ON THE SPECTRUM OF A TOEPLITZ OPERATOR

Harold Widom

Given a function $\phi \in L_{\infty}(-\pi, \pi)$, the Toeplitz operator T_{ϕ} is the operator on H_{2} (the set of $f \in L_{2}$ with Fourier series of the form $\sum_{0}^{\infty} c_{n} e^{i n \theta}$) which consists of multiplication by ϕ followed by P, the natural projection of L_{2} onto H_{2} : if $f \sim \sum_{-\infty}^{\infty} c_{n} e^{i n \theta}$ then $\operatorname{Pf} \sim \sum_{0}^{\infty} c_{n} e^{i n \theta}$. Succinctly,

$$
T_{\phi} f=P(\phi f) \quad f \in H_{2}
$$

In [5] a necessary and sufficient condition on ϕ was given for the invertibility of T_{ϕ}. This will be stated below. (The paper [5] is needlessly complicated. In a recent paper of Devinatz [1], however, all results of [5] and more are proved without undue complication in a general Dirichlet algebra setting.) Halmos [2] has posed the following as a test question for any theory of invertibility of Toeplitz operators: Is the spectrum of a Toeplitz operator necessarily connected? We shall shown here that the answer is Yes.

The proof consists mainly of applications of Theorem I of [5], which says the following.

A necessary and sufficient condition for the invertibility of T_{ϕ} is the existence of function ϕ_{+}and ϕ_{-}belonging respectively to H_{2} and \bar{H}_{2} (the set of complex conjugates of H_{2} functions) such that
(a) $\phi=\phi_{+} \phi_{-}$,
(b) $\phi_{+}^{-1} \in H_{2}$ and $\phi_{-}^{-1} \in \bar{H}_{2}$,
(c) for $f \in L_{\infty}, S f=\phi_{+}^{-1} P \phi_{-}^{-1} f \in L_{2}$, and $f \rightarrow S f$ extends to a bounded operator on L_{2}.

We don't want to prove the theorem here but we do have to say where the functions $\phi_{ \pm}$come from under the assumption that T_{ϕ} is ivertible. If we set

$$
\psi_{+}=T_{\phi}^{-1} 1, \bar{\psi}_{-}=T_{\phi}^{*-1} 1
$$

then it can be shown that $\phi \psi_{+} \psi_{-}=c$, a constant. We must have $c \neq 0$ since $\psi_{ \pm}$can vanish only on sets of measure zero and ϕ is not identically zero. One then defines

$$
\phi_{+}=1 / \psi_{+}, \quad \phi_{-}=c / \psi_{-}
$$

and (a) and (b) hold.
As for the relevance of condition (c), it turns out that the ex-

[^0]tension of S, restricted to H_{2}, is exactly T_{ϕ}^{-1}. It follows that
\[

$$
\begin{equation*}
\left\|(P f) \phi_{-}\right\|_{2} \leqq\|\phi\|_{\infty}\left\|T_{\phi}^{-1}\right\|\left\|f \phi_{-}\right\|_{2} \quad f \in L_{\infty} \tag{1}
\end{equation*}
$$

\]

Conversely, suppose there exists an M such that

$$
\left\|(P f) \phi_{-}\right\|_{2} \leqq M\left\|f \phi_{-}\right\|_{2} \quad f \in L_{\infty}
$$

Then we can deduce

$$
\left\|\dot{\phi}_{+}^{-1} P \phi_{-}^{-1} f\right\|_{2} \leqq M\left\|\phi^{-1}\right\|_{\infty}\|f\|_{2} \quad f \in L_{\infty}
$$

It is a simple consequence of (c) that $\left\|\phi^{-1}\right\|_{\infty}<\infty$. (See [5], Theorem I, corollary, or [1], Lemma 2.) Thus (c) may be replaced by
(c') $\phi^{-1} \in L_{\infty}$ and the map $f \rightarrow P f$ is bounded in the space $L_{2}\left(\left|\phi_{-}\right|^{2} d \theta\right)$.
We shall need this fact.
To begin the proof of the connectedness of $\sigma\left(T_{\phi}\right)$, the spectrum of T_{ϕ}, let Λ be a compact set disjoint from $\sigma\left(T_{\phi}\right)$. (Think of Λ as being a simple closed curve surrounding a portion of $\sigma\left(T_{\phi}\right)$.) For each $\lambda \in \Lambda$ the operator $T_{\phi}-\lambda=T_{\phi-\lambda}$ is invertible, so we have the corresponding functions

$$
\psi_{+}(\lambda)=\left(T_{\phi}-\lambda\right)^{-1} 1, \quad \bar{\psi}_{-}(\lambda)=\left(T_{\phi}-\lambda\right)^{*-1} 1
$$

and the constant $c(\lambda)$ as described above, and

$$
\begin{equation*}
\phi-\lambda=\phi_{+}(\lambda) \phi_{-}(\lambda) \tag{2}
\end{equation*}
$$

where

$$
\phi_{+}(\lambda)=1 / \psi_{+}(\lambda), \quad \phi_{-}(\lambda)=c(\lambda) / \psi_{-}(\lambda)
$$

Let us consider the continuity of these various function of λ. It follows from the definition of $\psi_{ \pm}(\lambda)$ and the continuity, in the uniform operator topology, of the mappings $\lambda \rightarrow\left(T_{\phi}-\lambda\right)^{-1}$ and $\lambda \rightarrow\left(T_{\phi}-\lambda\right)^{*-1}$, that $\lambda \rightarrow \psi_{ \pm}(\lambda)$ are continuous functions from Λ to L_{2}. This implies that $\lambda \rightarrow c(\lambda) /(\phi-\lambda)$ is continuous from Λ to L_{1}. Since $\lambda \rightarrow \phi-\lambda$ is continuous from Λ to L_{∞} we conclude that $\lambda \rightarrow c(\lambda)$ is continuous from Λ to L_{1}, so $c(\lambda)$ is a continuous complex valued function. Since $c(\lambda) \neq 0$ it follows also that $\lambda \rightarrow \phi_{+}(\lambda)=(\phi-\lambda) \psi_{-}(\lambda) / c(\lambda)$ and $\lambda \rightarrow \phi_{-}(\lambda)=(\phi-\lambda) \psi_{+}(\lambda)$ are continuous from Λ to L_{2}. To recapitulate, the four functions $\phi_{ \pm}(\lambda)^{ \pm 1}$ are L_{2} continuous.

The next step is to take logarithms. Since both $\phi_{+}(\lambda)$ and $1 / \phi_{+}(\lambda)$ belong to $H_{2}, \phi_{+}(\lambda)$ is an outer function. Recall that this means it has the representation

$$
\phi_{+}(\lambda)=\alpha_{+}(\lambda) e^{\log \left|\phi_{+}(\lambda)\right|+i\left[\log \left|\phi_{+}(\lambda)\right|\right]^{\sim}}
$$

where the tilde denotes conjugate function and

$$
\alpha_{+}(\lambda)=\operatorname{sgn} \int \phi_{+}(\lambda) d \theta
$$

is a constant of absolute value 1 . Since $\phi_{+}(\lambda)^{ \pm 1}$ are L_{2} continuous so is $\log \left|\phi_{+}(\lambda)\right|$, and therefore also $\left[\log \left|\phi_{+}(\lambda)\right|\right]^{\sim}$ (since $u \rightarrow \tilde{u}$ is L_{2} continuous). The continuity of the complex valued function $\alpha_{+}(\lambda)$ follows from the fact that $\int \phi_{+}(\lambda) d \theta$ is continuous and nonzero.

Similarly we can write

$$
\phi_{-}(\lambda)=\alpha_{-}(\lambda) e^{\log \left|\phi_{-}(\lambda)\right|-i\left[\log \left|\phi_{-}(\lambda)\right|\right]^{\sim}}
$$

with $\alpha_{-}(\lambda)$ continuous and nonzero. Putting our representations together and using (2) we have

$$
\begin{equation*}
\phi-\lambda=\alpha(\lambda) e^{\log \left|\phi_{+}(\lambda)\right|+i\left[\log \left|\phi_{+}(\lambda)\right|\right]^{\sim}} e^{|\ln | \phi_{-}(\lambda) \mid-i\left[\log \left|\phi_{-}(\lambda)\right|\right]^{\sim}} \tag{3}
\end{equation*}
$$

where $\alpha(\lambda)=\alpha_{+}(\lambda) \alpha_{-}(\lambda)$ is a continuous nowhere vanishing complex valued function.

The sum of the two exponents in (3), which we shall call $l(\lambda, \theta)$, is for each λ an element of L_{2}, and the map $\lambda \rightarrow l(\lambda, \cdot)$ is L_{2} continuous. It is important that we be able to say that for each θ (or almost every $\theta), l(\lambda, \theta)$ is a continuous function of λ. This is false for general L_{2} valued functions but in our situation something as good is true.

Lemma 1. There is a null set $N \subset(-\pi, \pi)$ and a function $L(\lambda, \theta)$ defined on $\Lambda \times N^{\prime}$ such that for each λ

$$
L(\lambda, \theta)=l(\lambda, \theta) \text { a.e., }
$$

for each $\theta \in N^{\prime}$

$$
L(\lambda, \theta) \text { is continuous in } \lambda .
$$

and for all $\lambda \in \Lambda, \theta \in N^{\prime}$

$$
\phi(\theta)-\lambda=\alpha(\lambda) e^{L(\lambda, \theta)}
$$

Proof. First we make sure that ϕ is defined everywhere and that its range has positive distance from A. This we can do since Λ is a compact set disjoint from $R(\phi)$, the essential range of ϕ. (Recall that $T_{\phi-\lambda}$ invertible implies $(\phi-\lambda)^{-1} \in L_{\infty}$.)

Take $\lambda_{0} \in \Lambda$ and let $L_{0}\left(\lambda_{0}, \theta\right)$ be a function of θ which equals $l\left(\lambda_{0}, \theta\right)$ a.e. and for which

$$
\phi(\theta)-\lambda_{0}=\alpha\left(\lambda_{0}\right) e^{L_{0}\left(\lambda_{0}, \theta\right)}
$$

everywhere. Let $U=\left\{\lambda \in \Lambda:\left|\lambda-\lambda_{0}\right|<\delta\right\}$ be a neighborhood of λ_{0} so small that $\lambda \in U$ implies

$$
\begin{aligned}
& \left|\frac{\alpha(\lambda)}{\alpha\left(\lambda_{0}\right)}-1\right|<1 \\
& \left|\frac{\phi(\theta)-\lambda}{\phi(\theta)-\lambda_{0}}-1\right|<1
\end{aligned}
$$

all θ.

We extend $L_{0}\left(\lambda_{0} \theta\right)$ to a function defined on $U \times(-\pi, \pi)$ by

$$
\begin{equation*}
L_{0}(\lambda, \theta)=L_{0}\left(\lambda_{0}, \theta\right)+\log \frac{\phi(\theta)-\lambda}{\phi(\theta)-\lambda_{0}}-\log \frac{\alpha(\lambda)}{\alpha\left(\lambda_{0}\right)} \tag{4}
\end{equation*}
$$

where the logarithms are defined by the usual power series. Clearly $L_{0}(\lambda, \theta)$ is continuous on U for each θ and $\phi(\theta)-\lambda=\alpha(\lambda) e^{L_{0}(\lambda, \theta)}$ everywhere on $U \times(-\pi, \pi)$. We shall show $L_{0}(\lambda, \theta)=l(\lambda, \theta)$ a.e. for each $\lambda \in U$, at least if δ is small enough. Let us set

$$
\begin{aligned}
& u_{+}(\lambda)=\frac{\phi_{+}(\lambda)}{\alpha_{+}(\lambda)}=e^{\log \left|\phi_{+}(\lambda)\right|+i\left[\log \left|\phi_{+}(\lambda)\right|\right]^{\sim}} \\
& u_{-}(\lambda)=\frac{\phi_{-}(\lambda)}{\alpha_{-}(\lambda)}=e^{\log \left|\phi_{-}(\lambda)\right|-i\left[\log \left|\phi_{-}(\lambda)\right|\right]^{\sim}}
\end{aligned}
$$

and

$$
v_{ \pm}(\lambda)=e^{1 / 2 L_{0}(\lambda \theta) \pm i / 2 \widetilde{L}_{0}(\lambda, \theta)}
$$

We know $u_{+}(\lambda)^{ \pm 1} \in L_{2}$. Actually for each $\lambda, u_{+}(\lambda)^{ \pm 1} \in L_{p}$ for some $p>2$ (the p depending on λ). The reason is the following. Condition (c^{\prime}) in the criterion given above for invertibility implies that the $\operatorname{map} f \rightarrow P f$ is bounded in the space $L_{2}\left(\left|u_{-}(\lambda)\right|^{2} d \theta\right)$. Helson and Szegö have determined ([3], Theorem 1) all measures $d \mu$ such that $f \rightarrow P f$ is bounded in $L_{2}(d \mu)$. They are measures of the form

$$
d \mu=e^{\rho+\tilde{\sigma}} d \theta
$$

with $\rho \in L_{\infty}$ and $\|\sigma\|_{\infty}<\pi / 2$. However

$$
\|\sigma\|_{\infty}<\frac{\pi}{2} \text { implies } e^{\tilde{\sigma}} \in L_{1}
$$

This is a theorem of Zygmund. (See [6], p. 257.) A statement. which is only at first glance stronger is

$$
\|\sigma\|_{\infty}<\frac{\pi}{2} \text { implies } e^{ \pm \tilde{\sigma}} \in L_{1+\varepsilon} \text { for some } \varepsilon>0
$$

Putting these things together we can conclude that $u_{-}(\lambda)^{ \pm 1} \in L_{p}$ for
some $p>2$, and so also $u_{+}(\lambda)^{ \pm 1} \in L_{p}$.
Since $L_{0}\left(\lambda_{0}, \theta\right)=l\left(\lambda_{0}, \theta\right)$ a.e., a routine check shows $\left|v_{+}\left(\lambda_{0}\right)\right|=$ $c\left|u_{+}\left(\lambda_{0}\right)\right|$ a.e., where c is a nonzero constant, so we have $v_{+}\left(\lambda_{0}\right)^{ \pm 1} \in L_{p_{0}}$. We shall show from this that $v_{+}(\lambda)^{ \pm 1} \in L_{2}$ for all $\lambda \in U$ is δ is sufficiently small. We have

$$
\frac{v_{+}(\lambda)}{v_{+}\left(\lambda_{0}\right)}=e^{1 / 2\left[L_{0}(\lambda, \theta)-L_{0}\left(\lambda_{0}, \theta\right)\right]} e^{i / 2\left[\widetilde{U}_{0}(\lambda, \theta)-\widetilde{L}_{0}\left(\lambda_{0}, \theta\right)\right]}
$$

It follows from (4) that

$$
\lim _{\lambda \rightarrow \lambda_{0}}\left\|L_{0}(\lambda, \theta)-L_{0}\left(\lambda_{0}, \theta\right)\right\|_{\infty}=0
$$

Therefore, from Zygmund's theorem again, we can say this: given any $q_{0}<\infty$ there exists a δ so that $v_{+}(\lambda) / v_{+}\left(\lambda_{0}\right) \in L_{q_{0}}$ whenever $\left|\lambda-\lambda_{0}\right|<\delta$. If we choose q_{0} so that $p_{0}^{-1}+q_{0}^{-1}=1 / 2$ then we shall have $v_{+}(\lambda) \in L_{2}$. In fact me shall have $v_{+}(\lambda) \in H_{2}$. (Any function of the form $\exp (\sigma+i \widetilde{\sigma}), \sigma \in L_{2}$, which belongs to L_{2} also belongs to H_{2}; see [6], pp. 282-3.) Similarly

$$
v_{+}(\lambda)^{-1} \in H_{2} \text { and } v_{-}(\lambda)^{ \pm 1} \in \bar{H}_{2}
$$

Now almost everywhere

$$
u_{+}(\lambda) u_{-}(\lambda)=v_{+}(\lambda) v_{-}(\lambda)\left(=\frac{\phi-\lambda}{\alpha(\lambda)}\right)
$$

so

$$
\frac{u_{+}(\lambda)}{v_{+}(\lambda)}=\frac{v_{-}(\lambda)}{u_{-}(\lambda)}
$$

The left side belongs to H_{1} and the right to \bar{H}_{1} so both sides must be a constant $\beta=\beta(\lambda)$, and

$$
\frac{v_{-}(\lambda)}{v_{+}(\lambda)}=\beta(\lambda)^{2} \frac{u_{-}(\lambda)}{u_{+}(\lambda)}
$$

If we take the logarithm of the absolute value of both sides we obtain

$$
\left[\mathscr{J} L_{0}(\lambda, \theta)\right]^{\sim}=2 \log |\beta(\lambda)|+\log \left|\phi_{-}(\lambda)\right|-\log \left|\phi_{+}(\lambda)\right|
$$

and so

$$
\mathscr{J} L_{0}(\lambda, \theta)=\left[\log \left|\phi_{+}(\lambda)\right|\right]^{\sim}-\left[\log \left|\phi_{-}(\lambda)\right|\right]^{\sim}+\gamma(\lambda)
$$

where $\gamma(\lambda)$ is, for each λ, a constant. Since

$$
\mathscr{R} L_{0}(\lambda, \theta)=\log \left|\frac{\phi(\theta)-\lambda}{\alpha(\lambda)}\right|=\log \left|\phi_{+}(\lambda)\right|+\log \left|\phi_{-}(\lambda)\right|
$$

we have upon adding,

$$
L_{0}(\lambda, \theta)=l(\lambda, \theta)+i \gamma(\lambda)
$$

a.e.

Given a sequence $\lambda_{n} \rightarrow \lambda\left(\lambda_{n}, \lambda \in U\right)$ there is a subsequence $\lambda_{n^{\prime}}$ for which $l\left(\lambda_{n^{\prime}}, \theta\right) \rightarrow l(\lambda, \theta)$ a.e. (This follows from the L_{2} continuity of l.) Since $L_{0}\left(\lambda_{n^{\prime}}, \theta\right) \rightarrow L_{0}(\lambda, \theta)$ everywhere we have $\gamma\left(\lambda_{n^{\prime}}\right) \rightarrow \gamma(\lambda)$. This shows that γ is a continuous function of λ. Since $\gamma\left(\lambda_{0}\right)=0$ (recall that by definition, $L_{0}\left(\lambda_{0}, \theta\right)=l\left(\lambda_{0}, \theta\right)$ a.e.) and γ is for each λ an integral multiple of 2π, we must have $\gamma(\lambda)=0$. Thus $L_{0}(\lambda, \theta)=$ $l(\lambda, \theta)$ a.e. for each $\lambda \in U$.

Because of what we have done and the compactness of Λ we can find a finite open covering $\left\{U_{k}\right\}$ of Λ and for each k a function $L_{k}(\lambda, \theta)$ defined on $U_{k} \times(-\pi, \pi)$ so that $L_{k}(\lambda, \theta)=l(\lambda, \theta)$ a.e. for each $\lambda \in U_{k}, L_{k}(\lambda, \theta)$ is continuous on U_{k} for each θ, and $\phi(\theta)-\lambda=$ $\alpha(\lambda) e^{L_{k}(\lambda, \theta)}$ on $U_{k} \times(-\pi, \pi)$. Consider a pair of these open sets U_{j} and U_{k}, and let $\lambda_{1}, \lambda_{2}, \cdots$ be dense in $U_{j} \cap U_{k}$. For each λ_{n} there is a θ-set E_{n} of measure zero outside of which both $L_{j}\left(\lambda_{n}, \theta\right)$ and $L_{k}\left(\lambda_{n}, \theta\right)$ equal $l\left(\lambda_{n}, \theta\right)$. Thus if θ does not belong to $\bigcup E_{n}$ we have $L_{j}\left(\lambda_{n}, \theta\right)=L_{k}\left(\lambda_{n}, \theta\right)$ for all n. By the continuity of L_{j} and L_{k} in λ and the density of $\left\{\lambda_{n}\right\}$ we conclude that $L_{j}(\lambda, \theta)=L_{k}(\lambda, \theta)$ for all $\lambda \in U_{j} \cap U_{k}$ as long as θ does not belong to the set $F_{j, k}=\bigcup E_{n}$. Thus as long as θ does not belong to the set $N=\bigcup_{j, k} F_{j, k}$ any two of the functions $L_{k}(\lambda, \theta)$ agree where they are both defined. We can therefore combine all the L_{k} to define a single function $L(\lambda, \theta)$ on $\Lambda \times N^{\prime}$ which has all the required properties.

Lemma 2. If Λ is a simple closed curve disjoint from $\sigma\left(T_{\phi}\right)$ then $R(\phi)$, the essential range of ϕ, lies entirely inside or entirely outside. .

Proof. Lemma 1 says that $\phi(\theta)-\lambda=\alpha(\lambda) e^{L(\lambda, o)}$ where $L(\lambda, \theta)$ is continuous in λ for each $\theta \in N^{\prime}$. For each θ the index (winding number) of Λ with respect to $\phi(\theta)$ is the index of $-\alpha(\lambda)$ with respect to the origin, and so is independent of θ. But the index is 1 if $\phi(\theta)$ is inside Λ and 0 if $\phi(\theta)$ is outside Λ, and this establishes the lemma.

Lemma 3. If 4 is a simple closed curve disjoint from $\sigma\left(T_{\phi}\right)$ and such that $R(\phi)$ lies entirely outside Λ, then $\sigma\left(T_{\phi}\right)$ lies entirely outside 1 .

Proof. Write

$$
\phi(\theta)-\lambda=e^{L(\lambda, \theta)+\log \alpha(\lambda)} \quad \lambda \in \Lambda, \theta \in N^{\prime}
$$

where $\log \alpha(\lambda)$ denotes a continuous logarithm of $\alpha(\lambda)$. This exists since $\alpha(\lambda)$ has index zero. Let $d \mu_{z}$ be the Borel measure on Λ which solves the interior Dirichlet problem, i.e., if f is a continuous function on Λ then $\int f(\lambda) d \mu_{z}(\lambda)$ is the value at the point z inside Λ of the function harmonic inside Λ, continuous on the union of Λ and its inside, and equal to f on Λ. Now $L(\lambda, \theta)+\log \alpha(\lambda)$ is (for fixed $\theta \in N^{\prime}$) a continuous logarithm of $\phi(\theta)-\lambda$. Since $\phi(\theta)$ is outside Λ this can be extended to a continuous logarithm of $\phi(\theta)-z$ for z inside 4 . The extension is a harmonic function, so

$$
\int[L(\lambda, \theta)+\log \alpha(\lambda)] d \mu_{z}(\lambda)
$$

is the value of the extension at z. Consequently

$$
\begin{equation*}
\phi(\theta)-z=e^{\int[L(\lambda, \theta)+\log \alpha(\lambda)] d \mu_{z}(\lambda)} . \tag{5}
\end{equation*}
$$

The integral $I(\theta)=\int L(\lambda, \theta) d \mu_{z}(\lambda)$ is a pointwise integral, i.e., for each $\theta, L(\lambda, \theta)$ is a Borel measurable function of λ and $I(\theta)$ is its integral. We prefer to think of it as a weak integral, i.e., I is the unique L_{2} function which satisfies, for all $u \in L_{2}$,

$$
(I, u)=\int(L(\lambda, \theta), u(\theta)) d \mu_{z}(\lambda)
$$

This identity follows from Fubini's theorem. If we use the fact that $L(\lambda, \theta)=l(\lambda, \theta)$ a.e. for each λ, we can write (5) as

$$
\begin{aligned}
\phi(\theta)-z= & e^{\int_{\log \alpha(\lambda) d \mu_{z}(\lambda)} e^{\log \left|\phi_{+}(\lambda)\right| d \mu_{z}(\lambda)+i \int\left[\log \left|\phi_{+}(\lambda)\right|\right]^{\sim} d \mu_{z}(\lambda)}} \\
& \cdot e^{\int \log \left|\phi_{-}(\lambda)\right| d \mu_{z}(\lambda)-i} \int\left[\log \left|\phi_{-}(\lambda)\right|\right] \sim d \mu_{z}(\lambda)
\end{aligned}
$$

where all integrals are weak integrals. Now ${ }^{\sim}$ commutes with integration respect to $d \mu_{z}(\lambda)$; this follows from the definition of \sim in terms of Fourier coefficients. Thus if we set

$$
\begin{aligned}
A & =e^{\int \log \alpha(\lambda) d \mu_{z}(\lambda)} \\
t_{+} & =\int \log \left|\phi_{+}(\lambda)\right| d \mu_{z}(\lambda) \\
t_{-} & =\int \log \left|\phi_{-}(\lambda)\right| d \mu_{z}(\lambda)
\end{aligned}
$$

we have

$$
\phi-z=A e^{t_{+}+i \tilde{t}_{+}} e^{t_{-}-i \tilde{t}_{-}}
$$

We shall show that this factorization exhibits the invertibility of $T_{\phi}-z$. Set

$$
\phi_{+}=A e^{t_{+}+\left(\tilde{i}_{+}\right.}, \quad \phi_{-}=e^{t_{-}-\tilde{i t}_{-}}
$$

We must verify that $\phi_{+}^{ \pm 1} \in H_{2}$, that $\phi_{-}^{ \pm 1} \in \bar{H}_{2}$, and that the map $f \rightarrow P f$ is bounded in $L_{2}\left(\left|\phi_{-}\right|^{2} d \theta\right)$.

The following fact is crucial. If $w_{1}, w_{2} \geqq 0$ satisfy

$$
\int|P f|^{2} w_{i} d \theta \leqq M \int|f|^{2} w_{i} d \theta \quad(i=1,2)
$$

for all $f \in L_{\infty}$, and $w=w_{1}^{\alpha} w_{2}^{1-\alpha}(0 \leqq \alpha \leqq 1)$, then also

$$
\int|P f|^{2} w d \theta \leqq M \int|f|^{2} w d \theta
$$

This follows from an interpolation theorem first proved for general operators and weight functions by Stein ([4], Theorem 2). We shall need an extension of this theorem to families of weight functions, and for convenience we state this extension together with another little fact as,

Sublemma. Assume $\lambda \rightarrow r(\lambda, \theta)$ is continuous from the compact set Λ to real L_{2} and such that for all λ

$$
\int e^{r(\lambda, \theta)} d \theta \leqq K
$$

Let μ be a nonnegative Borel measure on Λ with $\mu(\Lambda)=1$. Then

$$
\int e^{\int_{r(\lambda, \theta) d \mu(\lambda)}} d \theta \leqq K
$$

If in addition

$$
\int|P f|^{2} e^{r(\lambda, \theta)} d \theta \leqq M \int|f|^{2} e^{r(\lambda, \theta)} d \theta
$$

for all $f \in L_{\infty}$, then also

$$
\int|P f|^{2} e^{\int r(\lambda, \theta) d \mu(\lambda)} d \theta \leqq M \int|f|^{2} e^{\int r(\lambda, \theta) d \mu(\lambda)} d \theta
$$

Suppose for the moment that this has been established. If we apply the first part of the sublemma to the four functions $\pm \log \left|\phi_{ \pm}(\lambda)\right|^{2}$ and recall that by continuity the norms $\left\|\phi_{ \pm}(\lambda)^{ \pm 1}\right\|_{2}$ are uniformly bounded on Λ, we conclude that

$$
e^{ \pm t_{ \pm}}=e^{\int_{\log \left|\Phi_{ \pm}(\lambda)\right| \pm 1_{\alpha \mu_{z}}(\lambda)}}
$$

belong to L_{2}, and so $\phi_{+}^{ \pm 1} \in H_{2}$ and $\phi_{-}^{ \pm 1} \in \bar{H}_{2}$. Next it follows from (c')
of the criterion for invertibility and the fact that $T_{\varphi}-\lambda$ is invertible for each $\lambda \in \Lambda$ that

$$
\int|P f|^{2}\left|\phi_{-}(\lambda)\right|^{2} d \theta \leqq M \int|f|^{2}\left|\phi_{-}(\lambda)\right|^{2} d \theta
$$

for all $f \in L_{\infty} ; M$ can be chosen independently of λ since Λ is bounded away from $\sigma\left(T_{\phi}\right)$. (See (1).) Therefore, by the sublemma again,

$$
\int|P f|^{2} e^{2 t}-d \theta \leqq M \int|f|^{2} e^{2 t}-d \theta
$$

i.e., $f \rightarrow P_{f}$ is bounded in $L_{2}\left(\left|\phi_{-}\right|^{2} d \theta\right)$. This concludes the proof of invertibility of $T_{\phi}-z$. Since $T_{\phi}-z$ is invertible for any z inside Λ we conclude that $\sigma\left(T_{\phi}\right)$ lies entirely outside Λ.

It remains to prove the sublemma. For each integer n let $E_{n, i}$ $(i=1,2, \cdots)$ be a finite partition of Λ into Borel sets so that

$$
\begin{equation*}
\left\|r(\lambda, \theta)-r\left(\lambda^{\prime}, \theta\right)\right\|_{2}<\frac{1}{n} \tag{6}
\end{equation*}
$$

if $\lambda, \lambda^{\prime}$ belong to the same $E_{n, i}$. Choose points $\lambda_{n, i} \in E_{n, i}$ and set

$$
\begin{aligned}
w_{n} & =\exp \left\{\sum_{i} r\left(\lambda_{n, i}, \theta\right) \mu\left(E_{n, i}\right)\right\} \\
w & =\exp \left\{\int r(\lambda, \theta) d \mu(\lambda)\right\}
\end{aligned}
$$

It follows from (6) that $\log w_{n} \rightarrow \log w$ in L_{2} and our problem is to justify various passages to the limit under the integral sign. It follows from Hölder's inequality that for each n we have $\left\|w_{n}\right\|_{1} \leqq K$. There is a sequence n^{\prime} so that $w_{n^{\prime}} \rightarrow w$ a.e., so Fatou's lemma gives $\|w\|_{1} \leqq K$. This is the first part of the sublemma.

The unextended interpolation theorem has a trivial generalization to arbitrary finite logarithmically convex combinations of weight functions. Since $0 \leqq \mu\left(E_{n i}\right) \leqq 1$ and $\sum_{i} \mu\left(E_{n, i}\right)=\mu(\Lambda)=1$ we can conclude that for each n

$$
\int|P f|^{2} w_{n} d \theta \leqq M \int|f|^{2} w_{n} d \theta
$$

A slight modification of this which also follows from the unextended interpolation theorem is

$$
\begin{equation*}
\int|P f|^{2} w_{n}^{1-\varepsilon} w_{1}^{\S} d \theta \leqq M \int|f|^{2} w_{n}^{1-\varepsilon} w_{1}^{\S} d \theta \tag{7}
\end{equation*}
$$

for all $\varepsilon(0<\varepsilon<1 / 2), n, f$. (Here w_{1} is just w_{n} with $n=1$.) By Hölder's inequality $\left\|w_{n}^{1-\varepsilon} w_{1}^{\varepsilon}\right\|_{1} \leqq K$. This implies that $w_{n}^{1-2 \varepsilon}$ have uniformly bounded norm in $L_{p}\left(w_{1}^{\varepsilon} d \theta\right)$, where $p=(1-\varepsilon) /(1-2 \varepsilon)$.

Since $f \in L_{\infty}$ the functions $|f|^{2} w_{n}^{1-28}$ also have uniformly bounded norm. Since $p>1$ we can find a sequence n^{\prime} so that $|f|^{2} w_{n^{\prime}}^{1-2 \varepsilon}$ converge weakly to a function in $L_{p}\left(w_{1}^{\ell} d \theta\right)$. But n^{\prime} has a subsequence $n^{\prime \prime}$ so that $|f|^{2} w_{n}^{1-28}$ converges a.e. to $|f|^{\prime 2} w^{1-2 \varepsilon}$. It follows that

$$
|f|^{2} w_{n^{\prime}}^{1-2 \varepsilon} \rightarrow|f|^{2} w^{1-2 \varepsilon}
$$

weakly. The conjugate space of $L_{p}\left(w_{1}^{\mathrm{\varepsilon}} d \theta\right)$ is $L_{q}\left(w_{1}^{\mathrm{\varepsilon}} d \theta\right)$ where $q=(1-\varepsilon) / \varepsilon$. Since $w_{1}^{\varepsilon} \in L_{q}\left(w_{1}^{\mathrm{i}} d \theta\right)$ it follows from the weak convergence that

$$
\begin{equation*}
\int|f|^{2} w_{n^{\prime}}^{1-2 \varepsilon} w_{1}^{28} d \theta \rightarrow \int|f|^{2} w^{1-2 \varepsilon} w_{1}^{28} d \theta \tag{8}
\end{equation*}
$$

This holds of course if n^{\prime} is replaced by any subsequence, in particular one such that $w_{n^{\prime \prime}} \rightarrow w$ a.e. Then (7) with ε replaced by 2ε, (8), and Fatou's lemma give

$$
\int|P f|^{2} w^{1-2 \varepsilon} w_{1}^{28} d \theta \leqq \int|f|^{2} w^{1-2 \varepsilon} w_{1}^{2 \varepsilon} d \theta
$$

Since $w^{1-2 \varepsilon} w_{1}^{2 \varepsilon} \leqq \max \left(w, w_{1}\right) \in L_{1}$ we can take the limit as $\varepsilon \rightarrow 0$ under the integral on the right, and apply Fatou's lemma to the integral on the left, to obtain the final conclusion of the sublemma.

Now we are in a position to prove, without much more difficulty, that $\sigma\left(T_{\phi}\right)$ is connected. Suppose not. Then we can find a simple closed curve Λ, disjoint from $\sigma\left(T_{\phi}\right)$, so that a non-empty portion of $\sigma\left(T_{\phi}\right)$ lies inside Λ and a non-empty portion of $\sigma\left(T_{\phi}\right)$ lies outside Λ. Call these portions σ_{1} and σ_{2} respectively. By Lemmas 2 and $3, R(\phi)$ lies entirely inside Λ. Let Γ_{ε} be a simple closed curve surrounding a non-empty portion σ_{3} of σ_{2} and such that each point of Γ_{ε} is within ε of σ. Since σ_{2} is contained in the convex hull of $R(\phi)$ (in fact all of $\sigma\left(T_{\phi}\right)$ is; this will be explained in a moment) Γ_{ε} will be contained in the convex hull of Λ if ε is sufficiently small. Thus of the three possibilities for disjoint simple closed curves (Λ and Γ_{ε} will be disjoint is ε is small enough),
Λ inside Γ_{z}
Γ_{ε} inside Λ
$\Gamma_{\varepsilon}, \Lambda$ have disjoint insides,
the first is eliminated since Γ_{ε} is contained in the convex hull of Λ, the second is eliminated since σ_{3} lies entirely outside Λ, and the third is eliminated by Lemma 3: since $R(\phi)$ lies outside Γ_{3} so does $\sigma\left(T_{\phi}\right)$. The assumption that $\sigma\left(T_{\phi}\right)$ is disconnected has led to a contradiction.

It remains to see why $\sigma\left(T_{\phi}\right)$ is contained in the convex hull of $R(\phi)$. It suffices to show that T_{ϕ} is invertible if $R(\phi)$ is contained in an open angle of opening less than π with vertex 0 , and since
invertibility of T_{ϕ} is not destroyed by multiplying ϕ by a nonzero constant we may assume that this angle has the positive real axis as bisector. But then for sufficiently small ε we shall have $\|1-\varepsilon \phi\|_{\infty}<1$, i.e. $\left\|I-\varepsilon T_{\phi}\right\|<1$, and this implies T_{ϕ} is invertible.

References

1. A. Devinatz, Toeplitz operators on H^{2} spaces, Trans. Amer. Math. Soc., to appear.
2. P. R. Halmos, A glimpse into Hilbert space, article in "A Survey of Modern Mathematics,'" Wiley, 1963.
3. H. Helson and G. Szegö, A problem in prediction theory, Annali di Mat., 41 (1960), 107-138.
4. E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc., 83 (1956), 482-492.
5. H. Widom, Inversion of Toeplitz matrices II, Ill. J. Math., 4 (1960), 88-99.
6. A. Zygmund, Trigonometric Series, vol. I, Cambridge, 1959.

Cornell University

[^0]: Received April 15, 1963. Sloan Foundation fellow.

