
ON THE MONOTONICITY OF THE GRADIENT
OF A CONVEX FUNCTION
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The object of this note is to present some elementary theorems
concerning convex functions in ^-dimensions and, more generally,
topological vector spaces. These theorems are all essentially generali-
zations of the theorem "the derivative of a convex function of one
real variable is monotonic non-decreasing", and appear to have been
overlooked in the literature.

Let X be a topological vector space with real scalars, and Y the
conjugate-space (space of continuous linear functionals) of X. We shall
write y(x), for x e X, y e Y, as ζx, y) to facilitate applications to Hubert
space. The convex (real-valued) function φ will always be presumed
to have convex domain Da X, and satisfies the inequality

+ tx2) ^ sφixj + tφ(x2)

for all xlf x2 in D, all s ^ 0, t ^ 0, s + t = 1. The graph G of Φ is a
subset of the topological vector space X + R, and it is obvious that
the "set of points lying above the graph of Φ": A={(x, r): x e D, r^Φ(x)}
is a convex set. (This condition is also sufficient for the convexity of φ.)

DEFINITION 1. A s e t ί c l x Fis called a monotonic set provided
that, for all (xl9 yx) and (x2, y2) in E, <xλ — x2, yλ — #2> ̂  0.

DEFINITION 2. ([6]) For D e l , a function F:D-+Y is called
πionotonic provided the graph of F is a monotonic set. Now, it is
well known that the conjugate space of X + B is Y + R, and that a
closed hyperplane in X + R is of the form {(x, r): ζx, yoy + rrQ = a}
for some yoe Y, roe R, ae R. (See [2], p. 26, Theoreme 1.) This
representation is non-unique, but if r0 Φ 0, the equation ζx, yoy + rrQ = a
can be solved for r, and the resulting equation is, in an obvious sense,
unique. These facts motivate the following definition:

DEFINITION 3. A gradient hyperplane iϊof Φ is a closed hyperplane
of support to A, the set of points lying above the graph of Φ in X + R,
such that Jϊcan be written in the form {(x, r): r = φ(x0) + ζx — x0, yoy\.
(Note the analogy with the first two terms of a Taylor-series for φ.)

REMARK 1. This definition might be considered inappropriate if Φ
is not everywhere-defined over X; this problem will not concern us here.
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DEFINITION 4. The generalized gradient of Φ is the multiple-valued
function assigning to each xQ e D, all y0 e Fsuch that r=Φ(xo)+ζx—x0, yoy
is the equation of a gradient hyperplane of φ. If this function is
single-valued, it will be called simply the gradient of φ.

REMARK 2. It is trivial to show that if X is a Banach-space, the
notion of "gradient" is equivalent with that of "Frechet differential",
provided the latter exists and D is an open set (so that the Frechet
differential is unique). The advantage of the present treatment is that
X need not be a Banach space, and Φ need not be Frechet-differentiable,
in order that Φ possess a gradient or generalized gradient. For example:
Φ(x) = || x || is a convex but not differentiate function in many of the
usual Banach spaces.

THEOREM 1. The graph E of the generalized gradient of Φ is a
monotonic set.

Proof. Let (x0, y0) and (xlf yj be elements of E. Then, because
every point of the graph of G lies above both gradient hyperplanes,
we have

φ{χx) ^ φ(x0) + <xx - χ0, yo>

Φ{x*) ^ Φ(Xi) + <x0 - Bi, 2/i> .

Adding, cancelling, and rearranging, we obtain the desired relation.

COROLLARY. If X is a Hilbert space, so that Y — X, and if Φ
is everywhere-defined in X and has a continuous gradient, then the
graph of the gradient is a maximal monotonic set.

Proof. Theorem 4 of [3] asserts that a continuous monotonic
function from a Hilbert space to itself which has maximal, open domain
has a graph which is a maximal monotonic set.

Before pursuing the interesting consequences of this corollary, we
first generalize the corollary.

THEOREM 2. (Again X is a topological vector space.) // the convex
function Φ is everywhere defined in X, and the set A of points above
the graph of Φ has nonempty interior, then the graph of the generalized
gradient of Φ is a maximal monotonic set.

Proof. Suppose we have (x0, y0) such that r = Φ(x0) + ζx — x0, yQ>
is not the equation of a gradient hyperplane of φ. Then there exists
a point xx e X such that Φ(xύ < Φ(xQ) + <xx — x0, yoy. Consider the
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following real-valued function of the real variable t:

f(t) = φ(xQ + t(xx - x0)) - Φ(x0) - tζx1 - xOf yQy .

Clearly/is convex, and also /(0) = 0,/(l) < 0. As is well known ([1],
p. 46) / has left- and right-hand derivatives for every t, and it is not
hard to show that fr(t) is a monotonic non-decreasing function and

/(*)= [fr(t)dt.
Jo

Thus there exists tlf with 0 < tx < 1, such that /r(ίj) < 0. From the
fact that A has nonempty interior, we see that A is a convex body,
and hence, ([2], p. 72, Prop. 3) there exists a hyperplane of support
to A at every boundary-point of A, and in particular at (x2f Φ(x2)),
where x2 = tx x1% It is easy to show that it is a gradient hyperplane
characterized by x2 and a suitable y29 so that for any x,

Φ(x) ^ φ(x2) + <x - x2f y2y .

In particular, putting x — x0 + t(xx — α?0), we have

Φ(x0 + ίfo - x0)) ^ (̂a?a) + <α?0 + t(xx - α?0) - x2, y2}

(equality holds here if t = ίx) or, rearranging,

/(t) ^ <α?0 - x2f y2y + t<x1- x0, y2 - yoy

for all t9 with equality holding for t — ίlβ Thus the right-hand side
is a linear function of t, and r = <#0 — x2, y2y + t ζxx — x0, y2 — yoy is
the equation of a "supporting line" to the graph of / at ί1# Hence

- ^ = <α?1 - α?0, »f - yoy ^ fr(td < 0
at

from which ^(a?, — x0), y2 — 2/0> < 0. Dividing by tu we see that (x0, y0)
is not monotonically related to (x2f y2), which is an element of the graph
of the generalized gradient of φ.

To make this theorem useful, we need a sufficient condition for A
to have nonempty interior. We state such a condition in the form of a
theorem:

THEOREM 3. For the everywhere-defined convex function φ\X—*Y
to have the property that the set A of points above the graph has nonempty
interior it is sufficient that

(i) φ is continuous, or
(ii) φ is bounded in some (nonempty) open set in X

Proof, (i) is equivalent to (ii) by [2], p. 92, Prop. 2. Now, if Φ
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is bounded above by the real constant M over the nonempty open set
B e l , then B x (M, oo) is a nonempty open set in A.

REMARK 3. In applications of Theorems 2 and 3 to Banach spaces,
it is preferable to use the strong topology, since the hypotheses of
Theorem 3 are easier to satisfy than with the weak topology.

We now cite some interesting conseqμences of these theorems:

COROLLARY 1. If X is a Hubert space, and Φ is an everywhere-
defined, continuous convex function, then for any ue X, there exists
a unique point of the graph of the generalized gradient such that
x0 + y0 = u. In particular: if φ is in addition Frechet differentiate,
then the equation x + φ\x) — u is always solvable for x, and the
solution depends continuously on u.

Proof. By Theorem 3 of [3], which asserts that the map (x, y) —>
x + y carries a maximal monotonic set onto the Hilbert-space, and is
a homeomorphism.

REMARK 4. The latter part of this theorem was known to E. Rothe,
and exists (in modified form) in his paper [5].

COROLLARY 2. If X is finite-dimensional, and Φ is everywhere-
defined, convex, and continuous, then the range of the generalized
gradient of φ is an almost-convex set (contains the interior of its
convex hull).

Proof. Follows from the theorem of [4].

Added in proof. Further recent information on monotonic func-
tions can be found in [7] and [8], Also, J.-J. Moreau has pointed out
to the writer that the notion of ' 'gradient'' developed here is ex-
tremely closely related to the ' 'application prox" whose theory has
been expounded by Prof. Moreau in a series of papers, e.q. [9].
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