$ sthhodimosti posledovatelnosti polinomov S. N. Bernstein $z a$. predelami osnovnogo intervala, Akademiia nauk SSSR. Izvestiia. VII seriia. Otdelenie: matematicheskikh $i$ estestvennykh nauk, (1931).
7. G. G. Lorentz, Bernstein polynomials, Toronto (1953).
8. Harry Pollard, Representation of an analytic function by a Laguerre series, Annals. of Math. 48 (series 2) (1947), 358-365.
9. Otto Szász, Generalization of S. Bernstein's polynomials to the infinite interval, Journal of Research of the National Bureau of Standards, 45 (1950), 239-245.
10. Otto Szász and Nelson Yeardley, The representation of an analytic function by general Laguerre series, Pacific J. Math. 8 (1958), 621-633.
11. Gabor Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ. 23 (1939). Revised edition, 1959.

[^0]:    Received August 8, 1962, and in revised form January 2, 1963. This research was supported by the United States Air Force under Contract AF 49 (638)-892 and Grant AF AFOSR 61-51, monitored by the Air Force Office of Scientific Research of the Air Research and Development Command.

    Presented by title to the Society, August 10, 1962, abstract 62T-316, under the title: Extension of Bernstein polynomials for the complex plane.

