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1. Introduction. This paper is concerned with the difference
equation

(1.1) x(s + 1) = A(s)x(s)

where the 2 by 2 matrix A{s) has a convergent series representation

(1.2) A(s) = s" Σ Aks'k , I s I > s0
kOΣ
k'-O

and Ao Φ 0. The Ak are constant matrices, the independent variable
s is complex, h is a constant, and x(s) is a column vector. We seek
two independent vector solutions or a fundamental solution to the
corresponding matrix equation

X(8 + 1) = A(s)X(s) .

The number of linearly independent solutions is not apparent since

for both A(s) == 0 and A(s) = L QJ (1.2) has only x(s) = 0 as a solution.

We will show that there will be two linearly independent solutions
unless the determinant of A(s) vanishes identically, in which case there
will either be one or none.

We begin, in § 2, by reducing the matrix A{s) to one of eight
canonical forms which (after factoring out sh') have convergent ex-
pansions in s"1 or s~1/2.

In § 3 we construct formal solutions for these difference equations
by substitution and direct comparison. The formal solutions will contain
in general divergent power series, but it is expected that these formal
solutions are asymptotic representations of true solutions in appro-
priate regions of the s-plane. Section 4 is devoted to estimates on
the growth of the coefficients in these formal series.

In § 5 we consider integral equations for vector functions w(t)
whose Laplace transforms are simply related to certain formal series
occurring in our formal solutions. Using the estimates of § 4 (in all
but one case) we obtain true solutions of these integral equations.

These vector functions w(t) are used in §§ 6 and 7 to construct
true solutions of the original difference equation. Theorems of Doetsch
and Norlund are utilized to prove that the formal solutions obtained
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1112 W. J. A. CULMER AND W. A. HARRIS, JR.

earlier are asymptotic representations of these solutions. Moreover,
these formal solutions may be summed and replaced by convergent
factorial series in appropriate half-planes of the s-plane.

The relationship of this work to other results is discussed in § 8.
This paper is based in part upon the Ph. D. thesis of W. J. A.

Culmer under the direction of Professor H. L. Turrittin. Both authors
are deeply indebted to their former teacher, Professor H. L. Turrittin,
under whose guidance they first studied difference equations.

2, Canonical forms If the elements of the matrix P(s) are
meromorphic in a neighborhood of s = oo and det P(s) ψ 0, the trans-
formation

(2.1) x(s) - P(s)y(s)

changes the difference equation (1.1) into

(2.2) y(8 + 1) - B(s)y(s)

where

(2.3) B(s) - P-\s + l)A(s)P(s) - s h ' ( B O + i . JS, + . . . J , \s\>Sl.

Here B(s) and A(s) have qualitatively the same form. To facilitate
the computation of formal solutions of the difference equation (1.1)
we utilize transformations of the type (2.1) to achieve a more amenable
form (2.2).

Our first goal is to diagonalize the leading term Bo in the result-
ing expansion (2.3). This is not always possible with transformations
P(s) whose elements are meromorphic in some neighborhood of s = oo.
However, we give a necessary and sufficient condition for such a
reduction. When it is not possible to achieve this diagonalization
with a matrix P(s) with meromorphic elements, we show that it is
possible to diagonalize the leading term of B(s) if we allow the ele-
ments of P(s) to be meromorphic functions of s1'2. In this case the
elements of s~hB(s) will be meromorphic function of s1/2.x For these
cases we are led to construct formal solutions containing formal power
series in s~1/2.

Let J be a constant matrix such that J~XA^J has Jordan canonical
form

(2.4) J-'AjJ"- °)

where β = 0, if ρ± Φ p2. The transformation B(s) = J~xA{s)J is such
that B3 = J~xAάJ. Hence Bo has diagonal form or the form

1 It is one of these cases that we are unable to sum.
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(2.5)
P

1 P

For this case we have

THEOREM 1. Let B(s) and C(s) be 2 by 2 matrices whose elements
are analytic in some neighborhood ofs= ©o,

B(s) = C{s) = Σ

and let Bo = (C j . A necessary and sufficient condition that there

exist a matrix P(s) with elements meromorphic in some neighborhood
of s = oo, det P(s) Ξ£ 0, P-\s + 1)B(s)P(s) = C(s), such that Co = al
is that

(2.6) {— det [XI + s(B(s) - pl)]\ I = 0 .
I S J l s = oo

Further, a — p.

Proof. Let Bλ = (6ίi). A short calculation shows that

{— det [XI + 8(B(β) - /o/)]J _ = b[2 .

Assume b[2 = 0. Choosing

s-1 0

0 1

and writing B(s) = (6ii(s)), we have

(s + l)bn(s)\

To prove the necessity we need a generalization of the fact that
a function f(s) Ξ£ 0 meromorphic in some neighborhood of s — oo can
be written in the form f(s) = s"g(s) where flf(β) is analytic at s = oo
and flr(oo) ̂ fc 0.

LEMMA 1. Let the elements of P(s) be meromorphic in some
neighborhood of s = oo, P(s) = Σ?=-k P^~\ det P(s) & 0, P_& Φ 0,
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k some finite integer. Then P(s) can be represented in the form

(2.7) P ( β ) = U(s)s«V(s)

where V(s) is a polynomial in s"1 with det V(s) = 1, U(s) is a

convergent power series in s'1 with det U(co) ψ 0, and s* = ί ~ Λ2 j ,

ax ^ a2 integers.

Proof of Lemma 1. Consider P(s) = (j>i(s), 2>2(s)) where ^(s) are

column vectors. Since P_/c ^ 0, choosing Vo — I or ( V Q) we may

write

where ^(s) are power series in s~x and Pχ(oo) ̂  0.
If Pi(oo) and ^ ί 0 0 ) are linearly independent, choosing U(s) —

(Pi(s), Pi(8))f oiχ — oί2 = —k, and V(s) = Fo"1 we have the representation
(2.7). Using a sequence of matrices Vjf

Vi = lo i
we can write P(s)V0V1 Vβ = (s^p^s), s~k~βp2+β(s)) choosing the first
β for which Pi(oo) and p2+β(co) are linearly independent. Indeed,
since det P(s) -φ 0, det P(s) = s~γ(d0 + (l/s)^! +•••), d0 Φ 0, and
det 7 , Ξ 1 , β = y - 2fc.

Thus, choosing ?7(s) = (^(s)^^^)) , F(β) = (VQV1 Fβ)-\ a, =
~fc and a2 = —k — β, we have P(s) = [/(^s^F^) and the lemma is
proved.

Now assume that there exists a matrix P(s) with elements mero-
morphic in some neighborhood of s ~ co, det P(s) Ξ£ 0 and

P-*(S + l)B(s)P(s) - C(s) where B(s) = ΣΓ=o Bfc8"*, #o = ( f J

ΣΓ-o CfeS"̂ , Co = α/. By Lemma 1, P(s) has the representation (2.7)
and defining

C(s) = (-^j^) V(s + l)C(s)V-\s) =

B(s) = PWP-^s + 1)5(8) = Bo + θ(i-

we have

pI]P(s) = s-«[C(s) - pl]s« ,

and

(2.8) det [XI + B(s) - pi] = det [XI + C(s) - pi] .
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Thus, evaluating both sides of (2.8) for s = co we have

A,2 = (x + a - pf , or a = p .

Similarly,

-ί det [λ/ + s(B(s) - p/)] = -1 det [XI + β(C - pi)] .
S Q

O

Since Co = p/, det [λ/ + s(C(s) - pi)] = 0(1), and

{— det [XI + s(B(s) - ρl)]\ = 0 .

This determinant depends only on the first two coefficients in the
expansion of B(s). However, P(s)P~1(s + 1) = J + 0(s~2), and hence

j - ί det [XI + s(B(s) - pl)]\ I = 0 ,

and the theorem is proved.

REMARK. We have also proved that if the elements of B(s) and
C(s) are analytic in some neighborhood of s — co and are related by
a matrix P(s) with elements meromorphic in some neighborhood of
8 = co, P~i(s + 1)B(S)P(S) = C(S), So =£ 0,

det (λ/ + Bo) = det (λ/ + Co) .

Returning now to our canonical form (2.5), we see that if p Φ 0,
and b[2 = 0 we have diagonalized the leading coefficient. If p = 0,
and 6J2 = 0, the problem is reduced to a similar problem with h
decreased by one. We may repeat this process until we achieve a
problem for which the leading coefficient is a diagonal nonzero matrix or
(1) the process does not terminate; or
(2) reach a stage for which Theorem 1 shows it is impossible to
diagonalize the leading coefficient with meromorphic P(s).

(1). If the process does not terminate, we have C(s) =
P- 1(s + l)B(s)P(s) and in some neighborhood of s = co, det B(s) =
det C(s) det P(s + l)[det P(s)]"1 = 0(sh~k) for arbitrarily large k. Hence
detl?O) Ξ 0 in some neighborhood of s = co.

Let B(s) = 8h(bij(8))9 621(oo) = 1, det B(s) Ξ 0. Then, the transfor-
mation matrix
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is such that

C(s) = P~\s + 1)B(8)P(8) = M*] °\ c2l(s) = b21(s) .
WOO 0/

If cn(s) Ξ£ O,2 the transformation

is such that C = T- 1^ + l)C(s)T(s) = (C l^ s ) J) and the difference

equation y(s + 1) = C(s)y(s) will have one nonzero solution.
If cn(s) = bn(s)lb12(s) + 622(s + l)/612(s +1) = 0, the difference equation

will have no nonzero solution.
(2). If we cannot diagonalize the leading coefficient with a mero-

morphic transformation P(s) we arrive at a stage for which

B(s) - P~\s + l)A(s)P(s) =

where

Bo =

The transformation

can be utilized to yield

C(β) = T-Hs + l)B(β)Γ(β) = sk'(c0 + J-Cx + 1-C, + •)

Thus, we have achieved our first goal; there exists a transfor-
mation P(s) with elements meromorphic functions of s in a neigh-
borhood of s — co for which

(2.9) B(s) - P~\s + l)A(s)P(s) = s

2 If cu(s) έ̂ 0, the process will terminate and we will have essentially the infinitely
repetitive process treated on page 11. This can be seen directly also by a detailed
analysis.

3 There are two cases, p = 0 and p Φ 0, It is p Φ 0 which we are unable to sum.
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or no such transformation exists, in which case there exists a transfor-
mation P(s) with elements meromorphic functions of s1'2 in a neighbor-
hood of s = oo for which

(2.10) B(s) = P'\8 + 1)A(8)P(8) = 8h'(B0 + -λ-B, +

J> - d if ft = ft, *> = ̂  r

We wish to refine the preliminary canonical forms (2.9) and (2.10).
We note that the transformation

(2.11) TM - / + — ^ — (a = 1 or 2)
(s 1)

is such that T~£ exists for | s \ large and

Us) = sh'(c0 + Λ^C, + -J

where Cj == J5y for i = 0,1, , w — 1 and

(2.12) Cn = Sw + 5OQW - Qπ5 0

and if BQ = ^7, then C, = £, i = 0, 1, , n and

(2.13) Cw + 1 = SM_u

If the characteristic roots of Bo or B1 are distinct, Qn may be
chosen so that Cn or Cn+1 is a diagonal matrix with the same diagonal
elements as Bn or Bn+1 respectively.

Hence we are able to construct a transformation T(s) with the
same properties as P(s) such that for (2.9) we have

(2.14) C(s) = T-\8 + l)B(s)T(s) - sh'(co + A-d + •

and for (2.10)

(2.15) C(β) = Γ-'ίβ + l)B(β)Γ(β) = sh'(c, + Λ-C1 + ±-C, + Λ
V s1 s )

ft/' lθ rj' ~ \0 pj' \0

and either ft = -ft Φ 0, or ft = ft =£ 0 and r, = - r , ^ 0.
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If for (2.10) ft = ft = p φ 0, then we may assume Bλ = (rA „
/3 = 0 if rλ Φ r2. If the characteristic roots rlf r2 differ by an integer,
Re {rj > iϋe {r2}, then the transformation

is such that C(s) = TrKs + l)B(s)Te(s) == sh'(C0 + (l/β)d + •) where
Co = pi and d has characteristic roots rx and r2 + 1. Hence we may
assume without loss of generality that in (2.10), if ft = ft = p Φ 0,

-Bi — \o r) and rx — r2φ ± 1 , ±2, , /3 = 0 if rxΦ r2.

In every case except ft = 0, p2φ 0 we have achieved the desired
canonical form. We may utilize transformations of the form Tnl as
given by (2.11) so that either

(1) C(s) = T-\s + l)B{s)T(s) = ŝ 'fCo + —
V s

where

fO 0

0 cL
ί = 0,l,2, , m - l )

\υ CJ

22J

and

o r

(2) the process does not terminate.
If the process does not terminate, it is clear that det B(s) —

0(sh'~k) for arbitrarily large k in a neighborhood of s = oo and hence
det B(s) = 0.

Writing B(s) = sh(bij(s)), b22(co) = 1, we see that the transformation

/ 1 b12(s - 1)\

c2Js — 1)

— Ms) i
\

is such that P'^s + l)B(β)P(β) - (°0 c^syj, c22(s)=sh'(l + (lls)d2+ ..)

for I s I large. This problem reduces to the two scalar equations
wλ{s + 1) = 0, w2(s + 1) = c22(s)w2(s).

We summarize our results in
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THEOREM 2. Let the elements of the square matrix of order two
A(s) have convergent representations in a neighborhood of s = co,

A(s) = sh(A0 + — Ax + Λ I s I > s 0 ,v s /

4 0 = 0, έ α constant. There exists a matrix P(s), det P(s) ^ 0, swcλ
£ftαί either
(1) ίfee elements of P(s) are meromorphic functions of s in a neigh-
borhood ofs~co and

B(s) = P(s

where

( i ) Bo =

(ii) £0 = ft/, £, = Γ 1 ^ ] , ft ̂  0, r, - r2 ^ ±1, ±2,

(iii) Bo = pj, B, = ί̂ 1 °V ft ^ 0, 8 Φ 0,

(iv) B, l°
\0

(V) B(8) - ί ̂  o j , P(S) = 8*'^0 + ^ P χ + •), Po ̂  0 ,

(vi) B(s) = 1° °\ q(s) = 8*'(ϊo + i 9 l + . . . ) , g0 Φ 0

or
(2) ίfee elements of P(s) are meromorphic functions of s1'2 in a
neighborhood ofs = co and

J5(8) = P-^β + l)A(8)P(β) = 8hΊ Bo + -^—B1 + —B2 +
\ s1'2 s

where

(vii) Bo = I x ), ft ^ 0, JBlf i?2 and β 3 diagonal matrices,
\ 0 ft/

(viii) J50 = ft/, ^ = I 1, ft ^ 0, rλ Φ 0, 5 2 and /?3 diagonal
\0 -Ti/
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REMARK. The only solution of the difference equation y(s + 1) =
B(s)y(s) with canonical form (vi) is y(s) = 0. For canonical form (v)
the solution of y(s + 1) = B(s)y(s) has only a nonzero first component
which is the same as both components of the equation y(s + 1) =
ίv(s) 0 \
( A wβ\ )y(s) which is a subcase of canonical form (ii). Hence we
\ u P\s)/
omit canonical forms (v) and (vi) in the remainder of this paper.

3 Formal solutions* We now determine formal solutions for
the difference equation

(3.1) y(s + 1) - B(s)y(s)

where B(s) has one of the canonical forms given in Theorem 2.
Let B(s) have canonical form (i). We seek a solution of (3.1) in

the form

(3.2) y(s) = 8k'8p'srv(8)

where p and r are constants and v(s) is a formal power series in s~\
Substituting (3.2) into (3.1), v(s) must satisfy the difference equation

(3.3) v(s + 1) - C(s)v(s) ,

where

1 + - ) - ( 1 + - ) s~h'B(s).

s I p V s /

Using the relationships

/ ]_\-Λ'(β+l) _ l wl 1* -h'l h'

^1 + —j - e h < +w «+» *» = e [1 - — +

s I V s s

we have C(s) = CQ + (l/s)d + , where

Choosing p = e~h'ρu ρλφ0 and r = (n/ft) — (h'12), we may write Co —
1 0\ c _ (0 0\ S

0 p)> G l ~ V ) p0 f )
Substituting a power series in s"1 for v(s) into (3.3) and using

v(s) = i; vk8-\ v(8 + l) - v0 + Σ Σ (-i)wfΛ

f P ) is
\ 4f /

i s t h e b i n o m i a l c o e f f i c i e n t (P) = 777 1 X ^ + ^ — , p^q> - 1 .^
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we have

(3.4) (/ - C0)va = 0,(1- C,)vx = C,v0

(I - C0)vu - {(n - 1)1 - CJυ.-r

( 3 ' 5 ) Σ ( i

The choice made for p and r allow us to solve the first equation (3.4)

by any vectors of the form v0 = ί Q1), ^I — ( Q ) ^ϊ is arbitrary, say

w? — 1 and vj and 1̂ will be determined from (3.5) with n = 2. In
general ^ί"1 and ^ will be determined from (3.5) with k — n.

If p2 φ 0, then choosing p = β^'ft and r = (r2//O2) — (h'/2) will

give rise to a second solution. In this case v0 — (-, ] and hence it is

clear that the two formal solutions so determined will be (formally)
linearly independent.

For the canonical form (ii), Bo = pj, B1 — (Z.1 ), pλφ0, r1 — τ2Φ
\V ' 2 /

± 1 , ± 2 , we choose p — pλ and r = (n/^) — (Λ//2) to obtain Co = /,

- j , r = (r2 — r^/ft. The equations for determining v(s) are

as before (3.4) and (3.5). If f Φ 0 v0 = ( J ) will satisfy (3.4) and the

vΛ, ^ ^ 1 are determined by (3.5) since (/ — Co) = 0 and (^ — 1)/ — Cx

is nonsingular for n •= 2, 3, . When f =£ 0, a second solution is

obtained by choosing r = (ra/ft) — (fc'/2) and v0 = ( Λ If f = 0, i.e.

r t = r2, v0 is arbitrary and choosing v0 = (Λ and (jj will give two

linearly independent formal solutions.
If we have canonical form (iii), then choosing p = e~h'pl9 r —

(rlpi) - (Λ72), we have Co = /, d = (J §) - E'.5 We note that # is

a nilpotent and 1£2 = 0.
A simple calculation shows that if we can find two linearly inde-

pendent vectors v and u such that

v(s + 1) = C(s)v(s)

u(s + 1) = C(s)?φ) - v(s -1- l)Zwfl + —) ,
\ s /

then v(s) and ^(s) + v(s)lns will be two linearly independent solutions
for v(s + 1) = C(s)v(s) when B(s) has canonical form (iii).

e~h'
5 Since δ was any nonzero constant, we assume δ = so that Ci has the form

Pi
shown.
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Substitution of a power series for v(s) and an identification of
terms yields

(3.6) Ev0 = 0, (/ + E)vx = -C2v0

(3.7) (nl + E)vn = Σ [(-ly'Qy - cψ,_ i + 1 - Cn+1v0.

Hence choosing v0 — L \ vλ = (E — I)C2vQ, and vn determined by (3.7)

for n = 2, 3, , ((nl+ E)-1 = (lln)I~ (l/n2)E), v(s) will be determined.
Substituting a power series for u(s) into the corresponding differ-

ence equation and expanding ln(l + (1/s)) as a power series in s'1 we
have

(3.8) EuQ — v0, or u0 —

(3.9) n

n Γ

Σ \Cj - (-ly\ .|i pv-i+i
ί=2 L

-Ί
Clearly these two vectors v(s) and w(s) + ?;(s)iws are (formally)

linearly independent since

det (v, u + vlns) — det (v, u) = 1 + 0( —) .

If β(s) has canonical form (iv), the technique used for canonical
form (i) will yield one formal solution in the form

y(S) = Sh'spsSrv(s) .

We seek a second solution in the form

(3.10) y(s) = s{h'-m)sρ8srv(s) .

Hence corresponding to (3.3), v(s) must satisfy

(3.11) v(s + 1) = C(s)v(s) ,

where

( 1 \ -(fc'-»(«+l)) 1 / 1 \-r

= 8 - ^ 0 + — ^ + •••).

o o\
i.* , i = 0,1, , w - 1, 6̂ 2 gt 0 ,

0 b'J
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6 °J , δ ί ί * 0 , B . H l =

/0 0 \
Ci = L , L i = 0, 1, , m - 1, ci = i 65,L , L i 0, 1, , m 1, ci

_ /cJϊ 0 \ l (v_.,6.
— I n m Γ n

Hence choosing ,o = β-(Λ'-w)&ϊ! and r - [&S+1 - ((/?/ - m)/2)&S]/δΠ, we
have

Substituting a power series for v(s) into (3.11) yields

(3.12) Σ C-yt;,- = 0, y = 0, 1, , w - 1, Σ C.-^- = v0
3-0 j=0

(3.13) Σ Cm+%-jVj = Σ (-1)Λ +* 7 , )vk, n = 1, 2,

Choosing v3- = (°Ά for j = 0, , m, (3.12) is satisfied and (3.13)

can be written

Λ-2 /tϊr — 1

(3.14) Cô v, m + (n - l ) V i = (/ - C m K + Σ (-1)-* , ,

»—1 m—1

— Σ cm+n-3 vά — Σ cm-jVn+j.

For canonical forms (vii) and (viii) we seek a solution of the form

(3.15) y(s) = sh'sρse^sll2sre"s~ιl2v{s) .

Thus v(s) must satisfy v(s + 1) = C(s)v(s) where

(3.16)

C(s) =

As before C(s) is a power series in s~1/2; p is chosen so that Co will
have the form

/ — I 0\
Co = (case (vii)) or Co = / (case (viii)) .



1124 W. J. A. CULMER AND W. A. HARRIS, JR.

The factor e-~^+i)V^sι^ = χ __ (μi2)s'112 + allows us to choose one
of the diagonal elements of d to be zero. As before (1 + (l/s))~r

allows us to choose one of the diagonal elements of C2 to be zero
and e~

vί{8+1)~ll2~s~ll2i allows us to choose one of the diagonal elements
of C3 to be zero. Thus choosing p, β> r, and v in succession we may
write for canonical form (vii)

\ 0 1/ 8»>\0 θ ) ^ s \ 0 0

0̂ 0/ s2

and for canonical form (viii)

(3.18)
0 0/ s \0 0/ s3/2 \0 0

r Φ 0 in (3.18).
For canonical form (vii) we get two solutions: one by choosing

P — Pi and choosing the second diagonal element to be zero in C19 C2,
and C3 as shown in (3.17); and another by choosing p = —px and
choosing the first diagonal element in C19 C2, and C3 to be zero.

For canonical form (viii) we get two solutions corresponding to
the two choices for μ in (3.15), namely to make either the first or
second diagonal element of C1 equal to zero.

Substituting power series for v(s) in the difference equation
v(s + 1) - C(s)v(s) where C(s) has the form (3.17) or (3.18) yields:
for canonical form (vii), (3.17)

(3.19) (Co - I)v0 - 0, (Co - I)vx + C1vQ = 0

(Co - I)v2n '+ dv^-i + \C2 + (n-
(3.20) w_, /n-i\

3=1 \n — j) 2 J 3=0

(Co — I)v2n+1 + Cxv2n + C2 -

(3.21) L

and the canonical form (viii), (3.18)

(3.22) Cxv0 = 0

Cλv2n-i + [C2 + (n - l)I]v2n_2

(3.23) _ j - B rψ Jn - 1

3=0 2%~3 3 3 = 1 \j — 1
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(3.24)

2n-2

Σ
io

In each case the coefficients v0, v19 v2 may be determined in succes-
sion to give two linearly independent formal solutions.

We have thus found the appropriate number of linearly independent
formal solutions for all canonical forms given in Theorem 2.

4. Growth estimates• We seek now to estimate the rate of
growth of the coefficients of v(s) in order to discuss the asymptotic
nature of these solutions and the possibility of summing v(s) and
replacing the formal power series with a convergent factorial series.

We note that v(s) is a formal solution of an equation of the form
v(s + 1) = C(s)v(s) for which C(s) has a convergent power series repre-
sentation in s"1 or s~1/2 for \s\ > a. Hence we have the estimate

I c?i I ̂  Man M > 0 , a > 0 .

Consider the canonical form (i). Here the coefficients vn are de-
termined by (3.4), (3.5) which can be written in component form,

(n ~-l)vΓL = Σ (-l)n-'fn %l - Σ Σ c&Γ'
3 = 1 \ J — 1/ i-2 i-1

(4.1) W f ^ 2

(1 - p)vl = (w - 1 + f jvr 1 - Σ (-l)n"M . , l̂ ί + Σ Σ c i ι ; r y

w ^ 3

with ô = ί QV vj = 0, t ί = — c2

u, vj = c21/(l — p) as initial conditions.

Let λ = 11 - p I =£ 0 and r = | r |.
The coefficients wn determined by

<4.2) ' - ^ - " «

Xw: = (n - 1 + r ^ r 1 -h Σ W' + I Σ Φ Γ J " + w?"'")
i-i \J - 1/

w ^ 3

with w0 — ί i V w{ = Mα2, Wa = 0, ^2 = (Ma2/X), are such t h a t \v?\ ^

Wi, i = 1, 2, w = 0 , 1 , , i.e. (4.2) is a dominant system for (4.1).
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Multiplying (4.2) by a and subtracting the resulting equations
from (4.2) with n increased to n + 1 and dropping terms with negative
coefficients gives rise to a new dominant system:

(4.3,

I n\ w-2 / n \

ml = a(n - l)zΓι + Λ zΓ1 + Σ . „ pi + Ma\zΓx + zΓ1)

Xz%+1 = (λα + n + r)zl + (n - 1 + φ Γ 1 + ί ^ W 1 + Σ ί . ^ W

^Γ"1 + zΓ1)

with the same initial conditions as (4.2). We have

wni S zf , i = 1, 2 , n = 0,1, .

Consider z*l(n — 1)! as dependent variables in (4.3), subtract the
corresponding equations from themselves with n increased to n + 1,
and drop all terms with negative coefficients to obtain a new dominant
system:

+
+ 1 2 (

(4.4) Xx^ = (l + X + H l f W + ( I +
V n + 1 / \2

(^ + ^ )
+ 1)

with the same initial conditions as (4.3). We have

zl ^ (n - l)!α? , ΐ = 1, 2 , w = 0,1, 2,

Since the coefficients in (4.4) are bounded as n —> co we have the
estimate

a?? ^ pe%9

for suitable constants p and tf. Hence

(4.5) K I ^ w? ^ «? ^ (n - l)lxΐ S{n- l)lpenq .

The same sequence of steps yields similar estimates for the second
solution for canonical form (i) and the solutions for canonical forms
(ii) and (iv).

We estimate both solutions of canonical form (iii) simultateously
due to their interdependence.

The two solutions u and v obtained for canonical form (iii) satisfy
the equations
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v(s + 1) = C(s)v(s)

u(s + 1) = C(s)u(s) - C(s)ln(l + —)v(s)

Let z(s) be the vector with four components,

n

Then z satisfies the difference equation

(4.6) z(s + 1) = C(s)z(s) ,

where

0 C{s)

/0 0 - 1 O\

1 0 0 - 1

0 0 0 0

\o o l oy

The same sequence of steps (with a > 1) will yield the estimates

= / + —
s

? I g (w - l)\penq .

To estimate the growth of the coefficients for canonical forms
(vii) and (viii) we employ a similar device. We have

Φ) = Σ^ks~m - Σvtf-' + 4-ΣV*J+I8-*
ko o S1'̂  i o

and

Writing

= Σ

lu{s)\

Σ

lD(s)

we have

z(s + 1) -

where, for canonical form (vii),
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/I

0

r

\o

0

1

0

0

0

0

1

0

0\

0

0

1/

+ 1_
s

\

p 0

0 0

f ί °
0 0

f 0\

0 0
+ i °

2/
and for canonical form (viii)

C(β) =

/ - I

0

f

\ 0

0

1

0

0

0

0

0

0\

0

0

1/

1

s

/ p 0 r 0\

0 0 0 0

| o p - | o

0 0
\

The equations for the components of z(s) will be equivalent to
the corresponding equations (3.19)-(3.21) and (3.22)-(3.24) and are
given by:

Λ-2 in — 1Λ
2z? = (p + n- IK" 1 + rzΓ1 - Σ (-1)W"Ί .

\J -Σ

+ Σ
i=0

(4.7)
(n - "1 = Σ (-D-' .

ji \3

— 1

3 — 1
W -

4

Γ- - Σ ( -

+ (p - 8 + * V-i +
V 2

V "9"/ ~~ r? \ ' — 1 / ^ ^

for canonical form (vii); and

rzf = — (q + — \zl~x — ί̂ :

/ ^ - 1 n—2 4

Σ Σ cr'zί

(4.8) (n - IK-1 = Σ (-I)-'!". Γ )4 - Σ Σ C2r
j':

«? = - ( P +
it-X

-Σ(-]
t l

zi - Σ Σ
3=0 i=l

. , \zi - Σ Σ
J — 1/ 3=0 i=

( 1 \ »-2 /ίJ, — 1\ »-2 4
% -1)^-1 = Σ (-lH . - W - Σ Σ cr^ί

2/ i=i \J — 1/ j=oi=i
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for canonical form (viii)
In both sets of equations (4.7) and (4.8) the third equation gives

z* in terms of z\ and lower order terms. We could eliminate zl by
use of the first equation. The resulting equation would involve a
term essentially nz\~x for (4.7) and lower terms while the resulting
equation would involve a term essentially n^zl~x for (4.8). The pro-
cedure for determining dominate systems of equations breaks down
for (4.8) and not for (4.7) due to this fact, i.e. the substitution zn =
(n — l)lun will give a term corresponding to nzl~x as a bounded coef-
ficient times ul~x whereas the term corresponding to tfzf1 will have
a coefficient 0(n) times u^1.

Hence we have, for (4.7) the estimate

\zni\S{n- l)lpenq .

For (4.8) we do have the estimate

| s ? l < ((n - l)\fpenq

but this estimate is too large for subsequent steps in our treatment
of the problem under consideration.

REMARK. We note that we have not shown the impossibility of
an estimate | z* \ g p(n — l)\enq for canonical form (viii). We are unable
to prove such an estimate or construct an example for which | s? | =
{{n — l)l)2peng. If such an example can be constructed, it is possible
to the show the impossibility of summation by the use of factorial
series for this example.

5, Related integral equations. We next consider an integral
equation for a vector w(t) whose Laplace transform is simply related
to our formal solution v(s). We will use this integral equation to
show that the formal solution v(s) has a Laplace transform represen-
tation v(s); v(s) is an asymptotic representation of v(s); and that v(s)
may be summed, i.e. v(s) has a convergent factorial series represen-
tation.

Consider canonical form (i). We have from (3.3), v(s +1) = C(s)v(s),
where

and the formal solution v(s) = v0 + (1/s)^ + . Formally we may
define

(5.1) w(t) = L-'Ms) - v0} - L
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Thus, formally, from v(s + 1) = C(sMs), we have

(5.2) (e-'I - C0)w(t) = Γ Σ ? ~ ΓΓxΓ O(τ)eZr + Σ _ * — — C.v0.
jo n=i (^, — 1)! %=2 (n — 1)1

Since C(s) = 2~=o CΛβ"n converges for | s | > s0 > 0, the series in (5.2)
converge for all finite values of t and τ.

We have from (5.1) that formally

(5.3) w(t) = f
w - 1)!

is a solution of the integral equation (5.2). However, the growth
estimate, \v*\ ^ (n —l)lpenq implies

± , l t i ^ p g Σ ( β | t l ) , ..
»=i ( ^ — 1 ) ! ^=0 1 — e α 111

if I ί I < e~α. Hence w(t) as given by (5.3) is a true solution since the
uniform and absolute convergence of (5.3) for 11 \ ^ a < e~q allows-
the interchange of integration and summation in (5.2).

We now use the integral equation (5.2) to show that w(t) as-
continued analytically outside the circle 111 = erq is of exponential
order, i.e.

for positive constants c and g and t in some sector S with vertex at
the origin t = 0.

The singular points for (5.2) are determined by β~* = 1 and β~* =
^ = |p |β~ίQ>, — 7Γ < α < 7Γ. Thus the possible singular points are

t = 2nπί, t = —In\p\ + i(a + 2nπ), n = 0, ± 1 , r

and w(t) can be analytically continued in any sector S which doea
not contain within or on its boundaries any possible singular point
except t — 0.

LEMMA 2. Let w(t) be defined by

(5.4) ΛΓ~Σ Λ i u»=L (n — 1)!

satisfy the integral equation (5.2), where \ v* \ ^ (n —
w(ί), tί iίA analytic continuation, satisfies the inequality

(5.5) u>4(t) ^ ce^141 ,

c, 0 positive constants in any sector S which does not contain the
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points

t — 2nπi, n — ± 1 , ± 2 , , t = — In \p\ + i(a + 2nπ), n = 0, ± 1 , .

within or on its boundaries.

Proof. Let ί0 be such that 0 < ί0 <
 e~α where e~q is less than or

equal to the radius of convergence of the series (5.4). Then there
exists a constant c > 0 such that | w{(t) \ < c if 11 | < t0 and hence
I v>i(t) I < ce*1*1 for \t\<t0 and # ̂  0.

Assume the lemma false. Then there exists a constant tγ =
£i(#) > £0 such that i Wi(t) \ < cegltι for 11 | < ί0, while for some point
V in S I ί'| = tx, I w^ί') I = ce&ίl for i = 1 or 2.

Choose as path of integration in (5.2) the ray from the origin
thru the point V. Evaluating (5.2) for t — V and taking absolute
values of the component equations, we have

" - I l l Wiίt') I ̂  Σ ? " τ ' (lea 11 u^τ ) I + I cs I I W l ( r ) |)dr

Jo n=2 (Π — 1)!

~Γ 2-ι ~7 ZT7τι
-1)!

|e- i'-iδ|N2(ί')l^|r|Γ1 |w2(r)|(iτ

Jo

+ Γ 1 v (*i "" τ ) n " ' 1

Jo TC=o (^ — 1)!

Using I cl-1 ^ Man, M > 0, α > 0, | β~* - p \ > k > 0 for t in 5 and
I e-ϋ - 11 > k > 0 for t in 5, 111 ̂  ί0, it follows

(5.6) 1 ^ i ^ i ( l - e~gti) + 2Ma(1 ~ eia g)h - λ
gk k \ g — a g

Choose a sequence of #'s, g = flflf #2, such that ^% —* °° as
n—> oo. We have t^gj ^ t^gj and tx{gn)gn—> co as w—>co. The
inequality (5.6) holds for # = r̂w, but the limit of the right member
of (5.6) as n —> oo is zero, a contradiction, and the lemma is proved.

The treatment of canonical form (ii) is similar and the details
are omitted.

For the canonical form (iii) we use the four component vector
z(s) as given in (4.6). The corresponding integral equation is
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" " ' Cnv0(β- - l)w(t) = Γ Σ ^-^-Cn
JO n=l ( ^ — 1 ) !

^Cnw(φτ + Σ ,
1)! n=a (% — 1)!

where w{ΐj is a vector with four components. The possible singular
points are t = 2wπΐ, n = 0, ± 1 , ±2, , and corresponding to Lemma
2 we have

in any sector S with vertex at the origin which does not contain the
rays argί = ±(τr/2) within or as boundaries.

For canonical form (iv), the first solution was obtained by the
same method used to obtain the solutions for canonical form (i). Thus
our treatment for canonical form (i) applies with the restriction
cos(arg£)<0. In order to treat the second solution for canonical
form (iv) a modification is necessary.

The second solution for canonical form (iv) satisfies (3.11)

v(s + 1) = C(s)v(s)

where

C(8) = I

Setting u(s) = v(s)—vQ and using the relations Covo — 0, Σϊϊi 1 (CJsn)vQ — 0,
we obtain

Formally defining w(t) = Z r ^ s ) } we obtain

Γ Σ
(5.7) °̂ ( m ~ 1)! Jow=i (n — 1)!

+ Σ
fn—1 fm—l

— 1)! (W — 1)!

Defining w(t) = X"=o n̂+i(**M!)» w e • h a v e t h a t w(*) i s a rigorous analytic
solution of (5.7) for \t\< e~q.

To show that w(t) with analytic continuation satisfies in appro-
priate sectors S the growth condition | w^t) \ ̂  ce9ltι we rewrite the
integral equation (5.7) in component form and differentiate the equation
for the first component m times to obtain
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(er* - l) W l (ί) Σ T
=l (% — 1)!

J o (m - ! ) !(5.8)

- Γ Σ
J

Σ (f ~ ΐ ?
θn=l (% — 1)1
oo ±n-l fn

— V rn 4- —
ιέi (n - 1)! (m - 1)!

Hence w(t) can be continued analytically into either the right or left
ί-plane.

We proceed as in the proof of Lemma 2 and assume that for a
sequence of values gn9 #%—• OD as n—* oo, either te ̂ ί) or w2(ί) violates
the growth condition

I Wi(t) i ^ cβ^1*1 .

For wx{t), we use the first equation in (5.8) and the details are similar
to those given in the proof of Lemma 2. Hence, assume w2(t) violates
the appropriate growth condition. Thus for g = gn9 using the second
equation in (5.8), and t = ί'', 11'| = ίx = *i(ff), we have

(5.9) c\c°22\ e^ ^ c edτ + 2Mαc ί Σ
o ( m — 1 ) ! Jo ^=0 nl

»-i w! (m — 1)!

where | c?, | ^ Mαw, M > 0, α > 0.
Integrating the first term of the right member of (5.9) yields

(5.10)

\ + 2 M a + e +
C221 l ( f f - l ) m g -a c c(m- l)\

The inequality (5.10) holds for g — gn, and since gn—*vs and gj>ι{ΰn)-* °°
as ?ι —> co the right member has limit zero as n —* 00. Hence we have
the desired growth condition

in any sector S which does not contain the rays argί = ±(ττ/2) within
or on its boundaries.

For canonical form (vii) we utilize the four component vector z(s)
used in § 4 to establish the growth estimate | z* \ ̂  (n — l)lpenq. The
details, being essentially the same as for canonical form (i), are omitted.
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6* Laplace integrals and asymptotic series* For canonical forms
(i)-(iv) and (vii) we have shown the corresponding vector w(t) to be
of exponential order along rays from the origin in sectors S which
contain no singular points. Hence the formal Laplace operator used
in § 5 can be put on a rigorous basis.

Select some ray in the sector S, say arg t — φ. If the complex
variable s == | s | eiΘ is restricted to the half plane

H{φ): Re{seiφ) = | s | cos (φ + θ) > g + ε ,

ε > 0 and arbitrary, and the path of integration is along the ray
arg t = φ, the integral

(6.1) u(s) = [^ e~stw(t)dt
Jo

converges absolutely in H(φ) and defines an analytic vector function.
In any sector S (6.1) defines the same analytic vector function, how-
ever (6.1) may define different branches of the analytic vector function
u(s) in different sectors.

Thus, v(s) = u(s) + v0 satisfies the difference equation v(s + 1) =
C(s)v(s), and is a rigorous analytic solution in the union of half-plane
H(φ) corresponding to rays in the sector S.

We may now apply the following theorem of Doetsch [3, p. 231]
to show that our formal solutions are asymptotic representations of
the solutions v in appropriate regions.

THEOREM (Doetsch). Let I e~8tF(t)dt = f(s) have a half-plane

of conditional convergence and let F(t) have at t — 0 an asymptotic
series expansion

F(t) - Σ - ^ ^

Then f(s) possesses in the sector S: \ arg s \ ̂  β < (τr/2) for s —> oo the
asymptotic series expansion

7 Representation of solutions by factorial series* To show that
u(s) as given by (6.1), and therefore also v(s), is representable by a
factorial series we use the following theorem of Norlund [6, p. 188].

THEOREM (Norlund). Every integral of the form

S I
Zs~'1φ(z)dz

o
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where the integration path is the real axis, ψ(z) is an analytic
function in the interior of the circle \ z — 11 = 1 and of finite order
ωQ on this circle, is representable by a factorial series convergent in
the half-plane Re{s} > ω — 1.

Assume momentarily that the path of integration for \ e~stw(t)dt

is the positive real axis. Then

under the transformation t = ln(l/z)f w^t) = φ^z). The circle | z — 11 = 1
is mapped onto the ί-plane as the curve sec v = 2eΌ where t = u + iv9

2-plane

-In 2,

i-plane

D

which is asymptotic to the lines v = ±(π/2). The interior, | z — 11 < 1
is mapped into the region D. Assume also that w4(ί) is analytic for
t in D, and hence φ^z) is analytic for | z — 11 < 1. To show that
<Pi(z) is of finite order on | z — 11 = 1 we use the following lemma of
Nbrlund [6, p. 51].

LEMMA (Norlund). If (1 - | ξ |)ω |/(ς) | < C, ω ^ 0, as ξ tends to
any point on the circle | ξ \ — 1 from the interior, then the function
f(ξ) is of order ω + 1 at most on \ξ\ — 1.

Let z = ξ +1, /.(f) = ?><(*) = w,(ί) = n ̂ n a / l + ξ)). Thus |/,(f) | ^
Ce 9 l ί l ^Ce σ U w ( 1 + ί ) 1 as f->ί ' for ξ' Φ - 1 , |f'| = l. Hence ω ^ 0 is
sufficient for any point except ξ' — — 1.

Introducing polar coordinates in the 2-plane we have, z = reίθ,
r > 0, I ί I < (7Γ/2) and for r < (1/2)

6 Let f(z) be a function defined by a Taylor series /(z) = αo + αi;

for \z\ < 1. The order ω of /(z) on | « | = 1 is ω = l imsup— — ^ ~
n-*oo Inn

convergent
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where eθ(r)/r is bounded as r —> 0. Also, given ε > 0, for sufficiently
small r, |/ 4(£)| < Ce9lln^ < Cr-{1+*)0. Thus

(1 - I ξ \r \fM) I < Cr»-(1+^(cos <?--£- + i ί ί ί lY < K
\ 2 r y

as r —* 0 if ω ^ (1 + ε)g, and the order of /<(f) on the circle | f | = 1
can be of order g + 1 at most.

In this case we have the factorial expansion

u(s) = - ^
s + +
s s(s + 1)

convergent in the half-plane Re {s} > g + ε.7

In general, let the integration path for ϋ(s) = \ e~stw{t)dt be the
Jo

ray arg t — φ. The analytic solution

can be represented in the half-plane

H(φ): Re {seiφ} > g + ε, ε > 0

by the convergent factorial series

V(s) = V + y Vk+ι{φ, 7)
; ° έ ' S(s + ye-iφ) (β

where the positive constant 7 is sufficiently large. Any 7 > 1 is
suitable provided it is large enough so that when the f-plane is mapped
into the ί-plane by the transformation

the map of the disk 11 — ξ | < 1 is completely contained with a region
which is the union of the sector S under consideration and the disk
I ί | < e-q.

We summarize our results in

THEOREM 3. Let the difference equation

y(s + 1) - B(s)y(s)

be such that B(s) has one of the canonical forms (i)-(iv) or (vii).
There exists a fundamental set of formal solutions of the form

y(s) = sh8ρssrv(s) , v(s) = Σ vάs~j ((i)-(iv))
3=0

7 In some cases the region of convergence may be larger than indicated here.
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or

y(s) = shsρs exp (μsll2)sr exp (vs~ll2)v(s) ,

v(s) = ^(s) + — — t;a(β) , Vi(έ) = £ i ^ ίr'' (vii),
QI/2 j = o

which may be computed by substitution and identification of terms.
These formal solutions are asymptotic representations of true

solutions in appropriate regions of the s-plane. Further v(s), vλ(s)9

and v2(s) may be summed and replaced by convergent factorial series
in appropriate half-planes of the s-plane.

8. Remarks* (1) Results similar to those of this paper have
been obtained by G. D. Birkhoff [1] and W J. Trjitzinsky [7].8 Both
authors consider single linear difference equations of nth order

Σ dn-k(s)y(s + k) = 0

where the coefficients are given as convergent power series of the
form

d.-*(«) = Σ d^kiJ8-">
j = ~m

where p is an integer. Birkhoff established the existence and form
of a full set of formal series solutions; however, his proof was es-
sentially existential and no straight-forward direct method was given
to compute successive coefficients in the formal solutions. The sum-
mation of these formal series was considered by Trjitzinsky and shown
to be feasible in certain cases. Our results are the corresponding
results with extensions for linear systems of difference equations with
n = 2, p = 1.

Formal solutions of linear systems of difference equations for
arbitrary n and p have been considered by H. L. Turrittin [8].

(2) The linear system of difference equations

x(s + 1) = A(s)x(s)

where the n by n matrix A has a convergent series representation

Λ(s) = I + Σ As'1* \s\>s0

is a special case of a class of linear systems of difference equations
solvable by factorial series treated by W A. Harris, Jr. [4].

( 3) General results similar to Lemma 1 are contained in a paper
by W. A. Harris, Jr. [5].

8 For other pertinent references see the bibliographies of these two papers.
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