ON AN INEQUALITY OF P. R. BEESACK

Zeev Nehari

In a recent paper [1], P. R. Beesack derived the inequality

$$
\begin{equation*}
|g(x, s)| \leqq \frac{\prod_{v=1}^{n}\left|x-a_{\nu}\right|}{\left(a_{n}-a_{1}\right)(n-1)!} \tag{1}
\end{equation*}
$$

for the Green's function $g(x, s)$ of the differential system

$$
\begin{gather*}
y^{(n)}=0, \quad y\left(a_{\nu}\right)=0, \quad \nu=1,2, \cdots, n, \\
-\infty<a_{1}<a_{2}<\cdots<a_{n}<\infty . \tag{2}
\end{gather*}
$$

In addition to being interesting in its own right, this inequality is a useful tool in the study of the oscillatory behavior of nth order differential equations. It would therefore appear to be worth while to give a short proof of (1). The derivation of this inequality in [1] is rather complicated.

We denote by $\left[x_{0}, x_{1}, \cdots, x_{k}\right]$ the k th difference quotient of the function $g(x)=g(x, s)$, i.e., we set

$$
\begin{gathered}
{\left[x_{0}, x_{1}\right]=\frac{g\left(x_{0}\right)-g\left(x_{1}\right)}{x_{0}-x_{1}},} \\
{\left[x_{0}, x_{1}, \cdots, x_{\nu}\right]=\frac{\left[x_{0}, x_{1}, \cdots, x_{\nu-1}\right]-\left[x_{1}, x_{2}, \cdots, x_{\nu}\right]}{x_{0}-x_{\nu}}, \quad \nu=2, \cdots .}
\end{gathered}
$$

This difference quotient can also be represented in the form

$$
\begin{equation*}
\left[x_{0}, \cdots, x_{k}\right]=\int \cdots \int g^{(k)}\left(t_{0} x_{0}+t_{1} x_{1}+\cdots+t_{k} x_{k}\right) d t_{0} d t_{1} \cdots d t_{k-1} \tag{3}
\end{equation*}
$$

where the integration is to be extended over all the positive values of the t_{ν} for which

$$
\begin{equation*}
t_{0}+t_{1}+\cdots+t_{k}=1 . \tag{4}
\end{equation*}
$$

This formula, which goes back to Hermite, is easily verified by induction (cf., e.g., [2]). It holds if $g(x)$ has continuous derivatives up to the order $k-1$, and if $g^{(k)}$ is piecewise continuous.

Since, by its definition, $g(x, s)$ has continuous derivatives up to the order $n-2$, while $g^{(n-1)}$ has the jump

$$
\begin{equation*}
g_{+}^{(n-1)}(s)-g_{-}^{(n-1)}(s)=-1 \tag{5}
\end{equation*}
$$

[^0]at $x=s$, we may apply (3) with $k=n-1$. We shall do so twice, identifying the points x_{0}, \cdots, x_{n-1} with $x, a_{1}, \cdots, a_{n-1}$ and x, a_{2}, \cdots, a_{n}, respectively. Since, because of $g\left(a_{\nu}, s\right)=0, \nu=1, \cdots, n$, we have
$$
\left[x, a_{1}, \cdots, a_{n-1}\right]=\frac{g(x, s)}{\prod_{\imath=1}^{n-1}\left(x-a_{\nu}\right)}
$$
and
$$
\left[x, a_{2}, \cdots, a_{n}\right]=\frac{g(x, s)}{\prod_{\nu=2}^{n}\left(x-a_{\nu}\right)}
$$
we obtain, upon subtracting these expressions from each other,
\[

$$
\begin{equation*}
\frac{\left(a_{n}-a_{1}\right) g(x, s)}{\prod_{\nu=1}^{n}\left(x-a_{\nu}\right)}=\int_{D} g^{(n-1)}(v) d t-\int_{D} g^{(n-1)}(u) d t \tag{6}
\end{equation*}
$$

\]

where, for brevity, $d t=d t_{0} d t_{1} \cdots d t_{n-2}, D$ denotes the region defined by (4) (with $k=n-1$ and $t_{\nu}>0, \nu=0, \cdots, n-1$), and
(7) $\quad u=t_{0} x+t_{1} a_{1}+\cdots+t_{n-1} a_{n-1}, v=t_{0} x+t_{1} a_{2}+\cdots+t_{n-1} a_{n}$.

Both for $a_{1} \leqq x<s$ and $s<x \leqq a_{n}, g(x, s)$ is a polynomial of degree $n-1$. Accordingly, the function $g^{(n-1)}(x, s)$ is capable only of two constant values, say α and β, which according to (5) are related by $\alpha=\beta+1$. If we denote by D_{1} the subset of D in which $a_{1} \leqq u<s$ (where u is defined in (7), we have

$$
\begin{aligned}
\int_{D} g^{(n-1)}(u) d t & =\alpha \int_{D_{1}} d t+\beta \int_{D-D_{1}} d t=\alpha \int_{D_{1}} d t+(\alpha-1) \int_{D-D_{1}} d t \\
& =\alpha \int_{D} d t-\int_{D-D_{1}} d t .
\end{aligned}
$$

Similarly,

$$
\int_{D} g^{(n-1)}(v) d t=\alpha \int_{D} d t-\int_{D-D_{2}} d t
$$

where D_{2} is the subset of D in which $a_{1} \leqq v<s$. Substituting these expressions in (6), we obtain

$$
\begin{equation*}
\frac{\left(a_{n}-a_{1}\right) g(x, s)}{\prod_{\nu=1}^{n}\left(x-a_{\nu}\right)}=\int_{D-D_{2}} d t-\int_{D-D_{1}} d t \tag{8}
\end{equation*}
$$

The differential $d t$ is positive, and we thus have

$$
-\int_{D} d t \leqq-\int_{D-D_{1}} d t \leqq \int_{D-D_{2}} d t-\int_{D-D_{1}} d t \leqq \int_{D-D_{2}} d t \leqq \int_{D} d t
$$

Since

$$
\int_{D} d t=\frac{1}{(n-1)!}
$$

(as can be seen be applying (3) to the function x^{n-1} and setting $k=$ $n-1$), this shows that

$$
\left|\int_{D-D_{2}} d t-\int_{D-D_{1}} d t\right| \leqq \frac{1}{(n-1)!}
$$

In view of (8), this establishes the inequality (1).

References

1. P. R. Beesack, On the Green's function of an n-point boundary value problem, Pacific J. Math., 12 (1962), 801-812.
2. N. E. Nörlund, Leçons sur les séries d'interpolation, Paris, Gauthier-Villars, 1926.

Carnegie Institute of Technology

[^0]: Received April 11, 1963. This research was supported by the United States Air Force Office of Scientific Research.

