
A PROBLEM OF LEAST AREA

EDWARD SILVERMAN

McShanes's solution of the Plateau problem made use of a repre-
sentation theorem to reduce this problem to that of minimizing the
Dirichlet integral, a non-parametric problem. The parametric integral
considered by Cesari, Sigalov and Morrey [4, 16, 15] can be interpreted
as an area integral for an appropriately generalized area. If this
area satisfies certain conditions there exists a Dirichlet-type integral
and a representation theorem so that the McShane procedure applies.
We shall restrict ourselves to such integrands since further information
concerning the non-parametric problem is required to handle the general
case. Results of [13] ensure the existence of a solution minimizing
the Dirichlet integral and, if the integrand is sufficiently smooth, then
the solution also has differentiability properties. The representation
theorem is used to show that the solution which minimizes the Dirichlet
integral also minimizes the parametric integral.

We use Theorem 5.2 and the representation theorem to correct
an error in [21].

It seems probable that Fleming's results [9] can be combined with
those of this paper to extend to surfaces of other topological types
the results derived here for surfaces of the type of the disc.

It is desirable that the theory be broad enough to handle the
problem of least area in m, the space of bounded sequences [1], hence
an independent proof that the generalized area, given by the integral
if the representation is good enough, is lower semi-continuous.

Since the Lebesgue area of a surface is obtained by taking the
limit of the areas of a suitable sequence of approximating polyhedra,
there is no loss in generality in supposing that all of the Banach
spaces considered are separable, except m. If B is such a space, then
we can suppose that B is a subspace of m [17].

1. Let M be a metric space, C(J, M) be the space of continuous
functions on a Jordan region J into M and x e C(J, M). Then there
exists a monotone-light factorization x — ̂ κμΆ such that ft(J)cm,
Lit**) — L(χ)t where L is Lebesgue area and λβ is a contraction [17, 18].
If y e C{J, M) then || μx - μy \\ <; 21| x - y ||. If if is a Jordan region
contained in J, then || μxlκ(v) ~ /W<?) II ^ II μ.(P) ~ A(ϊ) II whenever
p, q e K. Furthermore, there exists a nonnegative valued function λ
on the subsets of m such that X(A) <; λ(2?) whenever AcB and
Mμx(J)) = L{x). If M = m and x is monotone then X(x(J)) = L(x)
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[20]. It is not hard to verify that the last equality holds if J is an
admissible set [3]. In addition, if A is contained in a cyclic element
C of μx(J) then X(IntcA) = X(A) where Int^A is the interior of A
relative to C. Finally, X(μx(J)) = ΣX(C) where the summation is taken
over the cyclic elements of μx(J).

A Jordan region is the homeomorph of a Jordan region in the
plane. The letter i will frequently be a natural number or an index
but may also indicate the identity map on m. Thus if μx(J) = K is
a Jordan region then μx and i \ K are Frechet equivalent and L(x) =
L(μx) = X(K) = L(i,K) where L(i, K) = L(i | K). If a Jordan region
A is cut into two Jordan regions B and C by means of a rectifiable
arc, then X(A) = X(B) + λ(C).

A subset of μx(J) is open if it is open relative to μx(J). If / is
a function on A to B and peB then /v(p) — {tf € A |/(g) = p}.

Let ^(x), <^(x), &(x), 5f (#) and 3f(x) be, respectively, the
collection of all Jordan regions in Domain x, all Jordan regions in
Range μx, that subset of Mf{oί) whose boundaries, relative to Range
μx, are rectifiable, the open subsets of Range μx whose boundaries
are boundaries of elements of &{x)9 and the inverses, under μxf of
the elements of &{x). Thus the elements of &(x) and £2τ(x) are open,
connected and simply connected.

Now let Q = Domain x and & = μx(Q), and L(x) be finite.

LEMMA 1.1. If Je ^f(x) then L(μxU) = L(μx, J ) .

Proof. By Kolmogoroff's principle, L(x, J) ^ L{μXJ J) S L{μ*\j).
We have already noted the equality of L(x, J) and L(μx}J).

LEMMA 1.2. If Ge^(x) and H= μζ(G) then L(x, H) = λ(G).

Proof. If Je J"(x), Jo. H, then L(x, J) = L(μx{J) = L(μx, J) =
Mf*χ(J)) ̂  MG). Thus L{x, H) ̂  λ(G) since H can be invaded by Jordan
regions [3]. Now let G' = ̂ - G - dG and i ϊ ' = μl{G'). By invading,
with multiply connected Jordan regions if necessary, we obtain, as
above, that L(x, H') ̂  λ(G'). Since x\ΘH is rectifiable (thus Xx(dG)
is also rectifiable) L(x) - L(x, H) + L(aj, H') ^ λ(G) + λ(G') - λ ( ^ ) -
ί'(ft) = Ĵ (») and the equality must hold throughout. The lemma
follows.

LEMMA 1.3. Let Rx and R2 be Jordan regions with Rx c Int R2.
Suppose that x is light on A — R2 — Int R± into M. Let ^ be the
set of all continuous f on [0,1] into A such that /(0) 6 dRx and
/(I) G dR2. Let £ίf be the set of all continuous h on [0,1] into A
such that h(0) — h(l) and h(a) Φ h(b) unless (a, b) = (0,1) or (1, 0),
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and Rx is contained in the interior of the Jordan curve determined
by h. Let a = inf/e^ length μxf and β — mϊhe<% length μxh. Then
a and β are minima and β ^ L{x)\a + a.

Proof. Let / , e ^ with length μxfn < a + 1/n. By Hubert's
theorem concerning curves uniformly bounded in length there exists
/ ' continuous on [0, 1] to which a subsequence of μxfn converge in
the sense of Frechet. Since x is light, μl is a homeomorphism. It
is easy to see that / = μlf e ̂  and length μxf = a.

Let 7 = /([0, 1]) and q e Int A — 7. It is obvious that 7 is a simple
arc. There exist simple arcs yn joining dRλ to dR2 and Jordan regions
Jn with dJn c 0Rλ U dR2 U 7 U Ύn such that q e Jn and Jn invades A.
By [19], there exists gn continuous on [0,1] into Jn such that gn(0)e7
and gn(l) e Ύn such that length μxgn ^ L(x, Jn)/a S L{x)ja. By appeal-
ing to Hubert's theorem again we obtain a function gr continuous on
[0, 1] into A such that ^'(0) € μx(j)f g'(l) e μx(y) and R1 is contained in
the Jordan region R bounded by #'([(), 1]) and the piece of 7 between
0'(O) and g'(l). The lemma follows.

If x e C(J, m) then xik e C(J, E2) is defined by xίk(p) = (r(p), xk(p))
for each pe J.

LEMMA 1.4. Let peg? and C be a cyclic element of & contain-
ing p. Then for each e > 0 there exists Re&(x) such that diam R
< ε and L(i> R) < ε.

Proof. By [19] there exists, for each <5>0, R e &{x) with pelntR
and diam R < 3. By [17] there exists a number T such that
L(y) > L{μx) - ε/2 where yj = (μx)

j for j ^ T and yj = 0 for j > Γ.
Let Nik be the essential multiplicity function, [8], of (μx)

ίk. Since
\\Nik is finite there exists dik > 0 such that l\ Nik < ε/Γ2 whenever
\E\< δik. Let δ = min δik, 1 g i, k S T. Now take diam2β < δ/4.
Since diam (Xx)

ίk(R) ^ 2 diam iί, L(i, i?) ̂  Σ (W»fc + ε/2 < e, where
the integral is taken over (Xe)

iA!(i2).
By 'σ < ^'{xy we mean that σ is a finite family of non-over-

lapping elements of ^ " , where ^~ is jf, £f, or ̂  by iσ<£f(xY
we mean that cr is a finite family of pairwise disjoint elements of £f9

where £f is ^ or ^ .

THEOREM 1.1. T%ere eccisίs σn<^(x) such that max^e
and L(x) = limn ΣiDeσ w £(#, -D).

Proo/. Let C* be the cyclic elements of < \̂ There exists 2^
such that Σi>τnMCi) < Vn a n d maxί>ίΓwdiam C{ < 1/n. Those points
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common to Cι and Cjf i Φ j , i, j ^ Tn, can each be placed in an
element of & the sum of whose areas is less than 1/n. The part
of C;, i ^ Tn, not in any of these regions can be cut up into arbi-
trarily small regions each of which has a rectifiable boundary, relative
to Ci9 by means of the intrinsic inequality. The theorem follows from
the cyclic additivity of L and the additivity of L relative to a recti-
fiable cut.

If U is an open subset of Q let U = μl(lnt μx(U)) [23].

LEMMA 1.5. If U is an open subset of Q then L(x, U) = x{μx{U)).

Proof. Let J be a Jordan region (possibly multiply connected)
contained in U. Then μx(J)czμx(U) and L(x, J) ^ X(μx(U)). Hence
L(x, U) ̂  X(μx(U)). Let ε > 0. The intrinsic inequality can be used
to produce σ< &(x), Gf = U<?e<r G c μx(U), such that HG')>\(μx(U))-
ε. Let H= μl(Gf). Then L(x, H) = \{G% by Lemma 1.2, and Hcz U.
Thus L(x, U) ̂  L(α, i ϊ) - λ(G;) > Mμx(U)) - ε.

LEMMA 1.6. Jjf U is an open subset of Q then L(x, U) — L(x, U).

Proof. L(x, ϋ) = X(μx(U)) = X(μx(U)) - L(x, U).

LEMMA 1.7. If Ua VczQ, U and V open, then

L(xik, V) - L(xik, U) S L(x, V) - L(x, U) .

Proof. Let ε > 0. By Theorem 1.1 there exists σ <
\JDeσDc U, and Σχ>eτlr(0, D) > L{x, U) - ε. Thus

L(xik, V) - L(xik, U) ̂  L(xik, V) - Σ Hxik, D)
D6<r

= L(xi!t, V-\JD)^ L(x, V -\JD)
Dβa- Dβσ

^ L(x, V) - Σ L(x, D) < Ux, V) - L(x, U) + ε .
Dβσ

2 If B is a Banach space over the reals, then Bx is the set of
all elements of B having norm one and JS* is the space of continuous
linear functionals over B. For the purposes of this paper there is no
loss in generality in supposing that B is separable. In this case there
exist fn e l?ί, n = 1, 2, , such that \\a\\ = supw [a,fn]. By identify-
ing aeB with {[α, fn]}em we can suppose that B is a subspace of m
[17]. Let m' be the space of bounded functions β on N x N, N is
the set of positive integers, such that β(m, n) + β(n, m) = 0. If α, 6 e m
then we define a A b e m' by α Λ &(m, w) = ambn — anbm, where a = {a1}
and b = {&*}. Thus we suppose that the exterior product of B with



A PROBLEM OF LEAST AREA 313

itself, BAB, is contained in m\ If βem' then we put ||iS|| =
sup|/3(m, n)\ and obtain || a A b \\ S 2 || a \\ \\b || ^ || a ||2 + || b \\\ If
a A b = 0 then α and 6 are linearly dependent, and conversely. We
will usually write βik for β(ί, k).

If / is continuous on a Jordan region J into the plane then
O(f, dJ, p) is the topological index of p relative to f(0J).

LEMMA 2.1. If U is an open connected subset of Q and if Jn

is a sequence of (possibly multiply-connected) Jordan regions invading

U then lim i \θ(xίk, ΘJJ exists. The limit is independent of the

sequence {Jn}.

Proof. Let ε > 0 and take K so large that L(x, Jr) > L(x, U) — ε/2
f or r > K. If n>m> K then

(αf*, ΘJn) - JJθ(^*, dJm) ε/2 < | JJθ(^ Λ , d(Jn - Int Jm))

£ J j | O(x'\ d(Jn - Int JJ) I S L(xik, Jn - Int Jm)

^ L(α?, Λ - Int Jm) S L(x, Jn) - L{x, JJ < ε .

Let aik = [[θ(xik, djn). Then {<fc} is a Cauchy sequence for each
(i, k). Let aik = limα^. Clearly arnem', aemf, and απ—>α in m'.
The last statement is evident.

If U is an open connected subset of Q then we define ζx, Uy =
a. We may write ζx, jy for ζx, Int jy when J is a Jordan region.
Thus we have just shown that || (x, Uy — ζx, J> || ^ L(x, U) — L(x, J)
iί JcU. If U is not connected we put ζx, ΐiy — Σζx, Wy where
the sum is taken over the components W of U.

LEMMA 2.2. If UcV are open subsets of Q then

^ L(», V) - L(x, U) .

LEMMA 2.3. If U is an open subset of Q and if DcU, De
then <x, Uy = <x, Dy + <af U - Clos i)>.

The proof depends upon the fact that the image of dD under x
is rectifiable.

The monotone map μx induces an orientation of the cyclic elements
of ^[24]. We assume from now on that & is a subset of m together
with this induced orientation.

LEMMA 2.4. Let r0 be the monotone retraction of & onto one of
its cyclic elements C. If J is a Jordan region contained in Q then
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0(xik, ΘJ) — ΣO((Xx)
ikrc, μx(dj)), where the sum is taken over the cyclic

elements of &.

Proof. Let d cz μx(dj) and suppose that rσ is constant on d and
that r0 = i on μx(dJ) — δ. Let E be the oriented plane containing
xik(Q), PeE, and L be a half-line in E terminating at P. If pedj
and / is continuous on J into JE7, let w(f, p) be the angle between the
half-line determined by f(p) and P with L. Evidently the change in
w(xik) around dj is equal to the sum of the changes of w((\x)

ίkr0) on
μjβj). Thus <x, J> - Σ<Xxr0, μ.(J)>.

LEMMA 2.5. <α, Z7> = <xx, μx(U)> .

Proof. We can suppose that U is connected. Let ε > 0. There
exists a Jordan region J c 27 with L(x, U) < L(x, J) + ε. If ίΓ = IntJ
then

- L(\9r0, μx(K))]
c

= L{XXJ μx(U)) - L(λ., Λ(^)) = L(x, U) - L(x, J) < e.

Hence

II<x, uy - <χx, μ.(ϋ)>\\ £ ιι<χ, uy - <*, J>H
+ ||<α?, J> - J<λ,βrσ, A(J)> | | + || Σ<Xxrθ9 μx(U)y - ^ λ . r , , μ.(J)>\\

( J7)> - <XX, U

LEMMA 2.6. Let μx{U) contain a cyclic element C of the type
of a sphere. Then ζxxro, μx(U)y = 0.

Proof. Since ?7is open and μl{C) c U there exists a Jordan region
J with μx(C)czJczU. Hence, since r0 is the identity on C,

- <λβ> roμx(J)y = 0.

LEMMA 2.7. If x is constant on dQ then ζx, Q> = 0, furthermore
ζx9 Qy = (XxrθQ, μx(Q)y if Co is the cyclic element containing μx{dQ).
Finally j ζx, Uy = ΣζXxr0, μx( U)y where the sum extends only over
those cyclic elements of & not contained in μx(U) plus, possibly, CQ.

LEMMA 2.8. Let C and C be two Frechet curves in E2, of the
type of the circle, each of whose lengths is less than M. Then

\\ [O(C, p) - O(C, p)]dp ^ 2M\\ C, C" ||

where O(C, p) is the topological index of p relative to C and \\ C, Cr\\
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is the Frechet distance between C and C".

Proof. Choose ε > 0. There exist functions / , g, f and g' on

[0,1], all continuous and of bounded variation such t h a t \\f—f'\\ +

\\g-g'\\< | | C , C " | | + ε and

[O(C, p) - O(C, p)]dp\ I j J

\ ε } •
W e r e q u i r e a n a d d i t i o n a l p r o p e r t y of μx. I f p, qeQ t h e n

Px(p) — PxiO.) II = inf { l e n g t h xg\g is c o n t i n u o u s on [ 0 , 1 ] i n t o Q w i t h

(0) = p a n d g(l) = q} .

THEOREM 2.1. Suppose that xn-+x in C(Q,m) and that there
exists a number M such that L(xn) < M for all n. Then for each
simply connected Jordan region JocQ there exists a finite collection
σn of non-overlapping simply-connected Jordan regions in JQ such that

lim Σ <X> jy = <#» «Ό>

Proof. If the theorem were false there would exist ε0 > 0 such
that limsup | Σjetrn ζxn, jy — <Λ Ό I > εo for each admissible {σn}. By
extracting a suitable subsequence we can suppose that the limit exists.

Let Ck be the cyclic elements of & and rk be the monotone
retraction of & onto Ck. There exists a number T such that
Σfc>r λ(Cfc) < eo/4. For each k ^ T let K5{k) be the Jordan regions in
Ck whose boundaries, relative to Ck are subsets of rkμx(djo). There
exists a number sk such that ΣJ>S& M-^JW) < eol(3T). Let s = maxsfc

and ? = eo/(4Γβ).
Let us fix & ̂  Γ, i ^ sΛ and write i£ for Kj(k). There exist

Jordan regions K, aK, i = 1, 2, 3, with JBΓX c iί2 — 9ίL2 a.K2(zK3 — 0iTs

czK3(Z K — ΘK, where boundaries are taken relative to Cfc, such
that λ(iί1) > λ(iΓ) — Ύ}. Let τ/r = inf diam A where A is a continuum
in Kd — K2 which separates dK3 from dK2. Evidently ψ > 0. Let
ξ(j9 k) = (1/6) min {1, dist (ΘKl9 dK2), dist (ΘK2, dK3), dist (^i^, ΘK), φ}, ξ =

mmξ(j,k),N=Mlξ + l, and ζ = min {f, >7/(4iV)}. We consider only
such w for which || xn — x || < ζ.

Let Γ; = {rkμxY(Ki — dKi). Then Γ̂  is an open two-cell and
there exist Jordan regions S2 and S3 such that Γ 2 c S 2 c S 3 c Γ3 and
dist (μx(dS2), μx(ΘS3)) > 5f. Let B* = /£βn(8S4). Then dist {Bl Bl) >
Oς — 4ζ ^ f.

If p is a cutpoint of &n — μXn{Q) on Bl and if C'(w) and C"{ri)
are two cyclic elements of &n separated by p then only one is not
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separated from Bl by p. Hence there is a single cyclic element C(n)
of £?„ such that no cut point of g?n on Bl separates C(n) from Bl.
Let r{n) be the monotone retraction of &n onto C(n).

If Bl Π C(n) = 0 there is a cutpoint p between C(n) and Bl. Hence
pg Bl and, consequently, p separates Bl from 1?̂ . This implies that
there exists a continuum A c iΓ3 — K2 which separates dKz from dK2

and whose diameter is less than 4f, but this is a contradiction. Hence
Bl n C(n) =£ 0 and, therefore, dist (r(n)Bl, r(n)Bl) ^ dist {Bl Bl) > ξ.
Thus there exist Jordan regions Rid Rid C(n) such that τ{n)BldRl,
r(n)Bl f]Rl = 0 and dist (ΘRl, dRl) > ξ. Since X(Rl) < \(C(n)) < M
there exists a Jordan region R(n) with RldR(n)dRl and length
ΘR(n) < N.

The curves {ΘR(n)} lie in a compact set and are uniformly bounded
in length by N; thus there exist representations yneR(n) on [0,1]
such that 7n converges uniformly to a continuous function 7 on [0,1]
onto <g?. From now on suppose that n is so big that ||τ» — 7| | < ζ.
Let t e [0,1], p = y(t) and pn = Ύn(t). There exists qne S3 — S2 such
t h a t pn - μXn{qn). Thus 11p- ]».(?,)11 ^ 11p - pn\\ + 11μm%{qn) - μx(qn) \\ ^

ζ + 2ζ = 3ζ. First suppose that μx(qn) e Ck. Then /jeβ(gn) e K3 - iΓ2.
Whether p 6 Cfc or not, || rk(p) - μx(qn) \\ ̂  \\ p - /£.((/.) | | < 3ζ. Now
suppose that μx(qn) ίCk. If rkμx(qn) separates p from C* then rkμx(qn) =
rk(p); otherwise || rk(p) - rkμx(qn) | | < || p - μx(qn) | | < 8ζ. Thus if p =
7(t) and ? G ί(ί) = rkμxμ

v

Xn7n(t) then || p - ? | | < 3ζ. Let A(n) = Uff(ί).
Then A(%) c ϋΓ3 - iΓ2, τ([0, ϊ\) d K - Kl9 and A(w) separates dKz from
ĴKΓ2. If rA7 could be shrunk to a point in iΓ3 — if2 then 7 could be

in & — K2. Now J5Λ = \Jt μx%μlΊ{t) would be shrunk to a set of
arbitrary small diameter in C{n) — Rl, for n large enough, and this
is impossible since diam Rl ^ diam K2 — 21| x — xn ||.

Let Gj be the components of i f - 7([0,1]) which do not contain
dK. Then

j j , [0,1]) = j Jθ(π ί f c, 7([0,1])) =

and

j Jθ(π ί f c 7. , [0,1]) - <XX

where πik(a) = (α% αΛ). By Lemma 2.8,

Let the subscripts of the G's be so chosen that Gx 3 U .̂ Then

- <λ.f Gx>|| < x(K) - λ(Gi) ^



A PROBLEM OF LEAST AREA 317

Hence \\<XXn, R{n)> - <XX, K>\\<4Nζ + y< 2η.

Next, <XXn, R(n)> = <XXn, r(nYR(n)> - <xn, Dn> where Dn =
μ*JInt r(w)v .#(%)]• There exists a simply connected Jordan region JnczDn

such that \\<xn, Dny - <xn, Λ> 11< ?. Thus ||<X« JKΓ> — <xn, Λ> 11< 3>?.

Let r'(w), i2'(w), J'(w), if' and K{ correspond to K5.(k') as r(n),
R(n), J(n), K and Kz correspond to Kj(k) and suppose either k Φ kr

or j Φ j ' . If R(n) Π 22'O) =£ 0 there exists p e R(n) Π R'(n), qeK3

and g' e K'z such that || p - g || < 2ζn and || p - q'\\ < 2ζn. This gives
4ζ ^ 4ζn > II q - g' | | > dist {?, 9iί} ^ dist {0iΓ3, ΘK} > 5ξ > 4ζ. Hence
jB(τt) Π #'(w) = 0, r(n)R(n) n r'(^)i2'(w) = 0 and, finally, J(^) Π J'(^) = 0.

Now let σn be the collection of all such Jn, one for each Kj{k).
By some arithmetic we get

< e 0 .

COROLLARY. JjΓ α?n —* a?, L(a?Λ) < M and σ < ^f{x) then there

exists σn < ^{xn) = ^{x) such that lim Σje«rn<»», *̂ > = Σjeo <^, «/">.

3 If α e m let πw(α) = na = {nα*} where wα ί = α* or 0 according
as i t=ί n oτ i > n. If αem' let wα ί fe = αik or 0 according as ί, k ^ ^
or either i or fc > n. Let wm = τcn(m) and Λm' = Λm Λ Λm. We recall
that we can suppose that jn'czm'.

Let f be a nonnegative valued function on nm\ for some natural
number n, with the following properties:

( i ) ψ is continuous,
(ii) ψ is positively homogeneous of degree one,
(iii) ψ is convex, and
(iv) there exist K ^ k > 0 such that & || α \\ <; ψ(α) ^ X | | α || for

all α e Λm'. Let Ff

n be the collection of such functions ψ.

Let j ^ " be the set of all ψ defined on mf with the property that

Ψ» = Ψ\ {jnr) e Fl and fn ^ ψn+1, ψn -> t

Let ψej^\ If there exist Scm* x m* such that ψ(α Λ 6) =

sup {[α Λ 6, / Λ ff] I (/, »)eS}, where [ α Λ 6 , / Λ f ] = /(α)flr(δ) - /(5)ff(α),

then ψ is simple. If ^(α Λ 6) = [α Λ 6, / Λ #] for some (/, g) e S then

we write (/, g) e S(α A b).

We now norm m x m' and m x m'* by | |(α, α ) | | — | | α || + | | α | |
and || (α, ζ ) | | = | | α | | + | | ζ | | where αem, αem', ζem'* and || || is
the appropriate norm.

Suppose that A is a bounded closed subset of nm for some n and
ψ is a real-valued continuous function on A x nm

f with ψn e F'n, where
ψn(α) — ψ(α, α) for each αeA and αe nm

f, with k and K of (iv) inde-
pendent of α.



318 EDWARD SILVERMAN

LEMMA 3.1. Let ψ be as in the last paragraph. Then ψ has
an extension ψ0 on nm x jn' which satisfies all of the conditions
imposed on ψ with A replaced by nm.

Proof. Let h be defined on A x nm[* by

[*, C]
= maxh{a, ζ) o^ewm' ψ(a, Oί)

It is easy to see that k ^ h(a, ζ) ̂  K and that h is uniformly con-
tinuous. The McShane Extension Theorem (15], applied to h, yields
an extension k defined on nm x nm[* which has the same bounds and
modulus of continuity as h. Let ψo(a, a) = max {k(a, ζ)[a, ζ] | ζ e m[*}.

Let Fn be the collection of all such functions ψ0. Let Ssf be the
set of all ψ defined on m x m' such that ψa e Szf', there exists K Ξ>
k > 0 with & || α || S ψ(a, cc) ̂  if || a \\ for all a em, a em', ψn —
ψ\(nmx jn!) e Fn and ψn ^ ψn+1, ψn — f.

Let ψ e j^f, ap and a in m' and suppose that af —> α u for all
(ΐ, /b). Then nav —> u α for all w. Hence ψn(nα, Λα) = lim ψn(na, nap) ^
liminf ψ(a, ap). Thus ψ»(α, a) ^ liminf ^(α, α p ).

Suppose that fn e Fn with k \\na \\ ̂  f n(nα, nα) ^ X | | Λα || for all
(a, a). L e t ψp(pa, pa) = m a x (ψn(na, na), k\\pa\\) for p > n. T h e n

Ί/ΓJ, G jPp for such p and ψ* = lim ψp is in J ^ . Furthermore, ψ is an
extension of ψn and is simple if ψn is.

If a? G C(ζ>, m) we define, for each ψ e

, α θ = l i m Σ
l l I H O J 6

Suppose that ^ G J ^ . It is easy to verify that P(ψ, x) =
lim P(ψ n , OJ).

In [17] the definition for the Peano area of x was equivalent to

P(x)= sup Σsup(( |0(^, dJ)
σ<β{x) Jgσ i k J J

If Range α? is contained in a Euclidean space (which we can
suppose is contained in m) then P(x) is the usual Peano area of x.
Let ψQ(a, a) = \\a\\. Evidently ψ0 e sf.

LEMMA 3.2. P(ψ0, x) = P(x).

An inequality in one direction is obvious. The difficult inequality
follows from a result of Cesari [U = V, 3].

LEMMA 3.3. P(ψ, x) = lim S r e o - i n f ^ ^ e r ^ O ? ) , <λβ, T »
llσ-il—0

<7 -< JΓ(^), &(x), or S?(x), and
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, x) = lim Σ in
!|σ||-»0 Deα PβD

The proof makes use only of the definitions and the results con-
necting <#, jy with <λx, μx(J)y.

LEMMA 3.4. If x and y are Frechet equivalent then P(ψ, x) =
P{ψyV) Furthermore, P(ψ, •) is cyclically additive.

We understand that the space of Frechet surfaces is given the
Frechet metric.

If & is a Frechet surface then P(ψ, £f) = P(φ, x) for any x e Sf.

THEOREM 3.1. P(Ψ, •) is lower semi-continuous both on C{Q, m)
<ιnd on the space of Frechet surfaces.

The results of the Corollary to Theorem 2.1 enable us to use the
standard arguments.

THEOREM 3.2. If x\ converges uniformly to xι for each i, then
P(f, x) <; liminf P(ψ, xn).

There is nothing to show if ψ e Fn for some n. Otherwise we
make use of the fact that the limit of an increasing sequence of lower
semi-continuous functions is again lower semi-continuous.

4 Our next step is to show that the expected formula holds for
P(ψ, x) whenever x is smooth enough. What follows is drawn from
[4; §§28, 30, 32, 12.10 and 12.12].

Let xeC(Q,m). If L(xik) < CΌ then the interval function whose
value on R is <x, Ryίk is differentiate and its derivative ^f{xik) is
the generalized Jacobian of xik = (x\ xk). If xι and xk have ordinary
first derivatives almost everwhere in Int Q then ^f{xik) = x[xk — x\x\
almost everwhere. We define the generalized Jacobian of x on m' by
{^f{x)Yk — ̂ {xik). Since P(ψ, x) is superadditive, it has a derivative
-almost everywhere. By Jensen's inequality,

f(x(r),

for each square q contained in Int Q. It follows that P'(φy x, p) ^
Ψ(%(p), ^(%9 P)) almost everywhere. Thus P(ψ, x) ^ \ \ψ(xf ^f(x))
We wish to show that the equality holds for x sufficiently smooth.
The proper requirement would be absolute continuity in the sense of
€esari, but we shall content ourselves with showing that the equality
holds if x is a Zλ map [21].
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THEOREM 4.1. If % is a D-map on a Jordan region Q and ψ e

then P(ψ, x) = \ \ ψ(x, ?(x)).
JJintρ ^

Proof. Since x is a D-map, P(ψ, x | •) is an absolutely continuous
interval function. Hence, by the preceding paragraph, we need only

show that P{f, x) S \\ψ(%, ^(%)) Furthermore, if ε > 0, then there
exists a finite collection σ of non-overlapping squares contained in
IntQ such that

, x) - ε < Σ mmγ(x(p), \\

^ Σ (t Ψ(v, JW) ^ \\
? 6 σ J J g ^ JJlntρ

where we have used the fact that x is a .D-map to obtain σ and the

equality of <#, #> and \ \ ^{x).

If & is a polyhedron then there exists a quasilinear representation

x of & on the unit square and P(ψ, &*) = f (α;, ^ ( ^ ) ) . Since

\\ | |^(α?) | | is often referred to as the elementary area of ^ , we

shall regard \ \ψ(x, ^(ώ)) as the elementary area of & corresponding
to the (nongeometric) area ψ. Let us write &(ψ, &) for this quantity.
That the elementary area is lower semi-continuous with respect to
Frechet convergence follows from Theorems 3.1 and 4.1.

Now let y b e a Frechet surface of the type of the two-cell. We
define a Lebesgue area for £f as follows:

= liminf &(φ

where the convergence is with respect to the Frechet metric. That
L(ψ, •) is lower semi-continuous with respect to Frechet convergence,
and therefore with respect to uniform convergence, follows in the
usual manner.

If k || a || ^ φ(a, a) S K\\ a \\ and x e C(Q, m) then it is easy to see
that kL(x) ^ L(ψ, x) g KL{x).

5* Let j ^ " be the collection of all continuous nonnegative valued
functions ψ on m x m which are positively homogeneous of degree
two, convex, and for which there exists K ^ k > 0 such that
Milα II2 + II b II2] ^ ψ(a, b) ̂  K[\\a ||2 + || b ||2] for all (α, b)emxm.

Let ψ € *%r", c Λ d Φ 0, and π be the plane determined by c and d.
Lemma 5.1. Let a Φ 0, a e π, πa = {p e π \ (a A p)!(c Λ d) > 0} and
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f(p) = ψ(α, p)l\\a Λp\\ on πa. Then the set E(a) of relative minima
of / is closed and convex, and / is constant on E(a).

Proof. Suppose that p and q are in E(a) and that \\a A q\\ —
|| a A v II = k > 0. Let 9(w) = ^(α, wp + (1 - w)g) and A(w) =
|| α Λ q \\ — kw. Since φ is convex and φ(w)jA(w) is (—1/fc) times the
slope of the line joining ( | |αΛ ?||/fc, 0) to (w, 9(w)), it follows that
(0, 9(0)), (1, 9(1)), and (|| a A g ||/fc, 0) are collinear and φ\A is constant
on [0, 1]. If k = 0 the convex function 9 has horizontal tangents at
(0, φ(0)) and at (1, 9(1)). Hence 9, and therefore 9/A are constant
on [0, 1].

Now define g(a) to be the value assumed by / on E(a). If k and
K are related to ψ in the usual way then k ^ g(a) ̂  2Z.

Lemma 5.2. # is continuous (on π).

Proof. Let 0 ^ an —> α ̂  0 and g(an) = ψ(αn, pw)/|| αΛ Λ pΛ || where
αΛ, α and pn are all in π. We can suppose that pn —> p0. Since
^(αj ^ 2if for all ^, liminf || an A pn \\ > 0. Hence ^(α) ^ liminf flr(αn).
On the other hand, suppose that g(a) = φ(a, p)l\\ a A p\\. Now g(an) ^
ψ(an, p)l\\an A p\\, for sufficiently large n, and so limsup#(αj ^ ^(α).

Since g is positively homogeneous of degree zero we can define
K(c A d) = maxo^er #(α).

Now we use ψ to generate an area Aψ by the formulas

Af(a A b) = K(a A b) \\ a A b \\

and

Af(a) = inf Σ Af(an A bn) .
ΣanΛbn=cx

LEMMA 5.3. // Aψ(a A b) = φ(a, b) then || a ||/L ^ || b || ^ || α || L
where L = (K + VK2 - k2)/k.

Proof. Let | | 6 | | = ί J | | α | | where t2 > L. Then f (ία, 6/ί) ^
JKΓ(ta || α ||2 + r 2 II 6 II2) - 2Xta || a ||2 < fc(l + t") \\ a ||2 ^ f (α, 6) which is a
contradiction.

If α Λ b Φ 0 then by an application of the Hahn-Banach Theorem,
[17], there exist f,gem? such that [a A b,f A g] = || a A b \\ and
max (I f(r) |, | g(r) |) ̂  11 r 11 ^ | f(r) \ + | ̂ (r) | whenever r is linearly dependent
upon a and 6. Hence (/2(r) + g2(r))/2 ^ || r ||2 ^ 2(/2(r) + g\r)) for all
such r and (|| a ||2 + || b ||2)/4 g || r ||2 + || s ||2 ^ 4(| |α ||2 + || b ||2) if r =
α cos θ — b sin # and s = α sin θ + b cos #.

Let &' = {f G ̂ " I ψ(α cos θ — 6 sin θ, a sin (9 + b cos (9) = ψ(α, b)
for all 0, f = lim ψn(a, b) and ψn ^ f w + 1 where ψn(a, b) = ^(wα, n&)}.
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Let 3f be the collection of all continuous functions on raxmxra
for which there exist constants K ^ k > 0 such that fc(|| δ ||2 + || c ||2)g
Ψ(a, δ, c) S K(\\b ||2 + ||c ||2) for all a,b,cem and such that ψae &',
where ψa(b, c) = ^(α, 6, c). If ψ e & then φn(a, b, c) = (ψa)n(b, c). We
may write ψn for ψn \ (nm x nm x nm). Let ^* n = {^€ ^ | ψ — ψn}.

LEMMA 5.4. If ψe &' then Aψ(aΛb) = min{γ(c, d)\cΛd = α

The proof is straight-forward.

If Ϋ e ^ " then let N = 2(f )1/2.

LEMMA 5.5. Let ψe3)r and (a, b) e m x m. //* ί/terβ
(/, gf) 6 m* x m* ŝ 6c/̂  that (/, #) is α supporting linear functional to
(the convex function) N at (α, 6) and if f(a) = gf(6) — iST(a, 6)/2, /(6) =
g(a) = 0, ίλβn Af (λa + μδ, ̂ a + ί7δ) = [(λa + /£δ) Λ (pa + cδ),/ Λ fir]
whenever Xσ — μp ^t 0.

Proo/. iV(a, pa + σb) ̂  (1 + σ)iV(a, δ)/2 implies that -f (α, pa+σb) ^
(1 + off (a, δ)/4 ̂  σ^(α, δ). It follows from Lemma 5.4 that

, δ).

LEMMA 5.6. Let ψ e ^ ' α^d suppose that Af(a Λ δ) = ψ(α, δ).
Lei (/', </') G 7Γ* x σ* sαίis/ί/ /'(α) - g'(b) = N(α, δ)/2, /'(δ) - ff'(α) = 0,
where π is the plane determined by a and δ. Then (/', #') is <z
supporting linear functional to N\(π x π) at (α, δ).

Proof. We write NfoτN\(π x π). Let λ, μ, p, σ be real numbers,
a' = Xa + μb and δ' = pa + σb. By hypothesis, Xσ — μp > I implies
N(a\ V) > N(a, b). We must show that N(a', V) ^ (λ + σ)N(a, δ)/2
for all λ, μ, p, σ. However, since N is convex, we can suppose that
Iλ — 11, \μ\, \p\ and | σ — 11 are all less than 1/2, which implies that
Xσ - μp> 0. Let Xn - (n + λ)/(n + 1), μn = μ\(n + 1), ρn - /9/(w + 1),
σn = (n + σ)j(n + 1), α. = Xna + j«Λ6, δ. - ^.α + σ%δ and t < (X + σ)/2.
Then (α%, δw) = (^(α, δ) + (α', δ'))/(^ + 1) and, for sufficiently large n,
Kσn - μnpn = (n2 + n(X + σ) + Xσ - μp)/(n + I)2 > (n + ί)2/(^ + I)2.
For such w, N(an, bn) > (n + t)N(a, b)f(n + 1). Thus nN(a, δ) +
N(a', V) >(n + t)N(a, b) and N(a\ V) > tN(a, δ). Hence N(a', V) ^
(λ + σ)N(a, δ)/2.

LEMMA 5.7. Let ψe £&' and suppose that Aψ(a Λ δ) = ψ(a, b).
Then there exist (/, g)em* x m* ŝ c/& ίJtαέ (/, g) is a supporting
linear functional to N at (α, δ) and f(a) — g(b) = N(a, δ)/2, /(δ) —
g(a) = 0.
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This lemma follows from the preceding and the Hahn-Banach
Theorem.

If f e ^ ' let S(ψ) = {(/, g) | (/, g) supports N for some (α, δ) and
f(a) = g(b) = N(a, δ)/2, f(b) = g(a) = 0}.

THEOREM 5.1. If ψe *&' then

Aψ{a A b) - sup {[a Λb,fΛg]\ (/, flr) e

Proof. Suppose that Aψ(α Λ 6) = ψ(α, δ). Then A-f(α Λ 6) =
ΛP(α, δ)/4 = [ α Λ δ , / Λ ^ ] for some (/, #) e S(^), by Lemma 5.7. Now
let (c, d)em x m. If we choose 0 so that /(c) sin 0 + /(d) cos 0 = 0
and let c' — c cos θ — d sin θ, d' = csinθ + d cos θ, then we obtain

[ c Λ d , / Λ ί ] = [C Λ ί , / Λ j ] = /(c')flr(dθ ^ (/(O + ff(d'))74
^ iV2(c', (2')/4 = ψ(c', d') - t(c, d) - Af (c Λ d) .

LEMMA 5.8. Let fQe&" and ψ(α, 6) = maxθ ψo(a cos 0 — b sin
α sin θ + b cos #). Then Aψ0 =

Proof. Let a/ /\b' Φ 0. There exist αx and &! with αx Λ δi =
α' Λ 6' such that Aψ{aτ Λ bλ) = ^(ax, δ2) and there exists 0 such that
ψ(a19 bλ) = ψo(a, b) where a — ax cos θ — bλ sin θ and δ = ax sin θ + bt cos 0.

Let π be the plane determined by α' and V and i\Γ0 = 2(^0)
1/2. If both

No I (7Γ x π) and ΛΓ | (π x TΓ) have unique supporting linear f unctionals
at {a, b) they must coincide since N^ No and N(a, b) = iVo(α, δ). Thus
there exist / ' and gf on π such that (/', #0 is the supporting linear
functional and /'(α) = g'(b) = N(a, δ)/2, f(b) = flr'(α) - 0. Thus
iV0(α, /oα + σb) ^ (/'(α) + ^'(δ))2 = (1 + σfN\a9 δ)/4 whenever σ > 0.
Hence Aψo(a A b) = ^0(α, δ) = ^(α, δ) = A^(a Λ δ). If either NQ\{πxπ)
or N\(π x π) does not have a unique supporting linear functional at
(α, δ), let ε > 0 and choose N{ on π x π to be strictly convex, of class
C", positively homogeneous of degree one and such that JV0 ^
N; < (1 + ε)2iVo. Let f 5 = iVo'74 and ψ be defined for ψ'Q as ψ was
for ψ0. Then Aψ ^ Aψ = A^5 < (1 +

THEOREM 5.2. Let M be a norm on m and ψ(a, b) = (M\a) +
M2(δ))/2. 7/ Λf*(/) = sup{/(α) | Jlί(α) - 1} /or all f em* then Aψ = ψ
where ψ(a A b) = sup {[α Λ b,f A g] \ M*(f) = M*(g) = 1}.

Proof. Suppose that a A b Φ 0. Then, by the argument of [17]
where M = || ||, there exist c,dem and f, gem* such that M*(f) =
ΛΓ*(flr) = 1, c Λ d = αΛ6, /(c) = Af (c) - Jtf (d) - ff(d)f /(d) = flf(c) - 0,
and f (α Λ δ) = [a A bj A g]. It follows that (/, g) e S(ψ) and so
Af ^ ψ. On the other hand, if (/, g) e S(f) then there exists a and
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b with a Λb Φ 0 such that (/, g) supports N at (a, b) and /(α) =
g(b) = N(a, 6)/2, /(6) = #(α) = 0. Since ^(ία, 6/ί) has a relative
minimum at one, we see that M(a) = M(b). Now let cem, and
choose t > 0 so that JfcΓ(tδ) = ikf(c). We have f(c) + M{c) =/(c) +

^ 2((ikP(c) + M\tb)l2)112 = 2ΛΓ(c). Thus M*(f) ^ 1 and, similarly,
f *(flf) ^ 1 and so f §

6. If x is a D-map on J then {#1} is defined almost everywhere
in Int J and is an element of m. We define xu = {a?i} and $„ = {#j}
[21]. Let .D(α ) = J J(|| xu ||

2 + || »β ||2), I(ψ, s) - j j t f o »« Λ O , and

I(ψ, x) — \\f{x, xu, xυ) where all of the integrals are taken over Int J,

Suppose that {xn} is a sequence of continuous functions on the
unit circle <^p. Then {xn} satisfies the three point condition if there
is a δ > 0 and win e Θ&7, i == 1, 2, 3, such that || wίn — wjn \\> δr

II Xn(v>in) - » (win) || > δ whenever i Φ j , i, j = 1, 2, 3.
If Ϋ e ^ ^ , if xk and & are D-maps on & and if α?i converges-

uniformly to x* for each i, then /(^, a?) ̂  liminf /(ψ, OJA) [13]. Hence
I(Ψ, x) ̂  liminf I{f, xk) for all ψ e &.

If αj is continuous on a Jordan region J into a Banach space B
and if ^ is the Frechet surface determined by x then dS^ is the
Frechet curve represented by x | dj.

The proof of the following lemma is modeled after a proof in [2]

LEMMA 6.1. Lβί He & where B = Rn and suppose that H is of
class C" and strictly convex in its last two arguments. Let & be
an open non-degenerate polyhedron in B. Let p{ and qif i = 1, 2, 3,
be distinct points of dC and d^>, respectively. Then there exists a
D-map x* on & which represents & such that x*(Pi) — qt and
I(H, x*) = I(AH, x*).

Proof. We mention, first, two properties of H. If y is a D-map
and T is a conformal transformation, then I(H, y) = I(H, Ty). Also,,
Σ< VIE*, (y, yu, yυ) = Σ< viHti i(y, yu, yυ) where H}i = (θlθyi)H and Hti =-

Let iΓ be the nonempty class of all representations of & on <&'
which are D-maps. Let J = inf^* I(H, x) and let {xn} be a minimizing-
sequence in K. Since 7(5, x%) = /(-ff, ϊ7^^) for Γ as above, we can
suppose that xn{Pi) = ?*. By Theorems 5 and 6 [21], the sequence {xn\
is equicontinuous. By deleting some terms, if necessary, we can
suppose that xn converges uniformly to x* where x* e & and x* is a*
D-map [21; Th. 8]. Thus x* e K and I(H, x*) = ϊ.
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Now let φ and ψ be Lipschitzian with constant M on &*. The
transformation U(u, v) = {a, β), a = u + eφ{u, v)9 β = v + εψ(uf v)9

together with its inverse, is Lipschitzian if | ε | < l/(3ikf). Set x(a, β) =
x*(u, v). Then x is a D-map. Let T be the conformal transformation
of domain x onto & which takes Ufa) onto pf and put X = x Γ v.
Then XeK. Put

J(ε) = I(H, X)=\\ D~Ή(x*, xΐβυ - xϊau, -xtaΌ + xfajdudv

where D = d(a, β)jd(u, v). Then

0 = 2J'(0) =

f ( {((G* - E*)φu - 2F*φv) + ((E* - G*)fΏ - 2F*ψu)}dudv

where

i

F * = Σ xϊH,t(x*, x*, x*) = Σ ajj ^ , (**, a?*, a??)
i i

and

G* = ΣtVί*H,i(x*,x*,x*) .
i

Since 9 and ψ are arbitrary, we obtain

(1) ([ (-Aφu + Bφ.) = 0 and ί( (Aψ. + Bψa) = 0

where A = £?* - G* and 5 = -2F*. By (1) and Haar's lemma [13]

( 2 ) ( (Adv - Bdu) = 0

for almost all rectangles Rc^. For each h > 0 let

^ = {O, v) e ̂ | [% - Λ, w + fc] x [v - h, v + h] c

and let AΛ and Bh be the /^-average functions of A and I? defined on
^ . These functions are continuous and satisfy (2) for every rectangle

(u,v)
Be ^h. Let ζh(u, v) = \ (Ahdv — Bhdu), the integral being inde-

(0,0)
pendent of the (rectifiable) path joining (0, 0) to (u, v). Now ζhu =
— Bh and ζhυ = AΛ. Using the other part of (1) in a similar fashion
we obtain rjhu = — Ah and Ύ)hυ = — Bh. Thus ζh and % are harmonic
on <ίfΛ. By [13; Th. 4.2, p. 74], ζΛ and ηh both vanish on 0ίfΛ. Thus
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E* = G* and F * = 0 almost everywhere in ^ and by Lemma 5.5,
AH(x*, x* Λ xf) = ί?(#*, #ί, a??) wherever these equalities hold.

If ψ e & and x is a jD-map on an open set G then x is Af-quasi-
conformal on (? if ^(#, ffw #«) = Aψ(x9 xu Λ α?β) almost everywhere on
G. If J is a Jordan region then we say that x is A^-quasi-conformal
on J rather than on Int J.

LEMMA 6.2. Let ^ he an open non-degenerate polyhedron and
suppose that ψe &. If Pi and qif i = 1, 2, 3, are distinct points of
d^ and d^, respectively, then 3? has an Aφ-quasi-conformal repre-
sentation x on & such that x(Pi) = #;.

Proof. There exist Hn as in the last lemma with Hn ^ Hn+ι and
ψ — lim Hn. By Dini's Theorem, we can suppose that ψ < (1 + lln)Hn

on I ^ I x J?! x J5i, where | ̂  | is the compact set covered by ̂ * .
Let #n 6 ̂  be ^J^-quasi-conformal with xn(Pi) = ίί. Then, as before,
there exists a D-map α? e ̂  and we can suppose that xn converges
uniformly to x. Hence I(ψ, #) ̂  liminf 7(γ, a?n) ̂  liminf (1 + 1/^)7(5, α?Λ) =
liminf (1 + lln)I(AHn, xn) = liminf (1 + l/n)I(AHn9 x) ̂  I(Aγ, a?).

THEOREM 6.1. If 6^ is an open non-degenerate surface of finite
Lebesgue area, if ψ e &, and if p{ and qif i = 1, 2, 3, are distinct
points of d^ and dS^, then £f has an Aψ-quasi-conformal represen-
tation x on & such that x(Pi) = q^

Proof. There exist open non-degenerate polyhedra ^n—>
that ξ?(Af, &>n) —> L(Af, Sf). Let qitM i = 1, 2, 3, be distinct points
of d^n such that gί>% —> gie There exist A^-quasi-conformal represen-
tations ίcw of ^*n such that αĵ ί̂ ) = qi>n. Hence, as before, there
exists a .D-map ί c e ^ a n d we can suppose that α?w converges uniformly
to x. Thus

, x) <> liminf /(ψ, »») = liminf I(Aψ, xn) = liminf
, a?) .

7. A subset ^Γ* of m is c-closed if αe ̂ " whenever there exists
{αn} in ^ " such that αi —> α* for each i. If J3Γ Π S is c-closed for
each sphere S then 3Z~ is locally c-closed. Evidently ^Γ is locally
c-closed if 3f is locally compact.

If £f is a Frechet surface of the type of a two-cell, let dSf be
the Frechet curve defined by x \ 0 ^ where x is a representation of Sf
on ^ Let d(7i, 72) be the Frechet distance between the Frechet
curves τx and 72, each of the type of the circle.

If J%Γ is a convex locally c-closed subset of m, if 7 is a simple
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closed curve in J5Γ and if ψ e Ssf then

= liminf W(Ψ

and

a(ψ, J%^7) = inf

where & is a polyhedron and £f is a surface, each of the type of the
disc, and each is contained in Sfc By Lemma 3.4 we can suppose
that each & in the definition of m(ψ, J^y) is open non-degenerate.

Let T(3f) be the set of all D-maps on i f with range in
= {x 6 T{ST) I α> I 99f e 7}.

LEMMA 7.1. Lβί £f he contained in 3ίΓ. Then there exists a
sequence of polyhedra {^n} contained in 3ίΓ with £?n —> &" and

Proof. Let us suppose that {a e m \ \\ a \\ < 3} c SΓ for some δ > 0.
If J7~ is a surface with representation x and if p is a positive number,
let pj?~ be the surface determined by px. Now suppose that {&n}
is a sequence of polyhedra with &n—*^ and §?(^, £?,)-+L(ψ9 S?).
Then {^} can be chosen by ^ n = (d&n)/(§ + 2d(^ w , ^ ) ) . If ^ ^ h a s
an interior point other than 0, a translation reduces the problem to
the preceding. If 3ίΓ has no interior point, let B be the space spanned
by 3ίΓ and let LB(ψf £f) be the area defined by restricting sequences
of polyhedra approximating 3? to be in B. Since LB(ψ, £f) = L(φ, Sf)
as in [17] and the argument applies to Lβ, the lemma is proved.

Now suppose Sf is contained in 5ίΓ and dά? = 7. There exists
a sequence ^ n of polyhedra contained in 5ίΓ such that ίfίψs ^9»)--»>

L(f, ^ ) . Hence, [12], m(ψ, ^Ί) ^ liminf ^ ( ^ , ^ ) = L(ψ, Sf) and,
consequently, m(ψ, J5ί^Ί) ̂  α(^, 5ίΓ,Ί).

If G is an open connected set in the plane, if x = {α?*} where each
^ { is of class S2 on G and if D(x) is finite, then a? is of class ^ 2 on G
[13]. If G is of class .K, in particular, if G is the interior of a circle,
or the intersection of the interiors of two circles, then there exists
a function φ on dG which plays the role of the boundary value function
for x. We shall write x \ dG for φ and x(p) for φ(p) for p e dG.

Let x be of class ^ 2 on Int <g*. Then s is a simple cone-function
for a? on Int & if

||) + ( i - U P I I ) ? , P ^ ( 0 , 0 )

(r , P = <O.O)

whenever g is contained in the convex hull of x{d^). Now let x be
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of class ^ 2 on a region J" of class K. Then z is a cone-function for
x on J if there exists a conformal transformation Γ from / onto &
such that z — wT and w is a simple cone-function for xT\ By some
remarks in §5,

We require some slight modification of one of Morrey's results.
Let C(P, r) be the open circle with center P and radius r.

LEMMA 7.2. Let x be class ^ 2 on C(0, R) with D(x) = M < oo.
Suppose there is a number k > 0 such that

D(x I C(0, r)) ^ kD{H(x, r)) , 0 < r ^ i2 ,

whenever H{x, r) is a simple cone-function for x over C(0, r). Then

D(x I C(0, r)) ^ M(rlR)llm , 0 ^ r ^ i? .

We use polar coordinates and let

ψ{r) = D(α? I C(0, r)) = ίVίΓΊl »P(ft *) IΓ + P~2 II »β(ft θ) |
Jo I. Jo

Since <f is absolutely continuous on [0, R],

rψ'(r) =

for almost all r in [0,12].
Now we compute

D(fΓ(α, r)) = r-2(r(2Vtll Φ, 0) ||2 + || x$(r, Θ) \\

πr
< [VpΓWMr, Ψ) \\2dφdpdθ + 2-1Γ'τ|| xθ{r, θ) \\*dθ

JoJo Jo Jo

, φ) \\2dφ ̂  6rψ'(r)
~ 2

for almost all r, where we have made use of the fact that άi&mxiβ^) ^
(lengths 10^)/2.

Thus t ( r ) ^ 6fcrψλ(r) and (r~llm)f)' ^ 0.
The following lemma is usually stated for surfaces in Euclidean

space, but the proof, with trivial modifications, shows that it is true
for surfaces in m.

LEMMA 7.3. Let {<9Q be a sequence of Frechet surfaces such that
», Ί) —> 0 where 7 is a simple closed curve. Suppose that xn is
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a D-representation of &n on & such that {xn} satisfies the three point
condition and such that {D(xn)} is uniformly bounded. Then {xn \
is equicontinuous.

THEOREM 7.1. If T(J%^y) is not empty and if fe & then there
exists x e T(<5Γ, 7) such that I(f, x) = inf {I(ψ, y)\ye T(j?Γ, 7)}. In
addition, x is open non-degenerate, Aψ-quasi-conformal and can be
chosen to take three distinct points of d^ into three distinct points
of 7.

Proof. If 5ίΓ were a finite dimensional subspace of m then the
first statement would follow from the remarks [13; p. 45]. The proof
there is sufficient to permit 3ίΓ to be a convex subset of a finite
dimensional space. This last condition may be deleted by replacing
[13; Th. 6.1] with Lemma 7.2. This part of the proof is essentially
the proof required for Theorem 7.2, and it is outlined after the state-
ment of that theorem.

If x were not open non-degenerate, there would exist a retraction
y of x, thus y e T{j?Γ, 7), which would be open non-degenerate. By
the representation theorem there would exist an Af-quasi-conformal
conformal map z, Frechet equivalent to y and taking three distinct
points of d^ into three distinct points of 7, and we would have
I(ψ, z) - I(Aφ, z) = I(Af, y) < L(Aψ, x) = I(Aψ, x) ^ I(ψ, x).

Similarly, the assumption that x is not A^-quasi-conformal leads
to a contradiction.

The theorem shows that there exists an open non-degenerate surface
£f and a representation x of Sf which is A^-quasi-conformal such
that L{Af,S^) = a(Aψ, 3ίΓ, 7). Furthermore, under suitable conditons
on ψf x has certain differentiability properties [13; Ch. VII].

THEOREM 7.2. Let ψe^f. If m{Aψ, ^Γ9 7) < <χ> then there
exists an open non-degenerate surface 6^ with an Aψ-quasi-conformal
representation x on ^ such that x e T(J%Γ9 7) and a(Af, J?f, 7) =

, 7) = L(Aψ,

Proof. Let {^n} be a sequence of open non-degenerate polyhedra
in JίT with 9 ^ n -> 7 and ξ?(Aψ, &*n) -> m(Aψ, 3ίΓ, 7) = /. Then there
exist Aα^-quasi-conformal representations yn of &% such that {yn}
satisfies the three point condition and I{f, yn) < I + 1, for sufficiently
large n. Thus {D(yn)} is uniformly bounded and, by deleting some
terms if necessary, there is a function y such that y\ converges weakly
in S2 to y\ Since I{ψ, •) is lower semicontinuous with respect to this
convergence, I{ψ, y) = /and thus D{y) is finite and y is in ^ 2 . That
there exists k > 0 for which D(x \ J) < kD{H{x, /)), and H(x, J) is
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a cone-function for x over J, follows as in [13; p. 45], With only
trivial changes, [13; p. 13, Th. 2,1] holds in our situation and it follows
that y is continuous on each closed subset of Int <g=\ That y is con-
tinuous on a neighborhood of d^ is proved as in [13; pp. 43-44] except
that we must replace the harmonic functions used there by cone-
functions. Thus y is continuous on ^ and is in &%, that is, y is a
jD-map. That range y c 3ίΓ and y \ d<^ e 7 follows from the fact that
range y is contained in a suitably large sphere and 3ίf is locally en-
closed. Hence y e T(SΓ, 7).

It is obvious that y is open non-degenerate. Hence there exists
an A^-quasi-conformal function z which is Frechet equivalent to y
and takes three distinct points of d^ into three distinct points of 7.
By Theorem 7.1 there exists x e T{^Γ, 7) taking the same three points
into the proper image points such that

, x) = inf {Z(f, w)\we T(3Γ, 7} ^ I(f, z) = I(Aψ, z) = I(Aψ9 y)

= m(Aφ, JT~, 7) S a(Aψ, jrf 7) ^ I(Aψ, x) S I(f, a?) .

Let ^ be the surface determined by x.
Since each surface can be approximated arbitrarily closely in both

the Frechet metric and in Aψ-Lebesgue area, by polyhedra, it follows
that m(Aψ, JΓ\ 7) ^ lim inf L(Aψ, <9ζ) whenever {S^n} is a sequence
of surfaces in JfΓ such that d(dS^nf 7) -> 0.

COROLLARY. Let {yn} be a sequence of Jordan curves in 3ίΓ with
d{Ίn, 7) -> 0. Then m(Aψ, 7) ^ liminf m(Af, 3ίT, 7n).
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