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1. Introduction. Let f{x) be defined on [0, 1]. The following*
two theorems on the Bernstein polynomials corresponding to /,

(1.1) Bu(x; f) = Σ / ( - ) ( Γ W - *)""λ ' n = l,2, ,
λ=o \ n IV λ /

are well known.

THEOREM I. If fix) is continuous on [0,1], then Bn(x;f)—>f(x}
as n —> co uniformly on [0, 1].

THEOREM II. If f(z), z — x + iy, is analytic in the interior E
of the ellipse with foci at z ~ 0 and 2 = 1, then Bn(z;f)—>f(z) as
n —> GO on E, this convergence being uniform on each closed subset
of E.

The first of these results is due to S. Bernstein [1], the second
to L. V. Kantorovitch [6] (See also [4], [7]).

For f(x) defined on [0, co) the functions

(1.2) Pk(χ; f) = e-k° Σ

form a natural extension of the Bernstein polynomials, the terms of
(1.2) corresponding to a Poisson distribution in much the same manner
as the terms of (1.1) correspond to a binomial distribution. The
functions (1.2) have been considered by Favard [5], Szasz [9], and
Butzer [3] for the real case. The results of Favard and Szasz include
the following analogue of Theorem I.

THEOREM III. If f(x) is continuous on [0, oo), and if f(x) = O(xA)
[Szasz], or more generally, if f(x) = O(eΛx) [Favard] as x—>oo, where
A is a positive, real constant, then Pk{x)f)-+f{%) as k—>co for x
on [0, co), this convergence being uniform on each finite subinterval
Of [0, oo).
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The order condition f(x) = O(xΛ) can be replaced by O(eΛx) in Szasz'
proof without difficulty through the application of the inequality

(tux)λ

δ2u

= δ2U2 'i

t ~ I)2 +

^ (λ —

t ] β ' - ,

ux)\tux)x

λ !

valid for 0 < u, x, δ, t, in Szasz' treatment [9, p. 240] of S4.
In this paper our objective is to obtain an analogue of Theorem

II. Our principal results are stated in § 2 below. In our analysis we
•depend heavily upon the work [10] of Szasz and Yeardley. Bohman
12] considers polynomials of the form erNZ ΣLo ((Nz)λl\\)f(Xln), N =
N(ri), in the complex plane, but there seems to be no existing treat-
ment of the series (1.2) for the complex case.

2 Principal results Corresponding to the positive number d, let
p(d) denote the parabolic set {z\\z\ < x + 2d2}. We will say that a
function f(z) defined in p(d) has property B in p(d) if there corre-
sponds to each b, 0 < b < d, a positive number B(b) such that for

.z 6 p(b)

(2.1) |/(2) I <Ξ Bφ) exp { 1 * - | x |^2[δ2 - 1-(| z \ -

A collection of functions {fk(x)}o<k, each defined in p(d), will be said
to have property B uniformly in p(d) if there corresponds to each 6,
0 < 6 < d, a positive number B(b), independent of fc, such that (2.1)
holds for each fk. Our principal theorem is then

THEOREM IV, Suppose that f(z) is analytic and has property B
in p(d), where d is a positive number. Then the functions

(2.2) Pk(z; f) - β~" Σ ^Γ-f(τ) > ° < k '
λ λ ! V k I

satisfy the following four conditions. (1) Pk(z;f) is an entire
function of z for each k. (2) Pk(z;f)-+f(z) as k—+co in p(d). (3)
The convergence in (2) is uniform on each compact subset of p(d).
(4) The functions {Pk{zjχk\ /)}<><*, where χk = exp[l/(2fc)], have proper-
ty B uniformly in p{d).

We note the result of Pollard [8] and Szasz and Yeardley [10]
that, in order that a function f(z) be analytic and have property B
in p(d), 0 < d, it is necessary and sufficient that f(z) possess a Laguerre

.series (of order 0),
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Σ *Mz), an = \~e-*Ln(x)f(x)dx ,
n=0 JO

which converges to it in p(d). As a consequence of this result, the
hypothesis in Theorem IV that f(z) be analytic and have property B
in p{d) can be replaced by the hypothesis that f(z) possess a Laguerre
series which converges to it in p(d). The result of Szasz and Yeardley
[10] is valid as well for general Laguerre series.

3. Lemmas for Theorem IV. It is convenient to develop the
proof of Theorem IV in lemmas. Unless the contrary is stated we
assume z arbitrary and 0 < k.

LEMMA 1. If f(z) is a polynomial, then Pk(z;f) is a polynomial
<of the same degree as f.

Proof. We can suppose / = zn, where n is a nonnegative integer.
We have

e~z Σ -4"λw = e-\zDzYez = Σ cfW ,
λ=o W j=o

where the cjw) are constants. We obtain then

.and the lemma follows.
We may observe that c^ = 1. It follows that Pk(z;f)—>zn as

k—>o3 for every 2, the convergence being uniform on each compact
set. The same result then holds for any polynomial.

LEMMA 2. Denote by Gk

n){z) the polynomial

Gίn)(z) - Pk(z; Ln) , tt = 0 f l , 2 , . . . ,

where Ln is the nth Laguerre polynomial of order 0. Then

to + fcχ* | z |) , n = 1, 2, ,

<3.2) Σ Giw)(s)w» = —?:—expj-feg + fegexpΓ ~ w

 X Ί1, | w | < 1.
n=o 1 — w I L/c(l — w)Λ)

Proof. The inequality (3.1) follows from the fact that [11, p. 162]

<3.3) I Ln(x) I ̂  exp(Jα ) , 0 ^ x, n = 1, 2, . . .
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For the Laguerre polynomials Ln we have [11, p. 100]

\w\< 1 ,
1 — W

from which we obtain

e x p^ i λ! έΌ "V A? / 1 - w λ=o ( )

= z exp \-kz + kzexv] ~~W j l .
1 — w I L&(1 — w)Λ)

For 2, fc, w, fixed, | w | < 1, the double series on the left here is abso-
lutely convergent. Interchanging the order of summation in this
series we get (3.2).

LEMMA 3. Let

Then

(3.4) Hk(z, w) ^ χkr(\ z \ - rx)/(l - r2) , | w \ = r < 1 .

This is a principal lemma for the proof of Theorem IV. We show
that

(3.5) Hk(z, w) ^ aτ{\ z | - rx)/(l - r2) , | w \ = r < 1 ,

where α = α(r, fc) = exp {r/[k(l + r)]}. This inequality is slightly
stronger than (3.4). The proof is based on the representation (3.6),
the use of which was suggested by the referee and results in a simpler
proof than that originally submitted by the authors for (3.4).

Proof. The inequality (3.5) is trivial for z = 0 or w = 0. We
assume then \z\f \w\9 k fixed with z φ 0, 0 < r < 1. We write

z = \z\eiφ , p = r/(l - r2) , e ίθ

a = l/jfc , Φ = 0 — α/> sin (9 .

We have then

(3.6) w/(l - w) = rtr + βίθ) ,

and we find that (3.5) holds provided

(3.7) T(θ, Φ) = ( α α r ^ - 1) cos ̂  + e-
ap(r+cosθ) cos (P ̂  aap

for ] ^ | , I ^ j ^ π. Since T is symmetric in the origin in the (θ, φ) —
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plane, it is enough to show that (3.7) holds for (Θy φ) in the rectangle
R: 0 ^ θ S π, \Φ\^π.

Suppose first that 1 ^ aarp. Since ef ^ 1 + te\ 0 ^ t, we then,
have

T ^ ααr^ — 1 + a ^ ααr^o + aarj(l + r) = aap,

which is (3.7) for this case.
Suppose then that aarp < 1. Let (θ, φ) denote a maximal point

of T on R. We consider three possible cases

6i = 0 , θ = π , 0 < # < 7 r .

If 0 = 0, then

Γ = (ααηo - 1 + e-αr/(1-r>) cos ψ .

If the coefficient of cos Φ here is nonnegative, we have immediately-

T ^ aarp ^ αα:/? .

If this coefficient is negative, we have

T g eαr/(l-r)(βαr/(l-r) _ 1) -

^ αr/(l — r) — ααr^o

If θ — π, then

T = (aarp — 1 + a) cos ^ ^ aap .

Accordingly, to complete the proof it remains to consider the case^
0 < θ < π.

At (θ, φ) both first partial derivatives of T vanish. Accordingly
we obtain

(3.8) sin (θ + Φ) = sin θ. cos Φ + cos θ sin Φ = 0 ,
(ααr/) - 1) sin ^ + e~ap{r+cosθ) sin <P = 0 .

From these relations we then get

Tsin θ = (ααr/? - 1) sin 0 cos Φ + e-a p ( r + c o s e ) sin θ cos <P

= (ααr/? - 1) sin θ cos Φ - β~αp(r+cosθ) cos 0 sin Φ

= (aarp — 1) sin (θ + Φ) .

Now from (3.8) θ + Φ = nπ, where w = 0, ± 1 , . Thus θ + φ —-
θ + Φ + ap ύn θ = nπ + ap sin 0, and

(3.9) Γsin 0 = (α<xr/? — 1) sin (̂ TΓ + α/? sin 0) .

From (3.9) we get, since aarp < 1 and 0 < θ < π ,
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{3.10) Γsin θ ^ (1 - aarρ)aρ sin θ ^ ap sin θ .

The inequality (3.10) gives T S- aap, which completes the proof.

LEMMA 4. Let a, β, y be positive constants such that a ^ β.
Put u(t) = 4a2/t + tβ2/(4: + t). Then

I(a, β, 7) = p — l — . - L exp \-u(t) - ^ l ld ί ^ M,(y) exp (α2 - 2α/3) ,
Jo 1 — e~ι t3'2 L ί J

= e[2

This lemma and the next two are closely related to results obtained
by Szasz and Yeardley [10]. Our proofs are somewhat different from
theirs. The precise bound M3 appearing in Lemma 6 does not occur
in their article.

Proof. If a = β, then u(t) = a2 + 16α2/[ί(4 + t)] > a2 = 2aβ - β2

for 0 < t. If α < β, then %(ί) has the minimum value 2aβ — α2 on
this interval. Thus

/ £ exp («• - S^j ^ - A , exp

For 0 < t S 1 we have t(l - 1/β) ^ 1 - e~\ and for 1 ^ t we have
1 — 1/β ^ 1 — e~\ This gives

I g [e/(e - 1)] exp (α2 - 2aβ)

x

Now

[1 [°°-Aa2lt)dt = Vπ/(16τ3) ,

J = 2 »
and the lemma follows.

LEMMA 5. If 0 <b < c, and

then
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J(b, c, z) S M2{b, c) exp \x - 2 | x |1/2[&2 - - i ( | z\ -

for z e p(b), where

M2(b, c) = e 4 b 2 M x ( ( c 2 - 62)3 / 2) .

Proof. Suppose z e p(b), so that 0 < b2 + x. From the inequalities
«-*/*/(! - β-*) g i/t, e-*/2(l - β- t / 2)/(l - β-e) g 2/(4 + t), valid for 0 < t,
•we then obtain for 0 < ί

1 — e~*
- x

g 2(| z I - *)/ί + 4(» + 62)/(4 + t)

= 2(| z I - x)/t + x + b2 - t(x + 62)/(4 + ί) .

Thus

«*
4 + t

'Since b2 — i(\z\ — x) ^ x + b\ Lemma 4 is applicable. Applying this
lemma we then get for z e p(b)

J ^ e'+*MS? - bψ2)

• exp {δ2 - - | ( | 2 I - «) - 2(a?

x |1/2 — b £ϊ (x + 62)1'2 for z e p(6), and the lemma follows readily.

LEMMA 6. Suppose 0 < b < c.

, c) exp |α? - 21 α; |1

jfor 2; G p(b), where

Ms(b, c) = (2cVΈ)M2(b, c) .

Proof. Let Crf 0 < r < 1, denote the circle of radius r about the
-origin in the w-plane. Making use of Lemmas 2 and 3 and a classical
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integral formula we obtain

£ IGί
2ττr Jσ r | 1 — w |

expί-fcz + kzexpΓ—^—1}Md
I Lfc(l — W)Λ) I

= o M M * i2 exΏ[2Hk(z;w)]\
2πr Jor 11 - w |2

\dw\

= ^ - 1 i X 12 e x P ΦU** ~ T X ^ - r 2 » I d w

2 | |2

= , 1

 2 exp [2χkr(\ z \ - rx)l(l - r2)] .
1 — r2

Thus, if 0 < t, then

n=0

S [1/(1 - β-ί)

On the other hand,

Hence, applying Lemma 5, we get

Σ

= (2elVΈ) Σ I Gϊn)(z/χk) |2 Γr 3 ' 2 exp (-wt -
w=0 JO

= (2C/1/T) j"ί-3/2 exp ( - (4c2/ί)[Σ I Gk(z/χk) |2 exp (-nt)]dtj

π) _ i Γ exp — H . + - S _(| z | - xe~^) dί-
J 1 L t \ — er% JJo 1 —

δ, c) exp {# - 21 g | 1 / 2 [δ 2 — —(I

for z e p(b). This is the required inequality.

4* Proof of Theorem IV. Assume the hypotheses of Theorem-
IV hold. We note first that under these hypotheses f(x) satisfies

(4.1) I / ( a ? ) I ^ A e x l \ O ^ x ,

for some positive constant A. It is seen then that the series in (2.2)
converges for z, k arbitrary, 0 < k. Thus conclusion (1) of Theorem
IV holds.

Next, by the theorem of Pollard, and Szasz and Yeardley noted
in § 2 above, the hypotheses of Theorem IV imply that / can be repre-
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sented in p(d) by a convergent Laguerre series:

<4.2) f(z) = Σ α J W , 2 e p(d) ^ - \~e-*Ln{x)f{x)d% .
0 J

From the convergence in p(d) of the series (4.2) it follows that, if ε
is an arbitrary positive number, then

<4.3) I an I ̂  As exp [2n(-d + ε)] , w = 1, 2, ,

for a suitably chosen positive constant As. From (4.3) we obtain

(4.4) Σ |α»| < co, M(c;f) = Σ I«J 2 exp (4cV w) <
n—0 n=0

the latter provided 0 < c < cί.
Now consider Pk(z;f). We have formally

(4.5) P4(s; /) - <rfc* Σ - ^ ΣΣ

= Σ α.Gί '(z) .

Making use of (3.3) and the first inequality in (4.4) we see that the
series in the first line of (4.5) converges absolutely for z, k arbitrary,
0 < k. This justifies the formal manipulation in (4.5) and we ac-
cordingly have

(4.6) Pk(z;f) = Σ,anGin)(z)
n=0

for z, k arbitrary, 0 < k. From (4.6) we get

I Pk(z; f) I2 ^ Σ I an I2 exp (4cτ/¥) Σ I Gΐ\z) |2 exp (-4ci/¥) .

Thus, by Lemma 6, if 0 < b < c < dy then

I P*(*/Z*;/) I2 ύ M(c;f) MΛ(b, e) exp \x - 2 \ x |1/2[62 - ±{\z\ - a?)J j

for sej>(6). For a fixed 6, 0 < 6 < d, on taking c = | (δ + d), say,
we find then that conclusion (4) holds with

B(b) = [M(c;f)M.6(b, c)Γ , o = 1.(6 + d) .

I t remains to consider conclusions (2) and (3). It is enough to show
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that, if S is a compact subset of p(d), then Pk{z\f) —>/(z), fc~»°°,,
uniformly on S. For 0 < b, 0 < #0 let

U(b, xo) = {z\\z\<x + 2b\ x < x0} .

Choose &!, ί>2, 63; a?χ, α?a, #3 such that 0 < bx < b2 < 63 < d, 0 < ^ < x2 < a?8r

and S c f7(6i, ̂ ) . Making use of conclusion (4), we infer that there
exists a constant Λf * such that

Choose fc0 = max {[4 ln(bJb2)Y\ [2 inixJx^Y1}. Then for k0 < k and
a; G Ϊ7(&2, x2) we have zχ& e ί7(6s, a?3). Thus

(4.7) I P,(z; / ) I - I Pk{zχklχk; f)\ ύ M*9 k0 < k, ze U(b2, x2) .

Recalling (4.1), we have also, by Theorem III,

fc->oo,0< x< x2 .

By an application of Vitali's theorem, {Pk(^f)}k0<h converges uniformly
on U(bly xx) to a function F(z), analytic on Z7(61? aji). Since f(z) is.
analytic on U(bl9 xλ) and F(x) = f(x), 0 < a; < xlf it follows that F(a ) =
/(z) throughout ?7(6i, a?x), and the proof of complete.
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