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Introduction* In this paper the entropies of several sets of real
valued functions are calculated. The entropy of a metric set, a notion
introduced by Kolmogorov [2], is a measure of its size in terms of the
minimal number of sets of diameter not exceeding 2ε necessary to
cover it. The most striking use of this notion to date has been given
by Kolmogorov [4] and Vituskin [7] who have shown that not all
functions of n variables can be represented by functions of fewer
variables if only functions satisfying certain smoothness conditions are
allowed. For an exposition of this and other topics related to entropy
see [5]. For other entropy calculations by the present author see [1].
The Kolmogorov-Vituskin result makes use of the following entropy
calculation:

Let FjLp+aiC, K) = Fg

n denote the class of real valued functions
f(χ) = f(χi> *, χn) defined on the unit cube Sn in the Euclidean n
space which satisfy \f(x) \ ̂  C and have all partial derivatives of the
order k ^ p, with the pth order derivatives satisfying a Lipschitz
condition of order a, 0 < a rg 1, with Lipschitz constant K:

fM(χ') \^K\x-x'\« , x,x'eSn.

Under the uniform metric p,

ρ(f, g) = max \f{x) - g{x) \ ,
χesn

Kolmogorov [4, Th. XIV, p. 308] obtains

(1)

(The various symbols are defined below). In particular, with p = 0
and n — 1, this reads

(2) Hs(Lipκa)X(llεyι« ,

where we have written Lip^α in place of Fi.
The object of this paper is first to generalize (2) to sets of functions

which satisfy a smoothness condition (§ 1), and second to show that
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(1) holds under the Lx metric (§2).
Before stating our results more precisely we collect the basic

facts and definitions [4, p. 279]: Let A be a non-void subset of a
metric space W.

DEFINITION 1. A system 7 of sets U S W is called an ε-cover of
A if for each U in 7, the diameter of U,d(U), does not exceed 2s,
and A s

DEFINITION 2. A set Z7 C W is an ε-net for A if each point of A
has distance not exceeding ε from at least one point of U.

DEFINITION 3. A set U s W is said to be ε-distinguishable if the
distance between any two points of U is greater than ε.

In what follows we will deal exclusively with totally bounded
sets; that is, sets having a finite ε-cover for each ε > 0, or, equivalently,
sets having a finite ε-net for each ε > 0, or sets for which each ε-dis-
tinguishable subset is finite. In particular, compact sets are totally
bounded. We are interested in the following functions:

NT (A), the minimal number of points in W which form an ε-net
for A.

NS(A), the minimal number of sets in an ε-cover of A.
Ns(A), the maximal number of points in an ε-distinguishable sub-

set of A.
The dyadic logarithms of NS(A) and MZ{A) are called the entropy and
the capacity of A and are denoted HB(A) and CS(A) respectively:

HS(A) = log NS(A) , Cε(A) = log MS(A) .

It is unusual to be able to determine these functions exactly and
one is usually content with finding their order. We write /(ε) ^ g(ε)
for /(ε) = 00/(6)) and f(e) ^< g(e) if both /(ε) = 0(g(ε)) and g(ε) = 0(/(ε)).
Thus for various sets A we seek a function h(ε) for which H2^Ch{ε)
holds. The basic tool to this end is the following [4, Th. IV, p. 282]:

THEOREM. For each totally bounded set A of a metric space W,
the inequalities

M2S(A) ^ Nt(A) ^ W(A) ^ Mε(A)

hold, and therefore

C2ζ(A) ^ H2(A) ^ C2(A) .

In § 1 we consider sets of continuous functions / defined on [0,1]
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and satisfying a smoothness condition. The modulus of smoothness
of /, ωf(s), is defined by

( 3 ) ω'(ε) = max | ΔJ{x) | ,

where Δtf(x) is the second difference of / at x with increment t:

(4) ΔJ{x) = f{x + 2ί) - 2/(a? + ί) + /(α?) .

It is of course assumed that the maximum in (3) is taken over only
those t for which (4) is defined.

For a fixed strictly increasing function Φ{έ), let Aφ be the set of
continuous functions/ defined on [0,1] which satisfy \f(x)\ ^ K, and
ωf(ε) ^ φ(ε). With the uniform metric on Aφ, we give the best possible
estimate from above for HS(AΦ) in the sense explained below (Th. 1).
For the cases we examine, we will find the estimation of HS(AΦ) from
below quite simple (Th. 2).

In § 2, we show that Kolmogorov's result (1) is also correct when
the uniform metric is replaced by the Lλ metric pLl defined by:

,g)= \ \f~9\dv=[ . . . [\f(χlf . . . , o
( J s n Jo Jo

- f/(ffi, , «n) I dx, dxn .

1. With Aφ as defined in the introduction, we now estimate
HS(AΦ) from above:

THEOREM 1. If log (llΦ(e)) ^ 1/e and Λf (e) = ΣΓ=o ̂ (e/2*) < °°,

This result is best possible within a constant factor; that is, there
exists Φ such that HS(AΦ) fe 1/Λί~1(ε). In fact, with Φ(ε) = ε, one
checks that Lip(1/2) l c i ψ and from Kolmogorov's result (2),

iίε(Lip(1/2) 1) ^ 1/e - VM-\ε) .

The main idea in the proof of this theorem is that even though
a function from Aφ may increase or decrease with arbitrary rapidity
over a small interval, it will be approximated there well by its secant
line. This is contained in the following lemma.

LEMMA 1. Suppose f is defined and continuous on [x0, x0 + δ]
and that ωf(ε) ^ φ(e). If F(δ) = (1/2) ΣT=i Φ{SI2ι) < oo and

L(x) - f(x0) + ( x - xQ)(f(x0 + δ ) - f(xQ))lδ ,
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then

|/(α?) - L(x) I ̂  F(δ) for x e [x0, x0 + 8] .

Proof. We shall show

( 5 ) f(x)-L(x)£F(δ), xe[xo,xo + δ];

the proof of

-F(δ) ^ f(x) - L(x) , x e [x0, x0 + δ]

is similar. To prove (5), it is sufficient to prove the inequalities

(6) f(x\) - L(xi) S (1/2) Σ Φ(δlV) , i = 0,1, , 2* k - 1, 2,

where #1 = x0 + {iβk)δ. For if (6) is established (5) follows from the
continuity of f(x) —

We prove (6) by induction. For k = 1, we have

/(α?0 + δ) - 2/(α0 + 5/2) + f(x0) - ^,a/(α?0) ^ -

f(x0 + δ/2) ^ {f(x0) + (f(Xo + δ) -/(α?0))/2} + (ll2)Φ(δ/2)

- L(α?i) + (Il2)φ(δl2) ,

and

/(a*) - L(α?ϊ) ^ (1/2)0(5/2) .

We also have f(xl) - L(x[) = /(a?D - L(x\) = 0, so (6) is established
for fc = 1. Assuming the inequalities (6) hold for k, we consider them
for k + 1. Let i be given, 0 ^ i ^ 2*+1. If i is even,

xί+1 = xo + (ί/2k+1)δ = xo

and

/ ( 4 + 1 ) - L(xi+1) ^ (1/2) Σ φ(δlV) £ (1/2) Σ
ί=l t = l

by the induction hypothesis. If i is odd, we have

and

/(»i<+lϊ/a) - 2f(xi+1) + f(x{t1)l2) =

or

( 7 ) f(xUι) S (V2){f(xri)l2) + f(xΐ+1)l2)}
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By the induction hypothesis, /(atf- 1 " 1 )-!,^- 1 ' ' ' ) and f(xίi+1)")-L(xίi+1)l1)
do not exceed (1/2) Σ L i Φ(δl2% so from (7) we have

+ L(xi+1) + (l/2)Φ(δl2k+1) ,

and

Thus (6) and the lemma follow.

Proof of the theorem. Let ε > 0 be given. Put n = ns — [1/ε] + 1
(here and below [x] denotes the largest integer not exceeding x),
δ = 1/n < ε, and ΎJ = Φ(δ). With feAφ, associate the sequence

where k{ = [f{iδ)lrj\, % = 1, 2, , n. Notice that for given k{ and

ki+1, ki+2 takes on one of seven values. This is because

7 = Mi + 2)8) - 2f((ί + l)δ) + f(iδ)

is a second difference with increment S, so

(9) -Φ(δ) g 7 ^ (ki+2 + 1 - 2ki+1 + ki + l)η

and

(10) (ki+2 - 2ki+1 - 2 + ki)τ) ^ 7 S Φ(δ) .

From (9) and (10) we have

— 1 = -φ(δ)/η ^ ki+2 + {2 - 2ki+1 + fcj ^ Φ(S)jη + 4 = 5 ;

hence if q = —{2 — 2fcί+1 + fcj, fci+2 is one of

q - l , « , ? + l , •••, q + 5 .

Since | / ( α ? ) | ^ i ί for α?e[0,1], kλ and &2 are each one of
2[Kjη\ + 1 < 3[iί/^] integers. Then the number of distinct sequences
Sf does not exceed

With Sf we associate the function Pf, the graph of which is the
polygonal line determined by the points {iδ, kfl), 1 = 1, 2, , n. For
x e [0,1], it follows from the lemma that
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|/(α?) - Pf{x) I ̂  \f(x) - L(x) I + I L(x) - PJp) I

g F(δ) + V^= F(δ) + φ(δ) ̂  F(ε) + φ(ε) = M(ε) .

Thus ρ(f, Pf) ^ M{ε) and the set {Pf}feΛ4> is an M(ε)-net for ^ . Since
the functions P/ and the sequences S/ correspond in a one-to-one way
and δxe, we have

and

hence,

HS(AΦ) ^ HM-\e) .

When 0(ε) is concave and strictly increasing, HS(AΦ) may be es-
timated from below in the following way. Take

n = [Vφ-\e)] - 1 , δ = l/n> φ-\ε), xi = ίδ , i = 1, 2, , w .

With each sequence of positive and negative ones

(11) Wx, m2, , mCΛ/a]

associate the function / = /»1>ma,...>Wfl/a defined by

α; 2 ί _ 2 ) , a? e [α; 2 i _ 2 , a ? ^

- xχ-d - Φ(δ)} x e fe_x, αj2,)

/(») = 0 x e [a?a[Λ/a], 1] ,

i = l ,2, •• , N 2 ] .

Each of these functions is in Aφ since \f(x + ε) — f(x) \ ̂  (l/2)^(ε) by
the concavity of ^(ε), and the set D of all such functions is ε-dis-
tinguishable since each pair of functions in D differ by 2(l/2)̂ (<5) > ε
at some x{. Since there are 2[%/2] sequences (11) and therefore 2[>/2]

functions in D, we have

MS(AΦ) ^ 2[%/2] , and CS(AΦ) ^ n^l^~\e) .

This proves:

THEOREM 2. // ^(ε) is concave and strictly increasing, then

CS(AΦ) £ 1/^-χε) .

EXAMPLES. If ΦΛ(e) = sa,0 < a ^1, then for the class AΦIΫ we
have M(ε) = Σf=0 (ε/2ί)Q> ̂ < ε05, so Theorems 1 and 2 give
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(12) Cξ(AφJ X Hξ(AφJ X UM-\e) = 1/ε1'" .

For 0 < a < 1, it is known that

(13) Lip*- c AΦΛ C Lipκ«

for suitable K19 K2. Since the entropy of Lip^* is independent of K
[4, p. 286], this inclusion and (12) give (2). If a = 1, Lip^ 1 is properly
contained in AΦa. For example, the function

((l/21og2)a>loga x Φ 0
fix) = \

( 0 x = 0

is not in Lip^l since f'(x) is unbounded on (0,1]. But / is in AΦl

since one may verify that | Δtf{x) | ^ 11 | for x e [0,1] and therefore
# ) g h.

Also, if Φ(ε) — ε + ε log (1/ε), our results give for Aφ, which is
intermediate between Lip 1 and each of the classes Lip a, 0 < a < 1,
the estimate HS(AΦ) >z (1/ε) log (1/ε).

Our Theorems 1 and 2 thus contain the special case (2) of (1) and
somewhat more.

2. We now show that (1) also holds under the Lt metric.

THEOREM 3. Under the Lλ metric, Hζ(Fq

n)

Proof. Since the Lλ metric is smaller than the uniform metric,
the estimate Hz(Fq) ^ (l/ε)w/(? is immediate from Kolmogorov's result
(1). To get the reverse estimate we show the existence of a large
number of ε/M-distinguishable functions in F? without actually pro-
ducing them. Mis a constant which will be implicity determined
later.

The functions we seek are among those given by Kolmogorov [4,
p. 311] to establish the estimate Hs(Fq

n) ^ (l/ε)"/g in the uniform metric.
Set

Φ{y) = Φ ( ( v i , V 2 , -- fVn))

Π M l + ViY , I Vi I ̂  1 , ΐ = 1, 2, • , ra
0 otherwise .

Put Δ = (ε\aflq and let x°, x\ , x8 be a maximal 2J-distinguishable
set in SΛ. It is clear that

s X \\Δn X llenlq .

Let U consist of all functions of the form
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r

A
where yr = ± 1 , r = 0,1, , s

For suitable α and small ε, U is contained in Ff. U is ε-dis-
tinguishable in the uniform metric, but not in the Lλ metric; however
we can show the existence of a subset of U which is ε/M-distinguish-
able in the Lx metric and contains enough functions for our purpose.
We do this as follows: Let k(ε) be the largest integer such that for
each function / of U there exist no more than k(ε) other functions
/ ' of U which satisfy

(14) pLl{fJf)^εjM.

If one now selects / ( 1 ) arbitrarily from U and with it all functions of
tf/i(1), •• ,/r((1i)), r ( l ) ^ k(e), which satisfy (14) w i t h / = / ( 1 ) , and then
from the remaining functions of U selects / ( 2 ) arbitrarily and with it
all functions of Ufl2), . ,/r

(

(%, r(2) ^ fc(e), which satisfy (14) with
/ = / ( 2 ) , and so on until U is exhausted, one obtains at least t —
[(2s)l(k(ε) + 1)] groups of functions. The functions / ( 1 ) ,/ ( 2 ) , , / ( ί )

are mutually more than ε/Λf apart in the Lt metric and therefore
form an ε/M-distinguishable subset of Fq

n. Thus

— - k{e) + l

and

(15) Hslm(Fq

n) ^ s - log2 (&(ε) + 1) ̂  c(l/ε)*

where c > 0. We will show that when M is taken favorably

log2 (k(ε) + 1) <

so from (15) it will follow that

1, or

completing the proof.
To estimate k(ε) from above notice that for functions ft =

fμ,...,μ and / a =fp,...,p of [7, the inequality

(16) ^ ( / i , / 2 ) ^ ε / M

implies that jj =̂= j\ with at most c1j{Knlq) exceptions, for some constant
d. This is because if jl

m Φ j2

m, then
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\f-g\dV =
)QΔ[xm)

where

GΔ{xm) = GΔ{xf, •••,$?)

— tV ^lί ^2> > an) I ^ i ^ i I = Ά, 0 — ± , Δ, , It] .

Thus for fixed / xG ί7, the number of functions f2e U which satisfy
(16) does not exceed

C C I / Σ Γ
i=0

therefore

log2 A (ε) ^ log2 {\c1jMsniq~\ + 1) + log I .

[c1IMεnlq]J

If M is taken suitably large, one finds from Stirling's formula that

log2 ( M
\njM

for large n. Then for small ε and a suitable ikf, we have

and the theorem follows.
Since functions of the class Lip 1 are functions of bounded variation,

the above calculation accomplishes part of showing that Hs( V) X 1/ε,
in the Lx metric where V is the set of functions / defined but not
necessarily continuous on [0,1], which satisfy |/(a?)|^Λf, and
V a r [ 0 1 ] / ^ Bf where B is a constant not depending on / .

COROLLARY. HS( V) ^ c 1/ε.

Proof. Since F = ) L i p l , HS(V) ^ 1/ε follows from the theorem.
To get the reverse estimate, take n = [1/ε], δ — Ijn and xt = iδ/2,
ί = 0, 1, , n. For given feV, let m2i_2 be the largest integer such
that Sm2i_2 < f(x) for all x e [%2i-2, x2i] and let m2ί_χ be the smallest
integer such that Sm2i-i > f(x) for all x e [̂ 2ί_2, x2i], i = 1,2, •••,%•
If g/(x) is the function the graph of which is the polygonal line
determined by the points

(xi9 δrrii), i = 0, 1, , (2n - 1) , and (1, δm2n^) ,

we claim that pLl{f, 9/) ^ cε for ε < (1/2), where c — 2(L + 2) is
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independent of ε. This is because

\f(x) - g(x) I ^ δm2 ί_ 1 - <5m2ί_2 , x e [x2i_2, x2i],

and therefore

ί *2ί

I/(a?) - 0(0) I dx ^ ( m ^ - m2ί_2)<52.
*2ί-2

Then

lM/> g) = (Ί/O*) - ffO*) I dx ^ δ2 ± (m2ί_, - m2ί_2) .
1 JO i = l

It is clear that

S t(^i-i - 1 - (m2ί_2 + 1)) ^ Var[Ojl]/ ^ 5 ,

SO

(/ ) δ(JB 2 δ ) ^ cε .

Thus the functions {g/(x)}fev form a cε-net for V. We now
estimate from above how many functions are in this net. To do this
notice that labeling the function g/(x) with the (finite) sequence

(17) no,nlf •• ,^2w-i

where n0 = m0 and

Πi = (-l)i+1(mi - m ^ ^ 0 , i = 1, 2, , 2n - 1

gives a one-to-one correspondence between the functions in our net
and some sequences of the form (17). It therefore suffices to estimate
how many different sequences (17) will be required to label the functions
in the net. Since (w< — 2)δ ^ Var[aί4__lfXi]/f we have

δn0 + 8 ' Σ (nt - 2) g 3M/d + B ,

or

2 ί l " 1

i ^ M/δ + B/ί + 4/5 = B'/δ ,

so the nonzero terms among (17) form a composition [6] of not more
than 2n parts of an integer k g B'fi. Since the number of composi-

tions of k with exactly i parts is ( i) [6, p. 124], and 2n — i
ί 2n \ ^ ~ '

zeros can fall in (~ _ ^ jways among 2n places, the number of labels
(17) with i nonzero parts which add to k does not exceed
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2n \/k - 1

2n - l)\i - 1

Then in all there are not more than

BΊ* mln<2».*> / 2U \(k ~ 1\ 12u\ IB''/δ

Σ Σ ^ (JB7S)2W

k=o %=i \2n — i)\ί — 1/ \n/\B'l23
functions in our cε-net; hence

B'n
Na(V)-B*—\nJ\B'nl2

Since log (J/ 2) — n > w e ^ n a ^y obtain

(2n\ I B'n \
HCZ{V) ^ \ogn + log ί I + logί , I ̂ 2n + B'n^n^ 1/e ,

or

The author is indebted to his teacher, Prof. G. G. Lorentz of
Syracuse University, for suggesting these problems and for many
helpful conversations concerning them.
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