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1. Introduction.* Let m be the space of bounded sequences of
real numbers, σ == {sj, n = 1, 2, 3, under the norm | |σ| | = sup \sn\.
Then m includes the set of all convergent sequences of real numbers.
Let A = (akn), k, n = 1, 2, 3, be a real Toeplitz-matrix, i.e. an
infinite matrix of real numbers which satisfies the conditions

(1.1) lim akn = 0 , n = 1, 2,

fc-»oo

(1.2) ±\akn\<M,

where M is a positive number which is independent of k;

(1.3) lim | f l * . = 1

It is well-known that A defines a regular method of summation. That
is to say, if {sn} is a convergent sequence in M, with limit s, then
the transform {tk} of {sn} by A exists, where

(1.4) Σ

and {£*} converges to the same limit as {sn},

(1.5) lim tk = lim sn = s .

If {sw} is an arbitrary element of m then {tk} exists anyhow and
may (or may not) converge to a limit, which is then called the A-limit
of {sj. However, it has been shown by Steinhaus that for every
Toeplitz-matrix A there exists a sequence {sn} in m which is not
summed by A, i.e. such that {tk} does not converge (compare e.g.
Ref. 2). Nevertheless the method of summation by infinite matrices
is very useful in various branches of real and complex Function Theory.
We shall call the limits obtained in this way Toeplίtz-limits, to dis-
tinguish them from other types of generalized limits such as those
discussed below.

A straightforward application of the Hahn-Banach extension
theorem shows that there exist continuous linear functionals F(x)
defined on m such that for every convergent sequence σ = {sn} in m,
F{σ) = lim^oo sn. Such a functional will be called a Hahn-Banach-lirnίt.
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In view of Steinhaus' theorem, mentioned above, a Hahn-Banach-limit
cannot be a Toeplitz-limit, although every Toeplitz-limit can be ex-
tended to a Hahn-Banach-limit, again by applying the Hahn-Banach
extension theorem.

If F(x) is a Hahn-Banach-limit such that

1.6. (positivity) sn ^ 0 for n = 1, 2, entails F({sn}) ^ 0 and
such that

1.7. (shift invariance) F({sn}) = F({sn+1}) for all {sn} e m—
then F(x) will be called a Mazur-Banach limit. It is known that
there exist Mazur-Banach limits (compare ref. 1 or ref. 10).

In spite of their greater efficiency, the generalized limits which
are defined by means of the methods of Functional Analysis (Hahn-
Banach limits) cannot in general be used to replace the more concrete
matrix methods of summation (Toeplitz-limits). In the present paper,
we propose to use the methods of Non-standard Analysis in order to
bridge the gap between the Hahn-Banach-limits on one hand and
Toeplits-limits on the other hand. Thus, we shall derive generalized
limits which, while clearly related to the matrix methods, are efficient
for all bounded sequences. These generalized limits are given by
certain linear forms with coefficients in a nonstandard model of analysis,
and some of them satisfy also conditions 1.6 and 1.7. More generally,
it will be shown that there exist non-standard models of analysis in
which all continuous linear functionals on m can be represented by
linear forms in a sense which will be made precise in due course.

The foundations of Non-standard Analysis are sketched in Ref. 7
and developed in greater detail in Refs. 8 and 9. The scope of the
theory of Ref. 8 is more comprehensive inasmuch as it is based on a
higher order language, L. We shall adopt L as the basis of the
present paper, but in order to follow it, it will be sufficient to suppose
that L is some formal language which is appropriate to the predicate
calculus of order ω.

As mentioned in Ref. 7, particular non-standard models of analysis
are provided by the ultrapowers of the real numbers, Ro, which con-
stitute proper extensions of Ro. The ultrapower technique applies
both to the lower predicate calculus and to the higher order language
which will be considered here. For the notions which can be expressd
in the lower predicate calculus, W. A. J. Luxemburg has given a
detailed and expert development of Non-standard Analysis in terms
of ultrapowers (Ref. 5, compare also Ref. 6). When specific ultra-
powers are used, the explicit use of a formal language can be avoided
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and the fact that a non-standard model of analysis has in a definite
formal sense the same properties as the standard model remains in
the background, as a heuristic principle. This has the advantage of
making the subject comprehensible to analysts who are not familiar
with the formal languages of Mathematical Logic and also reveals
certain aspects of the procedure which are not apparent if the struc-
ture of the non-standard model remains unspecified. On the other
hand, by using a formal language we may establish the truth of a
vast number of useful assertions about the non-standard model simply
but rigorously by transfer from the standard case. If no formal
language is used we have to prove all these results ab initio.

2 Q-sequences* Let Ro be the field of real numbers, and let Ko

be the set of all sentences which are formulated in a higher order
language L, as in Ref. 8 (compare § 1, above) and which hold in Ro.
Thus, L contains (symbols for) all real numbers, for all n-ary relations
on real numbers, including unary relations, or sets, and also for con-
cepts of higher type such as relations between sets, relations between
relations, etc. In such a language, an infinite sequence {sn}, n =
1, 2, 3, is represented by a binary relation σ(x, y) in which the
domain of the first variable is the set of positive integers, such that
for every positive integer n there is a unique real number a for which
σ(n, a) holds in Ro (and hence, is a sentence of Ko). The set of all these
relations then determines a unary relation in L, θ(x), say, i.e. θ(σ) holds
in RQ if and only if σ represents an infinite sequence as indicated.

Now let *22 be a non-standard model of Ko, i.e. a model of Ko

which is different from Ro and hence, is a proper extension of RQ.
Then the unary relation of L which determines the set of natural
numbers, N, in Ro determines a non-standard model of the natural
numbers, *N, in *iϋ, and the predicate θ(x) determines a set of non-
standard infinite sequences in *J?, i.e. a set of functions whose domain
is the set of positive integers in *2ϊ, *iV-{0}, and which take values
in *i2. The sequences which are determined in this way are called
Q-sequences (Q for quasi-standard). In particular, if {sn} is an infinite
sequence in Ro, which corresponds to a binary relation σ{%, y) as above,
then σ(x, y) determines in *i? a Q-sequence which coincides with {sn}
for all finite values of the subscript n, and which will be denoted by
*{sj. A Q-sequence which is obtained in this way by the extension
of a sequence in Ro is called an S-sequence (S for standard). For
example, the sequence which is given by sn = ljn for all positive
integers, finite or infinite, is an S-sequence. There exist Q-sequences
which are not S-sequences. For example, if ω is a fixed infinite
natural number then the sequence which is given by
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an = 1/ω for 1 <Ξ n ^ ω
(2.1)

an = 0 f or w > ω

is not an S-sequence, since every S-sequence takes standard real
values for standard (finite) subscripts, but it is a Q-sequence, for the
assertion,

"For every positive integer ω there exists an infinite sequence
which is given by 2.1,"

holds in Ro, and therefore, can be formulated as a sentence of Ko

and holds also in *iϋ.
More generally, if (akn) is a Toeplits-matrix, and ω is a fixed

infinite natural number then the sequence

2.2. an = aωn for all positive integers n, finite or infinite,
is a Q-sequence. It cannot be an S-sequence, for 1.1 implies that for
every finite positive integer n, aωn is infinitesimal. If the sequence
were an S-sequence then aωn = an would at the same time have to be
a standard number and so an — 0 for all finite n. It is easy to see
that the only S-sequence which has this property is the zero sequence,
an = 0 for all n, and this contradicts 1.3, which implies that Σ~=i£W
is infinitely close to 1. In this connection, ΣΓ=i»ω% is to be under-
stood in the sense of the classical (Weierstrass) definition.

The equation 2.1 is a special case of 2.2. It is obtained by taking
for (akn) the matrix of arithmetic means, akn = 1/fe for n ^ k, akn = 0
for n > k.

On the other hand it is not difficult to define sequence which are
not even Q-sequences. For example, the sequence which is given by

an = 0 for all finite positive integers n ,

an — 1 for all infinite positive n ,

cannot be a Q-sequence, for if it were, then the set of all infinite
natural numbers would be definable in *iϋ as the set of all natural
numbers for which an = 1. Every nonempty set of natural numbers
which is definable in *i? must have a first element, for this is a pro-
perty of subsets of natural numbers which can be formulated as a
sentence of Ko. The set of infinite natural numbers in *R is not
empty but does not possess a first element. This shows that 2.3 cannot
be a Q-sequence.

A more general property of Q-sequences, which will be made use
of in the sequel is as follows.

2.3. THEOREM. Let {An} be a Q-sequence such that An is infi-
nitesimal for all finite n. Then there exists an infinite natural
number ω such that An is infinitesimal for all n < ω.
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Proof. A Q-set is a set which exists in *ϋ? as a model of Ko

(just as a Q-sequence is a sequence which exists in *R). Supposing
that {An} satisfies the assumptions of the theorem, let B be the set
of all positive integers in *iϋ such that n\An\ ^ 1. Then B is a Q-
set (since it is defined in terms of a Q-sequence). If B is empty-
then n\ An I < 1 and so | An | < 1/n for all positive integers n. This
shows in particular that An is infinitesimal for all infinite n since \\n
is then infinitesimal. We conclude that in this case the conclusion
of the theorem is satisfied by all infinite positive integers ω. If B
is not empty then it includes a smallest element, a), for it is a prop-
erty of every nonempty subset of the natural numbers in Ro, and
hence also in *iϋ, to possess a smallest element. Moreover, ω must
be infinite, otherwise ω|AJ would be infinitesimal and hence, smaller
than 1. For n < ω we have again n\ An | < 1, | An \ < l/n, An is infi-
nitesimal also for all infinite n less than ω. This completes the proof
of 2.3.

Let {an} be a Q-sequence. Then the infinite sum Σ~=i I <*>n I may
or may not exist in the sense of the classical (Weierstrass) definition,
as applied to *iϋ. Thus, Σ?=i | an | exists if and only if the partial
sums Σί=i I an I is uniformly bounded in *i2 as k varies over all finite
or infinite positive integers. In particular, if Σ~=11 an | exists and
equals a finite number in *iί (i.e. a number of *ϋ? which is smaller
than some number of Ro) then {an} will be called an S-boύnded form.
The reason for this terminology will become apparent presently. A
Q-sequence {an} is an S-bounded form if and only if there exists a
standard real number A and that χ*= 11 an \ ̂  A for all k, finite or
infinite.

Let *m be the extension of the space m to *iϋ. Thus, *m consists
of all Q-sequences which are bounded in *iϋ. In particular, *m con-
tains all the S-sequences *tf which are the extensions to *iϋ of bounded
sequences σ = {sn} in Ro.

Let a = {an} be an S-bounded from, such that Σ"=i 1̂ 1 — A,
where A is a finite number. We shall associate with a a functional
Fa(x) with domain m and range in Ro, in the following way. For
every σ = {sn} in m, the sum ΣΓ=i«A exists in *JS since, for every
finite or infinite positive integer k,

<2.4)
k

ΣM,
k

taking into account that || a || which is a bound for the absolute values
of the element of σ must be a bound also for the absolute values of
the elements of *σ. Moreover, (2.4) shows that Σ~=iαA is actually
finite, since it cannot exceed the finite number || σ \\A, and accordingly
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possesses a standard part. Denoting by °α the standard part of any
finite α, we now put

(2.5) F«(σ)

and we claim that Fa{x) is a continuous linear functional on m.
Indeed, if σ = {sn} and σ' = {s'n} are two sequences in m and λ is

a real number (in RQ) then

Fa(σ + σ>) = °(|a.(«. + <)) = \ J > A + Σ

0/ oo \

= l?Λ s )
and

Fa(Xσ) = Y£ α.λβ.) = Yλ

showing that the functional is linear. Also, by 2.4, \Fa(σ)\ S A\\σ\\
showing that FΛ(x) is continuous and, moreover that the norm of FΛ(x)
does not exceed A, || Fa(x) \\ ̂  A.

3 Generalized limits. Let a be an S-bounded form, and let FΛ(x)
be the linear functional associated with a, as introduced in § 2 above.
Then

3.1. THEOREM. In order that Fo(x) be a Hahn-Banach limit for
a given S-bounded form a = {an} is necessary and sufficient that

3.2. an is infinitesimal for all finite n, an ~ 0, and

3.3. Σn=i Q>n is infinitely close to 1, Σ"=i α» — 1.

Proof. The conditions are necessary. For any finite positive
integer n, let σ be the sequence (in m) which is defined by

(3.4) sk = 0 for k Φ n, sn = 1 .

Then 3.4 holds also for the extension of σ to *JB, and so

where °an is the standard part of an. On the other hand, since FΛ(x)
is a Hahn-Banach limit, we must have Fa(σ) = 0, which is the limit
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of σ. Hence °an = 0, i.e. an ~ 0, an is infinitesimal.
Again, let σ be the sequence in which is defined by

(3.5) for all n .

Then the limit of σ is 1, and sn = 1 also for all infinite values of n.
Hence, Fa(σ) = 0(Σ*=iβ») - 1, and so Σ~=i - !> proving 3.3.

The conditions are also sufficient. For any positive integer n, put
A-n — Σfc=ilαλl Then 3.2 implies that An is infinitesimal for all finite
n. Hence, by 2.3, there exists an infinite integer ω such that Aω^ =
Σ*=ϊ I dk I = V> say, is infinitesimal. On the other hand, since the sum
Σ5Γ=i I an I exists, there is an infinite integer Ω>ω, such that Σ"=s I an I ̂
Ύ], Referring to 3.3 we may then conclude that

or, which is the same, that

= 1 - 6

where ε is infinitesimal (positive, or negative, or zero).
Now let σ — {sn} be any convergent sequence in m (i.e. in Ro),

with limit s. Then s — sn is infinitesimal for all infinite n. Let Θ
be the lowest upper bound of the elements of the set T of all numbers
I s — sn I for n ^ ω. Θ exists since T is a bounded Q-set, and the fact
that every bounded set has a lowest upper bound transfers from Ro

to *iϋ since it can be expressed as a sentence of Ko. But the elements
of T are all infinitesimal, and so θ also must be infinitesimal (possibly
zero). For if τ is an upper bound for Γ, and τ is not infinitesimal
then \τ also is an upper bound for T and so τ cannot be the lowest
upper bound of T.

We have to show that

a = Fa{σ) = 0 ( | α Λ )

or, which is the same that | s — Σ " = i α A I is infinitesimal.
Now, computing in *JR,

- Σ α A
Ω

= lί V , -Σ<
Ω-l

εs - Σ α (β - «.) - Σ«A
n—Q

+
Ω~l

K I + Σ I + Σ l α . '
n=Ω
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where the sum on the right hand side is indeed infinitesimal. This
completes the proof of 3.1.

Let (akn) be any Toeplitz-matrix in the ordinary sense, i.e. in BQ,
and let ω be an infinite positive integer. Then the sequence a = {an}
which is given by 2.2 is an S-bounded form since, by 1.2,

Σ I α I = Σ I α, \ < M .

At the same time, a satisfies 3.2 and 3.3 by 1.1 and 1.3 respectively.
It follows that Fω(x) is a generalized limit.

If we wish to ensure that an S-bounded form defines a Banach-
Mazur limit we require an additional condition.

3.6. THEOREM. Let a = {an} be an S-bounded form which satis-
fiies 3.2 and 3.3 such that an ^ 0 for all n and such that

oo

(3.7) 2J I an+1 — an \

is infinitesimal. Then Fω(x) is a Banach-Mazur limit.

Proof. We know from 3.1 that Fa(x) is at any rate a Hahn-Banach
limit. Thus, it only remains for us to show that FJx) satisfies con-
dition 1.7, for any convergent sequence σ = {sn} in m. Computing in
*ϋ?, we have in fact

oo oo

+1

^ | θ i I \\σ | |

where the right hand side is infinitesimal, by 3.2 and 3.7. Hence,

and so

Σ «A - Σ
l

0/ oo \ 0/ oo

= (Σ a.8.) = (Σ <

showing that 1.7 is satisfied. The truth of 1.6 is obvious, proving 3.6..
If an — aωn, for infinite ω, where (akn) is a Toeplitz-matrix as

above then 3.7 is satisfied provided

(3.8) lim I ak,n+1 — akn \ = 0

in the standard sense, i.e. in Ro, and an ^ 0 for all n, provided the
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elements of the matrix are nonnegative.
A particular example of a sequence {αJ which provides a Banach-

Mazur limit is given by 2.1.

4 Representation, of continuous linear functionals on m in non-
standard analysis. We have seen that every S-bounded form in a
non-standard model of analysis gives rise to a continuous linear func-
tional on m. Conversely, we may ask whether every continuous linear
functional on m can be represented in this way. In this direction,
we have the following rather strong result, whose proof is the main
purpose of this section.

4.1. THEOREM. There exists a non-standard model of analysis,
*R, such that for every continuous linear functional F(x) on m,
there is an S-bounded form a in *R such that F(x) Ξ= Fa(x) identically
on m.

In order to prove 4.1, we require some auxiliary considerations
which refer to the standard case (i.e. to Ro).

Let σ1, , σv be any finite sequence of elements of m, where

σι = {si si ...,8*n, •-•} , i = 1, •••, v

and let e be positive, otherwise arbitrary. Then (compare Ref. 1,
p. 69) there exists a positive integer μ, such that for every set of
real numbers \, « , λv,

|| λ^1 + λ2σ
2 + + λvσ

v || ^ max 1 \s) + X2s] + + λX |(1 + e) .

It follows that if we define the //-dimensional vectors τ\ i = 1, , v,
by

Z = (Slf S2, , Sμ.)

and use the sup (lowest upper bound) norm in the space m' spanned
by these vectors, then for every set of real numbers λx, , λv

λ2σ
2 +

Hence, for any continuous linear functional F(x) on m,

^ || F(x) || || λ^1 + . . . + λ v ^

which is equivalent to

(4.2) I λxFίσ1) + + λ2F(σ") | g (1 + ε)|| F(x> || || λ^1 + • + λ,rv || .
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In m', define a functional G(x) by

(4.3) GK\? + . + λvτ
v) = X.Fiσ1) + + λ v F ( O .

This definition is unique, for 4.2 shows that if two representations
of the form X^1 + •••.-+ λvτ

v coincide, then the corresponding expres-
sions on the right hand side of 4.3 coincide. Moreover, by 4.3, G(x)
is clearly additive, and by 4.2 it is also continuous, with norm ||G(aj)|| ^
(1 + ε)|| F(x) || (where the norm of F and G refer to the spaces m
and m' respectively).

Now let mμ be the full μ-dimensional real space under the sup
norm, so that m' is a subspace of mμ. Extend G{x) to all of mμ

without increasing its norm and, without fear of confusion, call the
result again G(x). Let ξ* = (δil9 δi2, , δiμ), ί = 1, , μ, where δίk

is the Kronecker delta, and put a{ = G(£*)

ξ° = ξ* sg a, + ξ2 sg a2 + + ξ" sg α μ

(where sg a is — 1 , 0, or 1 according a is negative, zero, or positive)
then ||?° || = 1 provided at least one of the α* is different from zero.
Also,

G(ξ°) = I ox I + I α, I + + I αμ I ^ || G(x) \\ \\ ξ° ||

^ ( l + ε ) | | F ( α ; ) | ] | ί o | |

and so, in any case

I <h I + I α21 + + ) α31 ^ (1 + e)|| F{x) |) .

Now

r = sie + sie + . . . + s ^

and so

F(σι) = Git1) = aλs{ + a2si + - + aμs
{

μ .

Summing up, we have established (compare Ref. 1, p. 70).

4.4. THEOREM. Let F(x) be a continuous linear functional on
m, let ε > 0, and let σi = {si} be arbitrary elements of m, ε = 1, . , v.
Then there exist real numbers aXf , aμ, such that

(4.5) aX + a2s\ + + a A = Fiσ,) , % = l, ..., v

while

(4.6) Oi I + I Oi I + + I αμ |. ̂  (1 + e)|| F(x) || .

We are now in a position to prove 4.1.
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Consider the statement:

"x is an absolutely convergent sequence, x = {x19 x2, •••} such
that Σ?=i I χn I does not exceed y, and z is a bounded sequence,
z — {z19 z29 z3, •}, such that Σ ~ = i # A is equal to w."

This may be formulated in L as a predicate Q(#, y, z, w) whose
extralogical constants occur in Ko. We now extend our vocabulary by
introducing for each bounded linear functional F(x) on m a constant
aF, different aF being used for different functionals. For any con-
tinuous linear functional F{x) on m, and for any σ in M9 we define
a sequence of formal sentences Yn(F, σ) by

(4.7) Yn(F, σ) = Q(α, f ( l + ^)\\F(x) ||, σ, i ^ ) ) * = 1, 2, .

Let iίx be the set of all sentences which are obtained in this way.
We claim that the set H ~ Ko (J Kx is consistent. In order to
establish this fact it is sufficient to show that Hr = Ko \J K[ is con-
sistent where K[ is an arbitrary finite subset of Kx. We may limit the
class of K[ to be considered somewhat by observing that for any F
and σ,

is deducible from Ko provided n > m. This implies that we may
suppose the subscripts of the sentences which belong to the given K(
to be all equal. Indeed, if this is not the case from the outset we
replace them all by the greatest subscripts which occurs in K[ to
begin with.

Suppose in accordance with this remark that K[ consists of the
sentences

YU(F19 σ% Yn(Flf σ\ . . . , Yn(F19 σ^) ,

Yn(F2, σ^ 1 ) , Yn(Flf σ^), , Yn(F2,
4j

Yn(Fk, <^- + 1 ) , Yn(Fk, ^ - i + 2 ) , , Yn(Fk,

In order to prove that H' is consistent we shall show that, with a
suitable interpretation of the constants aFχ, , aFlc, RQ becomes a model
of H'. It is in fact evident that RQ is a model of KQ. Interpreting aFχ

as the infinite sequence

{<h, « , α μ , 0, 0, 0, ...}

for a suitable set of real numbers (α^ , aμ) such as exists according
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to Theorem 4.4, if we put ε = \\n and identify F with Fl9- and
σ1

9 , σv with the present σ1, , σVι respectively, we find that the
sentences in the first line of 4.8 also holds in Ro. A similar procedure
shows that, with the appropriate interpretation, the remaining sentences
of 4.8 also hold in Ro. This shows that H' is consistent and hence,
that H is consistent.

Let *jβ be a model of H. For any continuous linear functional
on m, F(x)9 the constant aF denotes an infinite sequence

a = {a19 a 2 , a 3 , •••, a k 9 •••}

(where the subscript varies over the positive integers in *R) such
that for any σ = {sk} in m,

oo

(4.9) 2-1 aksk — * \σ)

Moreover, for any finite positive integer n,

(4.10) Σ \ak I t

Indeed, the validity of 4.9 and 4.10 is asserted by Yn(F, σ), and
this sentence holds in *.#. Since n is a positive and finite integer,
but otherwise arbitrary, we may conclude from 4.10 that

(4.11)

so that a is an S-bounded form. Equation 4.9 shows that FΛ(x) ==
F(x) identically on m since it implies the weaker relation °(Σ?=i ak$k) =
F(σ). *R is a model of Ko but it cannot be the standard model, RQ,
for it is not true that every continuous linear functional in QR can
be represented as in 4.9. This completes the proof of 4.1.

Suppose now that we have strict inequality in 4.11, thei} there
exists a standard number Λf, 0 < M < ||.F(αOII such that

Σ I ak I g M .
fc = l

Hence, by 4.9,

wι= _
k=l

for all σ in m. But this contradicts the definition of || F{x) \\ and
shows that 4.11 may be replaced by

(4.12)
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We also observe that the sequences which correspond to the aFj>

in the consistency proof for H' are all finite, i.e. they take the value
zero for sufficiently large subscripts. We may therefore add this as
a requirement for the sequences a = {al9 a2, , ak, •} and we may
attain in this way that every a is Q-finite i.e. that ak is equal to
zero for subscripts greater than some v which depends on a and which
may be infinite. Our remarks are summed up in the following corollary.

4.13. COROLLARY TO 4.1. In 4.1, we may add the three con-
ditions that the sequences a are finite, that Σ~=i aksk = F(σ) for
every σ in m—and not only \Y^=iaksk) = F{σ)—and that °(Σ~=i \aΔ) —
\\F(x)\\.

5* Representation, of continuous linear functionals on m by ultra*
filter limits. In order to be able to follow the contents of this section,
the reader should have some familiarity with the theory of ultra-
powers. He will then see that the non-standard model of analysis
constructed in the preceding section may be obtained as an ultrapower
of Ro. Let J = {r} be the index set of the ultrapower and let D be
the ultrafilter on J which determines *i2. An infinite sequence in *i2
then is an equivalence class, with respect to D, of sets of infinite
sequences σv = {s\, s\, •} which are indexed in J.

A set of real numbers αv which is indexed in J tends to the limit
a in the ultrafilter D, and we write

lim αv = a{D) ,

if for every positive ε, the set {v \ \ a — av \ < ε} belongs to D. With
this notation, we have the following "translation" of 4.1, taking into
account 4.13.

5.1. THEOREM. There exists an index set J = {v} and an ultra-
filter D on J such that—

for every continuous linear functional F(x) on the space m there
exists a set of sequences αv = {a\, a\9 •••} which is indexed by J
and which satisfies the following conditions.

5.2. The sequences av are finite in the sense that a\ = 0 for all
v greater than some positive integer kv,

(5.3) \imΣi\an\ = \\F(x)\\ (D) ,
n=l

and

5.4. for any σ = {slf s2, •} in m,
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lim Σ o.«, = F(σ)(D) .

Moreover, in view of 4.9 we may replace 5.4 by the condition

5.5. for any σ in m, the set

\v\£ansn = F(σ)\
I I »=i J

belongs to D—
which is somewhat stronger than 5.4.

Theorem 5.1 is not only an immediate consequence of 4.1 and 4.13,
but conversely it implies those results as we may see by taking as
the required non-standard model of analysis the ultrapower (R0)ί, i.e.
the direct product of a set of copies of Ro which are indexed in Jf

reduced with respect to the ultrafilter D. Theorem 5.1 has the
"advantage" that it does not involve the notion of a non-standard
model of analysis but it lacks the intuitive significance of the preceed-
ing theory.

Except for the requirement of positivity in the definition of the
Banach-Mazur limit all our concepts and results carry over to the
complex case. The proofs also remain applicable with minor modi-
fications. In particular, in §4.4 sg a has to be replaced by e~ίΆrga for
aΦ 0.

The reader may find it interesting to compare 5.1 above with the
representation of continuous linear functionals on m by Moore-Smith
limits, which is due to Hildebrandt (Ref. 4) and with the matrix
representation due to Mazur (compare Ref. 1, p. 72) which, however,
applies only to separable subspaces of m.

In conclusion the author is pleased to acknowledge that his think-
ing on the subject of the present paper has been stimulated by con-
versations with P. Katz, W. A. J. Luxemburg, A. Meir, and D. Scott.
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