
HOMOMORPHISMS OF NON-COMMUTATIVE *-ALGEBRAS

SANDRA BARKDULL CLEVELAND

1. Introduction* Let 31 and 35 be Banach algebras and v a
homomorphism of 31 into 93. This paper is a study of the continuity
properties of v which depend only on the structure of SI; 33 is completely
arbitrary. The algebras considered are non-commutative.

If v is a homomorphism of SI into 93, then the function \x\ —
\\v(x) |(, xe 21, is a multiplicative semi-norm on SI. Conversely, every
multiplicative semi-norm on 21 arises from a homomorphism in this
way. Thus all results on continuity of homomorphisms can be stated
in terms of multiplicative semi-norms.

Section 2 contains material concerning units in SI and 93 and the
relation between homomorphisms and multiplicative semi-norms.

Section 3 is devoted to the proof of the main technical device of
the paper: If {gn} and {fn} are sequences in SI with gngm — 0,n Φ m,
and fngm = 0, n Φ m, then, under any homomorphism v of SI into a
Banach algebra 93, the sequence {|| v{fngn) | |/ | |/n || \\gn 11} is bounded.

In § 4 the separating ideals for v in SI and 93 are defined and
several of their properties are exhibited. The separating ideal S^ for
v in SI is the set of x in SI for which there is a sequence {xn} in 31
with xn —> 0 and v(xn) —» v(x). An application of the main boundedness
theorem (Theorem 3.1) shows that if {xn} is a sequence in Sf with
xnxm = 0, n Φ m, then v(xnf — 0 for all but a finite number of n.

In § 5 we restrict attention to the case in which v is an iso-
morphism and SI is a B* algebra. In this case £f is the zero ideal.
This fact enables us to show that there is a constant M such that
II x II ^ M\\ v(x) ||, x G SI. This result is analogous to an important
theorem of Kaplansky [4]: any multiplicative norm on the algebra of
continuous functions vanishing at infinity on a locally compact Haus-
dorff space majorizes the supremum norm. A theorem due to Bonsall
[2] implies the following similar result: if ( | is a multiplicative norm
on the algebra 31 of bounded operators on a Banach space, there is a
constant β such that for TeSI, || Γ | | g β \ Γ|, where || || is the usual
operator norm. Although our result is similar, our approach is quite
different. Kaplansky's proof depends heavily on commutativity; Bon-
salΓs on the existence of nonzero finite dimensional operators which,
of course, are not necessarily present in an arbitrary J3* algebra
Notice that if 31 is a Banach algebra with the property that for every
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isomorphism v of SI into a Banach algebra 33 there is a constant M
with \\x\\ g Λf ||v(a?)||, then every multiplicative norm on 21 is com-
plete if and only if every isomorphism of 21 is continuous.

We also show in § 5 that if v is an isomorphism of a B* algebra
21 into a Banach algebra 33 then Cl(v(%)) is the direct sum of the
range of v and the separating ideal for v in 33. This is the desired
generalization of a theorem due to Yood [11] which states that
Cl{v(%)) = v(Ά)@R when 21 is a commutative B* algebra. (R is the
radical of C7v(2t)). Yood's theorem is also true for certain regular
commutative Banach algebras.

It is an open question whether or not there exists a discontinuous
homomorphism of a B* algebra. In §6 a technique due to Bade and
Curtis [1] is used to show that any homomorphism of a i?* algebra
21 must be bounded on certain ideals in 21.

2. Preliminaries. Let 21 and 33 be Banach algebras and v a
homomorphism of 21 into 33. There is no loss of generality in assuming
33 = Cl{v{%)) since any restrictions on the algebras we consider will
be placed on the domain. If 21 has a unit e, then we may assume
that 33 has a unit ef and that v(e) = e'. Since for any Banach algebra
with unit an equivalent norm may be found in which the unit has
norm one and since renorming in this way does not affect continuity
properties, we assume that if any algebra considered has a unit, then
the unit has norm one.

The study of homomorphisms of a Banach algebra 21 is equivalent
to the study of multiplicative semi-norms on 21 as was pointed out by
Bade and Curtis [1].

DEFINITION 2.1. Let 2ί be a Banach algebra. A multiplicative
semi-norm on 21 is a function j | on 21 to [0, oo) satisfying

( i ) \x + y \ ^ \ x \ + \ y \ f x , y e ^ L
( ϋ ) \ x y \ ^ \x\ \ y \ , x , y e %
(iii) I ax | = | a \ \ x |, x e 21, a scalar.

If I x I = 0 implies x = 0, then | - | is called a multiplicative norm on 2t.

THEOREM 2.2. Let 2ί and 33 be Banach algebras and v a
morphism of 21 into 33. Then the function \ x \ = || v(x) ||, x e 2ί, is a
multiplicative semi-norm on 21. Conversely, if \\ \\i is a multipli-
cative semi-norm on 21, there is a Banach algebra 33 and a homo-
morphism v of 21 into 33 such that \\x\\ι~ \\ v(x) ||, x e 21.

Proof. The first assertion is clear. To prove the second notice
that / = {x e 21: || x ||χ = 0} is a two-sided ideal in 2t closed with respect
to (I Id. Moreover, if x and y are congruent modulo /, then ((x — y fd = 0
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and since | || x \\x - \\ y W, | ^ || x - y ||2 = 0, \\x ||x = || y || lβ Thus 21/J is
a normed algebra under the norm || x + / | | = || x | | l e Let v be the
natural map of 21 into the completion of 21// in this norm. Then v
has the required properties.

3 The main boundedness theorems. The main boundedness
theorems are the principal device of the paper. The present form is
due to P. C. Curtis, Jr. The corollary is found in [1].

THEOREM 3.1. Let 2ί and 33 he Banach algebras, v a homomor-
phism of 21 into 33. Suppose {/J- and {gn} are sequences in 21 satisfying

( i ) Qmΰn = 0,nφ m
(ϋ) fmQn^O (gnfm = 0),m^n.

Then

% II v ( f n g n ) I I / H Λ || || gn | | < co ( s u p . || v{gjn) ||/|| gn \\ \\fn | | < c o ) .

Proof. We consider only the first part of the theorem as the
proof of the second is completely analogous. Suppose the theorem is
false. We shall show that a certain linear combination of the elements
fi must be mapped into an element of infinite norm.

If the theorem is false, we may select distinct elements ui3 , i, j =
1,2, •••, from the sequence {gn} such that

II ΦijUij) II ̂  iίij II vxj || || ui3 || i, j = 1, 2, ,

where v{j is the element fm corresponding to gm = u{j. Define

Then hi e 21 and vuhi = 0 for ί ^ i . If I = i, ̂ Λ = ViόUalZ0 \\un\\.
Thus v(fci) ^ 0, i = 1, 2, . For each i choose an integer j(i) with
2j{i) >\\v(hi)\\ and define y = Σik=iVkj{k)l2

k\\vkS{k)\\. It follows from
(ii) that

yhi = vίi(i)u<i(ί)/2<+^(<) || v<i(<) || || uίj{ί) || , i = 1, 2, . . .

Then

|| v{y) || || v(ht) || ^ || v ( ^ ) || > 2?+>'w > 2'

Thus ||y(i/)|| > 2* for every integer i.

COROLLARY 3.2. // {fn} and {gn} are sequences in 2t satisfying

( i ) 9nΰ* = 0,nΦm
(ii) fngn = / n (flrn/w = / n ) , n = 1, 2, -,
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then

4 The separating ideals. In this section 21 and 35 denote arbitrary
Banach algebras and v a homomorphism of SI onto a dense subalgebra
of 35. Our objective is Theorem 4.9. The function Δ is a variant of
the separating function defined by Rickart [7, p. 70]. The separating
ideals were defined and used by Rickart [8] in this work on the unique-
ness of norm problem. They have also been discussed by Yood [9].

DEFINITION 4.1. For y e 35, Δ(y) = inf (|| x \\ + \\ y - v{x) \\) where
the inf is taken over all x e Sί.

PROPOSITION 4.2. The function Δ has the following properties
(i) Δ(y, + y2) ^ Δ{yλ) + Δ{y2), yl9 # 2 e 35

(ii) Δ{ay) — \a\ Δ{y), ye 35, a scalar

(iii) Δ(y) g || y ||, y e 35 and if y = v(x) for some x e 31, Δ(y) —
Δ(v{x))S\\x\l
The proof is straightforward and is omitted.

DEFINITION 4.3. The separating ideal for v in 35, denoted &" is
the set of y in 35 for which Δ(y) — 0. The separating ideal S^ for v
in SI is the set of x in SI for which Δ{v(x)) = 0.

THEOREM 4.4. £f is a closed two-sided ideal in SI; £f" is a closed
two-sided ideal in 35.

Proof. Parts (i) and (ii) of the proposition show that £f(&") is
a linear subspace of 31(35). If {yn} is a sequence in &" and yn —> y0,
then by the triangle inequality for Δ and part (iii) of the proposition

Δ(y0) ^ Δ(y0 - y n ) ^ \\y0 - y n \ \ - 0 .

Thus &" is closed. A similar argument using the last part of (iii)
shows that S/* is closed in SI.

To complete the proof notice that y e £ff if and only if there is
a sequence {xn} in SI with xn —> 0 and v{xn) —> y. Suppose y e £f' and
w — v(z) e 35. Let {xn} be a sequence in 21 with xn —• 0 and v{xn) —> y.
Then a?ns —• 0 and v{xnz) = v(a?w)v(2;) —> j/w, which implies i/'W e &".
Similarly, wy e &". If w is an arbitrary element of 35, then w =
lim y(2n) for some sequence {zn} in 21. For each n, yv(zn) e *9" and
v(zn)y e Sf'. But yv{zn) —• ?/^ and v(«n)i/ —> ^i/. Since Sff is closed,
2/^ and wy belong to &". The argument also shows that £f is a
two-sided ideal in 21.

PROPOSITION 4,5, The homomorphism v is continuous if and only
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if £f* = (0).

Proof. If &" = (0), continuity is immediate from the closed graph
theorem. The converse is obvious.

The next theorem shows that if both separating ideals are factored
out the resulting map is continuous.

THEOREM 4.6. The map vf of A\S? into 93/^' given by

i/(α + £f) = v(a) + &"

is continuous isomorphism of 21/^ onto a dense subalgebra o

Proof. Since £^ and £f' are closed two-sided ideals, SI/^ and
' are Banach algebras under the usual quotient norm. It is easily

verified that vf is a well-defined isomorphism whose range is dense in
S3/^'. To show v' is continuous it suffices to show J = (0) where J
is the separating ideal for z/ in 83/^'. We shall show that Δ(b + S") =
Δ(b), b e 33.

Let φ and TΓ denote the natural maps of SI — 31/^ and S3 — 33/^'
respectively. Since both φ and π are norm decreasing, we have for

ss') - inf (|| ?>(α) || + || π(b - v{a)) \\

g i n f ( | | α | | + \\b-v{a)\\ = Δ(b) .

To prove the reverse inequality let ε > 0 and choose a e Si with

|| φ(a) || + || π(b - v{a)) \\ < Δ(b + @') + e/3 .

Then choose s, e^,s2e .9*", such that || a + s± \\ g || φ(a) || + e/3 and
|| 6 - v(a) + s21| < || π(b - v(a)) \\ + e/3. Since v(s1) + s2e &", we have

Δ(b) ^

^ | | a + βj || + || b -

For any Banach algebra Si the spectrum of x, denoted oφή, is
the set of complex numbers λ such that X^x has no quasi-inverse in
3ί. The spectral radius of x, denoted r^x)f is sup | λ | where the sup
is taken over all \eσ^(x). When no confusion will result, we omit
the subscript St and write σ(x) or r(x). It is well known that r(x) is
the limit as n-+ α> of ||a?Λ||1/n [7, p. 10].

PROPOSITION 4.7. If SI has an identity, then Sf is a proper ideal;
if S3 has an identity, then &" is a proper ideal.

Proof. First notice that for x e SI, σ^(v(x)) is contained in σ
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For, if λ"1^ has a quasi-inverse y e Sΐ, then clearly v{y) is a quasi-
inverse in 33 of χ-\v(x)). Thus rφ>{x)) ^ rsiί(#) ^ || x ||, a? e SI.

If c is any element in the centre of 93, then by the remark
above,

) ^ \\ c - v{x) \\ + \\x\\.

Thus for c in the centre of S3 we have r^c) ^ Δ(c).
Suppose that Sί has an identity e and e e y . Since v{e) is in the

centre of S3, r^Mβ)) ^ Λ(v(e)) = 0. But r^(v(e)) = 1. Hence ^ is a
proper ideal. The same argument proves the statement about S^'.

Proposition 4.7 is used by Yood [9, Th. 3.5] to show that £ff is
contained in the Brown-McCoy radical of 33. It is also used in the
following theorem which is due to Yood [10, Th. 3.10].

THEOREM 4.8. Let p be an ίndempotent in Sί. // v(p) Φ 0, then

Proof. Suppose p is an indempotent in Sί and v{p) Φ 0. Let
Sί' = pSΐp and 33' = v{pψdv{p). Then Sΐ' and 33' are Banach algebras
and v(Sί') is dense in 33'. Let i/ be the restriction of v to Sί'. Then
vf is a homomorphism of Sί' onto a dense subalgebra of 33'.

Suppose pe@. Let {xn} be a sequence in Sί with xn—>0 and
y(#») "~̂  v(v)- Then pxnp —> 0 and v(pxnp) —> v(p). Thus p belongs to
the separating ideal for v' in 91'. But p is the identity in Sί'. This
contradicts Proposition 4.7.

REMARK. If Sί is a W* or AW* algebra, every closed two-sided
ideal in Sΐ is the closure of the two-sided ideal generated by its pro-
jections. (See [3] and [5]). Thus if p is a projection in Sί which
belongs to £^f then by the theorem p belongs to the kernel of v.
Hence £f is contained in the closure of the kernel of v. The reverse
inclusion clearly holds. It follows immediately that if v is an iso-
morphism of a W* or AW* algebra, then £f is the zero ideal. We
shall prove this later (Theorem 5.1) for any B* algebra but it will
require more work. The next theorem is the crucial step.

THEOREM 4.9. Let Sί and 33 be Banach algebras, v a homomor-
phism of Sί into 33, S^ the separating ideal for v in Sί. // {gn} is
a sequence in 6^ with gngm — 0, n Φ m, then v(gkf = 0 for all but ζt
finite number of k.

k.
1,2,

Proof. Suppose on the contrary that v(gkf Φ 0 for infinitely many
By a suitable renumbering we may assume v(gkf Φ 0 for k =
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Since gne^, there exists for each n a sequence {znj} in 51 with
limy znj = 0 and limy v(znj) = v(gn). For each %, limy znjgn = 0 and
limy v(znjg

2

n) — u(gnf Φ 0, and hence for w = 1, 2, ,

Λi0» II -* oo as i -> oo .

For each n pick i(w) such that

II Ks»i( )ffl) ll/ll «»;<»>&> II > ̂  II βn I I .

Let /Λ = znj{n)gn, n = 1, 2, •••. The sequences {/n}, {gn} satisfy the
following conditions.

( i ) gngm = 0,nΦ m

(ii) fmgn = 0,nΦm

(iii) I W ^ ) | | / | | / J | | | 0 j | > ™ .
But this contradicts the main boundedness theorem.

5. Isomorphisms of 5 * algebras* In this section we restrict
attention to the case in which SI is a B * algebra and v is an isomor-
phism of 2ί into a Banach algebra S3. By a 5 * algebra we mean a
Banach *-algebra 21 with || x ||2 = || xx* ||, x e 21.

THEOREM 5.1. // v is α^ isomorphism of a B* algebra 21, ίΛew
^ = (0).

Proof. Suppose &* Φ (0). Since a closed two-sided ideal in a B*
algebra is a *-ideal [7, p. 249], we may assume that S? contains non-
zero self-adjoint elements. Notice that S? cannot contain a sequence
of orthogonal self-ad joint elements. For if {gn} is such a sequence,
then by Theorem 4.9 v(gnf = 0 for all but a finite number of n. Since
v is an isomorphism, g\ — 0 and thus r(gn) — 0 for all but a finite
number of n. But in a 5 * algebra r(#) = || x || for a? normal [7, p. 240].
Hence #w = 0 for all but a finite number of n.

Let xeS^,x = x*,xφ0. We show that σ(x) must be finite.
The closure of all polynomials in x (without constant term) is a com-
mutative J?* algebra (£. Since £f is a closed two-sided ideal, K g y .
& may be regarded as the algebra of continuous functions vanishing
at infinity on the locally compact Hausdorff space σ(x) — {0}, [6, p. 232].
If σ(x) is infinite, a sequence {λj of its points may be separated by
a sequence of disjoint open sets {Un}. Using local compactness we
choose Vn open with Vn compact and \n e Vn £ Vn S £/», ̂  == 1, 2,
For each n let/w be continuous, 0 ̂  fn S 1, Λ( K) - 1, and Λ ( - i/w) = 0.
Then fnfm ~ 0,n Φ m. But for each n,fne& and hence in ^ , / n is
self-adjoint, and fn Φ 0. This contradicts the fact that £f cannot
contain a sequence of orthogonal self-adjoint elements. Thus σ(x)
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must Jbe finite.
Let λ e σ(x). Since σ(x) is finite, the function / which is one at

λ and vanishes on σ(x) ~ {λ} is continuous and so belongs to £f. But
p = / and fΦO. This contradicts Theorem 4.8. Hence S? = (0).

THEOREM 5.2. Let C(X) be the algebra of all real or complex
valued continuous functions vanishing at infinity on a locally compact
Hausdorff space X. If\ \isa multiplicative norm on C{X), then
for feC(X), Il/H ^ | / | where || || is the usual sup norm.

Proof. See Kaplansky [4].

LEMMA 5.3. If ψ is a continuous isomorphism of a B* algebra
2ί, the range of ψ is closed.

Proof. Suppose 11 ψ(x) \\ ^ M \ \ x |1, x e SI. Consider the self-ad joint
element xx*. Applying Kaplansky's theorem to the commutative sub-
algebra generated by xx* we have || xx* \\ S \\ψ(xx*) || Combining
this with the B* condition we have

|| **||
2
 = II xx* \\ £ || ψ(xx*) || ̂  || ψ(x) \\ \\ f (x*) \\ ̂  Af ||»* || ||^(»)|| .

T h u s f o r xe% \\x*\\ = \\x\\ g M\\ψ(x)\\.

Now if bn = f(xn) e range ψ and bn —> 60, t h e n || xn — xm \\ ^

ΛίΊl^ί^w) ~ Ψ(χm) ll Hence {α?J is Cauchy in 2ί and so for some

#o e 21, #w —> %. By continuity ^(a?n) —> ̂ (θ50) = b0.

THEOREM 5.4. // v is an isomorphism of a B* algebra 31, then
there exists a constant M such that \\x\\

Proof. Since ^ = (0), the map vf is a continuous isomorphism
of 2Ϊ onto a dense subalgebra of 33/^' and i/(α) = v{a) + ̂ ' = ̂ (^(α))
where π is the natural map of S3 onto SB/^\ By the lemma range
i/ is closed and hence i/ is onto. By the open mapping theorem 1/
has a continuous inverse and there exists a constant M such that

| | | | ^ ) | | <; Λf |

since TΓ is norm decreasing.

THEOREM 5.5. // v is an isomorphism of a B* algebra 2Ϊ, then
33 = Clvφ) =

Proof. Let 60 e 33, b0 = lim 6n where 6W = v(a?n). By t h e preceding

theorem ||a?n - α?m | | ^ M\\v(xn) - v(a?m)||. Thus {xn} is Cauchy in Si.
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Let xn —> x0 in 21. Then we have xn — x0 —> 0 and v(#w — #0) —> b0 —
This shows that 6 — v(x0) e &". Thus every element of S3 is the sum
of an element in the range of v and an element of &". Moreover,
the decomposition is unique since £f — (0).

6. Finite singularity sets* It is an open question whether or not
there is a discontinuous homomorphism of a B* algebra. Theorem 6.1
shows that if every isomorphism of a JS* algebra is continuous, then
every homomorphism of a B* algebra is continuous.

THEOREM 6.1. // there is a discontinuous homomorphism of a
B* algebra, there is a discontinuous isomorphism of a B* algebra.

Proof. Suppose v is a discontinuous homomorphism of a J5* algebra
21. Let &* be the separating ideal for v in 21. Sf is a *-ideal and
2X/«5̂  is a 5* algebra. The same arguments used in Proposition 4.2
and Theorem 4.4 show that v{<9") is a closed two-sided ideal in v(2ί).
Thus v($ί)lv(£S) is a normed algebra under the usual quotient norm.
Let 93 be the completion of v{%)jv(S^) in this norm. Let φ be the
map of 21/^ into S3 defined as follows. φ(a) + £f == v{a) + v{S^).

If a e £s, then v(a) e K ^ ) and so £>(0) = 0. Thus φ is well-defined.
It is clearly a homomorphism. If φ(a + £f) = 0, then v(α) e v ( ^ ) and
α e y . Hence ^ is an isomorphism. The range of φ is clearly dense
in S3.

Let 21 be a J3* algebra and v a homomorphism of 2Ϊ into S3. We
assume that 21 has a unit β and that S3 = Clv{%). The remainder of
the paper is devoted to proving that v is bounded on certain ideals
in 21. The method is essentially the same as that used by Bade and
Curtis [1].

Let & be any commutative Z?* subalgebra of 21 which contains e.
© is isometrically isomorphic to C(Ω), the algebra of all continuous
functions on a compact Hausdorff space Ω [6, p. 232]. For / e K the
carrier of /, denoted car /, is the closure of the set of ω e Ω for which
f(ω) Φ 0.

LEMMA 6.2. Let V be any open subset of Ω and IR{V) (IL(V))
be the right (left) ideal in 2ί generated by {g 9 (£: car g £ V}. Then
IR( V) — {ga: ge&, car gSV, and a e 21} and IL( V) = {ag: ge&,
car g ϋ V, and a e 21.}

Proof. Clearly IR(V) consists of finite sums of elements of the
form ga where g e E, car gξΞ=V and a e 2ί. It is enough to show that
any such combination belongs to the set on the right. Let y =

+ Qfoz with a{ e
 SΆ, g{ e K, and car g{ g V, i = 1, 2. By normality of
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Ω choose g e (£ such that g is one on the union of ear .gt and car g2 and
g vanishes on a neighborhood of Ω ~ V. Then car gSV, gg{ = #*,
ί = 1,2. Thus gy = #. The proof for JL(F) is the same.

THEOREM 6.3. There exist finite sets FR and FL in Ω and a
constant M such that || v{u) || <; M \\ u ||, u e IR(Ω ~ FR) and \\ v(v) || g
M\\v\\,veIL(Ω~FL).

Proof. We shall show that there exists a finite set FR in Ω and
a constant M1 such that || v(^) || S Mx \\ u || u e IR(Ω ~ FR). It can be
shown in an analogous way that there exists a finite set FL in Ω and
a constant M2 such t h a t || v(v) \\ ̂  M2\\v\\9ve IL(Ω ~ FL). Then we

take M = max (Jlίj, Λfa).
Suppose we have shown that there exists a finite set F in Ω and

a constant iΓ such that

(*) im#2α)ll ^ K\\g\\ || flfα ||, α€2ί, ge K, c a r ^ S ^ ^ F .

Let αe2I f/G(S, and c&rfξ^Ω^F. Now / may be written as
ux — u2 + i (tfc3 — i64) where car UiξΞ:Ω ~ F,Ui is positive, and || w* || ^
| | /1 | , i = 1, 2, 3, 4. Since u{ is positive^ u< = h\ where h{ e (£, car Λ< S
β - F, and || h{ ||

2 = || u, ||, i = 1, 2, 3, 4. Then we have

4 4

K/α) = Σ <

where the a{ are the obvious scalars. Then

Now suppose u e IR(Ω ~ F). By the lemma u = ga where a e SI,
g e (£, and car gξΞΩ ~ F. By normality choose A e © such that A is
one on a neighborhood of car g, h vanishes on a neighborhood of F,
and 0 ^ Λ ^ 1, Then carhξ^Ω ~ F and /m = hga = ga ~ u. Apply-
ing the above inequality to h and u and using the fact that \\u \\ = 1
we have

Thus v is bounded on /#(£ ~ F). To prove the theorem it suffices
to prove (*). The proof will be broken up into a number of lemmas.

Let © be the family of open subsets E of Ω with the property

where the sup is taken over all αeSI and all ge& with e a r # S
We shall show that © contains a maximal open set.
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LEMMA 6.4. // {En} is a sequence of disjoint open sets in Ω,
then for sufficiently large n, En e ®.

Proof. Suppose the lemma is false. Then there is a disjoint
sequence of open sets {Em} and sequences {am} in 2ί, {gm} in (£ with
car gm £ Em and || v{glam) \\>m\\gm\\\\ gmam | | . Since t h e Em are dis-

joint, gmgn = 0,nΦm. Set fn = gnan, n = 1, 2, . Then ffm/Λ = 0,
n Φ m. This contradicts the main boundedness theorem.

LEMMA 6.5. // El9 E2e® and G is an open set with G£E2, then
E, U G e @.

Proof. Since 42 is normal, we can choose ^ e & such that 0 ^
ux ^ 1, %! is one on a neighborhood of Ω ~ E2 and zero on a neighbor-
hood of G. Let w2 — 1 — uλ. Since wx and u2 are nonnegative, each
has a square root in (£ and carVuΊScar^, ΐ = 1, 2.

Let αes21,sre(£, and c a r ^ g E Ί u G . Then car (gfi/^) £ Ei9 i =
1, 2. Since E, e ©,

+ M2 \\gV!Γ2 \\
^ { M J I ^ I I + M J I ^ I I I I U I I I I ^ H

LEMMA 6.6. // Elf E2e(& and G is open with GSE1\J E2, then
Ge®.

Proof. The closed set F = G f] (Ω - Ex) £ E2. By normality
choose U open with F^U^UQE2 Then G £ Ex U ?7 which belongs to
@ by Lemma 6.5.

LEMMA 6.7. @ is closed under finite unions.

Proof. Let Elf E2e® and suppose Eλ U £?a ί G. If ί7 is closed
and F £ #! U ^2, then G = &V E2) ~F& ®. For choose Z7, F open
with

Then F e © by Lemma 6.6. If Ge®, then by Lemma 6.5, EX\J E2Q
G{jUe®.

Since E1[jE2ί®f we can choose αx e Sί, ̂  e K, such that c a r ^ ϋ
Ex U £72 and || v(g\a^) || >• || g1 \\ \\ gλax \\. Pick Ux open such that car gx £
C/Ί £ Ux £ J5Ί U JK2. Then G2 = (J57X U ΐ72) - Ĉ  ί ®. Hence we can choose
α2eSI, fif2eK with car#2gΞ<?2 and || v(flr5α3) || > 2 || ^ 2 1| \\g2a2 \\. Contin-
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uing inductively we obtain sequences {αj in Sί, {gn} in (£ with
( i ) QnQm = 0,nΦm

( π ) 9n(g^m) = 0,nΦm

• (iii) !| v(glan) | | > n \\ gn | | | | gnan \\9n - 1, 2, .

This contradicts t h e main boundedness theorem.

LEMMA 6.8. & is closed under arbitrary unions.

Proof. Let Eo = U Ea, where Ea e ©. Suppose Eo $ %. If F is
closed and i^S JSΌ, then EQ ~ F&®. For by compactness i*7is covered
by the union of a finite number of the Ea. This union Et belongs to
© and thus if Eo ~ Fe ©, Eo = (£Ό ~ F ) U £Ί 6 ©.

Repeating the construction of the last proof we obtain a contra-
diction.

LEMMA 6.9. There exists a finite set F in Ω and a constant K
such that

Proof. Since ® is closed under arbitrary unions, the union of
all sets in © is a maximal open set G in @. If F — Ω ~ G were
infinite, a sequence of its elements could be separated by a sequence
{En} of disjoint open sets. For large n, En e ®. Thus G would con-
tain a point of its complement. Hence F must be finite and the
lemma is proved.

Let Z be the center of SI. Z is a commutative B* subalgebra
of 21 containing the identity and we have the following corollary.

COROLLARY 6.10. Let & = Z. Then for any open subset V of Ω,
I(V) — {ga: g e Z, car gξΞ= V, and αeSί} is a two-sided ideal in 2ί.
There is a finite set F and a constant M such that \\ v(u) \\ ^ M \\ u \\

for ueI(Ω ~ F).
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