ON THE CONVERGENCE OF SEMI-DISCRETE ANALYTIC FUNCTIONS

G. J. Kurowski

1. Introduction. In a previous paper [3], the author has presented the basic concepts and definitions for semi-discrete analytic functions. These functions are defined on two types of semi-lattices (sets of lines in the $x y$-plane, parallel to the x-axis)-one of which leads to a symmetric theory. We will concern ourselves here only with the symmetric case. These functions satisfy the following defining equation [3] on a region of the semi-lattice

$$
\begin{equation*}
\frac{\partial f(z)}{\partial x}=[f(z+i h / 2)-f(z-i h / 2)] / i h, \tag{1.1}
\end{equation*}
$$

where $h>0$ is the spacing of the semi-lattice. For convenience, we will repeat the definition of the symmetric semi-lattice and its associated odd and even semi-lattices. A grid-line, a_{m}, is the set of points in the $x y$-plane such that $y=m h$ where $h>0$. The union $G(2 k, h)$ of the α_{m} for $m=k(k=0, \pm 1, \pm 2, \cdots)$ is called the even semi-lattice; the union $G(2 k+1, h)$ of the a_{m} for $m=(2 k+1) / 2$ is called the odd semi-lattice. The semi-discrete z-plane is the union of $G(2 k, h)$ and $G(2 k+1, h)$. It will be denoted by $L(h)$. Additional concepts such as domains, paths, path-integrals, etc., are defined in [3]. The following notational conventions will be employed:

$$
\begin{equation*}
f_{k}=f(x+i h k)=f_{k}(x), \tag{1.2}
\end{equation*}
$$

and the abbreviation $S D$ will be used to stand for semi-discrete.
2. Sub and super harmonic semi-discrete functions. In the continuous case, it is well-known that if a function $u(x, y)$ is defined over a region R of the plane and if, further, $\Delta^{2}(u) \geqq 0$ for all $(x, y) \in R$, where Δ^{2} denotes the two dimensional Laplacian; then $u(x, y)$ cannot have a maximum on the interior of R. Such a function is said to be sub-harmonic in R [2]. Similarly, if the function $u(x, y)$ defined on R satisfies the equation $\Delta^{2}(u) \leqq 0$ for all $(x, y) \in R$; then $u(x, y)$ cannot have a minimum on the interior of R. Such a function is said to be super-harmonic in R [2]. An analogous result holds for semi-discrete functions which are defined on domains of either the even or odd semilattice. To be specific, we will consider functions $u(x, y)$ defined on

[^0]domains of $G(2 k, h)$ and introduce the notation
(a) $h E u(x, y)=u(x, y+h)-u(x, y)$,
(b) $h \bar{E} u(x, y)=u(x, y)-u(x, y-h)$.

The semi-discrete Laplacian operators for $G(2 k)$ is then

$$
\begin{equation*}
\nabla u(x, y)=\frac{\partial^{2} u(x, y)}{\partial x^{2}}+E \bar{E} u(x, y) \tag{2.2}
\end{equation*}
$$

Theorem 2.1. Let $u(x, y)$ be a SD-function defined on a semidiscrete domain R of $G(2 k, h)$. If $\nabla u \geqq 0$ for all $(x, y) \in R$, then on R

$$
\begin{equation*}
u(x, y) \leqq M \tag{2.3}
\end{equation*}
$$

where M is the supremum of $u(x, y)$ on C, the boundary of R.
Proof. The proof of this statement is obtained by a suitable modification of the proof for the "weak maximum theorem" established by Helmbold [1] for semi-discrete harmonic functions. Let C denote the boundary of the SD-domain R of $G(2 k, h)$, let $u(x, y)$ be a SDfunction on R such that $\nabla u \geqq 0$ for all $(x, y) \in R$, and let M^{\prime} denote the supremum of $u(x, y)$ on R. Assume that u takes the value M^{\prime} at a point $(t, n h)$ of the interior $R^{0}=R \sim C$ of R. If the adjacent points $(t,(n \pm 1) h)$ are points of $R^{0}, \partial^{2} u / \partial x^{2}=u^{\prime \prime}$ will be continuous at $(t, n h)$ and further $u_{n}^{\prime \prime}(t) \leqq 0$. By assumption $\nabla u_{n}(t) \geqq 0$ which, together with the previous remarks, implies that
(a)

$$
u_{n}(t)=u_{n+1}(t)=u_{n-1}(t)=M^{\prime}
$$

This argument may be repeated for the sequence of points $(t,(n \pm 1) h)$, $(t,(n \pm 2) h), \cdots$ until a point $(t, p h)$ is reached such that one of its adjacent points is a point of C. If $u_{p}^{\prime \prime}$ is continuous, the proof is complete. Otherwise, since $u_{p}^{\prime \prime}$ is then at least piecewise continuous, integration of $\nabla u_{p} \geqq 0$ shows that for some range of values of $\varepsilon>0$

$$
\begin{equation*}
u_{p}^{\prime}(t+\varepsilon)-u_{p}^{\prime}(t) \geqq \varepsilon h^{-2}\left\{2 u_{p}(\theta)-u_{p+1}(\theta)-u_{p-1}(\theta)\right\}, \tag{b}
\end{equation*}
$$

where $t \leqq \theta \leqq t+\varepsilon$. Since $u_{p}=M^{\prime}$ is a maximum, the left side of (b) is negative. Hence, the bracketed term is negative. Taking the limit of this term as $\varepsilon \rightarrow 0, \varepsilon>0$ shows that
(c)

$$
2 M^{\prime} \leqq u_{p+1}\left(t^{+}\right)+u_{p-1}\left(t^{+}\right) .
$$

Similarly, we obtain

$$
\begin{equation*}
2 M^{\prime} \leqq u_{p+1}\left(t^{-}\right)+u_{p-1}\left(t^{-}\right) \tag{d}
\end{equation*}
$$

Addition of (c) and (d) shows that $M^{\prime} \leqq M$ where M is the maximum
value of $u(x, y)$ on C.
In an identical manner, we establish the following result for super SD-harmonic functions.

Theorem 2.2. Let $u(x, y)$ be a SD-function defined on a semidiscrete domain R of $G(2 k, h)$. If $\nabla u \leqq 0$ for all $(x, y) \in R$, then on R

$$
\begin{equation*}
u(x, y) \geqq m \tag{2.4}
\end{equation*}
$$

where m is the infimum of $u(x, y)$ on C, the boundary of R.
3. Limit theorem for semi-discrete analytic functions. A SDfunction $f(z)$ of the complex variable $z=x+i n h$ which is continuous and single-valued on a SD-domain R of $L(h)$ is said to be SD-analytic if it satisfies (1.1) for all points $z \in R$ [3]. In addition, if we write $f=u+i v$, then $\nabla u=\nabla v=0$ on R; that is, u and v are SD-harmonic.

Let us suppose that $L(h)$ is superimposed upon the continuous z plane, denoted by L_{c}, with their x and y axes coinciding. Let R_{c} be a simply-connected finite domain of L_{c} whose boundary is a Jordan curve. A covering set of rectangles, Q_{k}, is defined as follows,

$$
Q_{k}=\left\{(x, y): \alpha_{k} \leqq x \leqq \beta_{k} ;(k h-h) \leqq 2 y \leqq(k h+h)\right\}
$$

where α_{k} is the least value of x in R taken on the strip $k h-h \leqq$ $2 y \leqq k h+h$, and β_{k} is the greatest value of x in R on this strip. By construction, each point of R_{c} is also a point of $Q=\bigcup_{k} Q_{k}$. The intersection of Q with $L(h)$ forms a SD-domain, $R(h)$, which approximates R_{c}. We consider the sequence of SD-domains $\left\{R\left(h_{j}\right) ; h_{1}>h_{2}>\cdots\right\}$ obtained by the above procedure upon successive refinements of the semi-lattice retaining at each step the lines of the previous semilattice. In the limit, $R\left(h_{j}\right) \rightarrow R_{c}$. It is shown in [3] that a SDanalytic function is completely determined in $R(h)$ by its values on $C(h)$, the total-boundary of $R(h)$. Therefore, let us assume that an interpolation scheme is established to provide such boundary values for a SD-analytic function $f^{(h)}(z)$ on $R(h)$ from the boundary values of an analytic function $\zeta(z)$ on R_{c} such that these approximate boundary values tend uniformly to the true boundary values. We consider the sequence of SD-analytic functions $\left\{f^{\left(h_{j}\right)}(z)\right\}$ so determined on $\left\{R\left(h_{j}\right)\right\}$ and will prove that as $h_{j} \rightarrow 0, f^{\left(h_{j}\right)}(z) \rightarrow \zeta(z)$.

Theorem 3.1. Let R be a domain whose boundary C is a Jordan curve and let R^{\prime} be a subdomain of R which is bounded by a Jordan curve $C^{\prime} \subset R$. Consider the set of all possible semi-lattices $G(2 k, h)$ parallel to the real axis of the z-plane. Consider also the set of all SD-functions $u^{(h)}(x, y)$ which are uniformly bounded, $|u| \leqq M$ in R,
and which satisfy in R the equation $\nabla u=0$. Then, for h sufficiently $]$ small, there exists a constant M^{\prime} such that

$$
\left|\frac{\partial u^{(h)}}{\partial x}\right| \leqq M^{\prime} \quad \text { and } \quad\left|\nabla u^{(h)}\right| \leqq M^{\prime}
$$

for all $(x, y) \in R$.
Proof. The proof of this statement follows the proof given by Fellow [4] for the discrete case. The sub-domain R^{\prime} can be covered by a finite number of rectangles contained in R and each of these rectangles can be inclosed in a larger rectangle also contained in R. Following the argument of Feller [4], it will be sufficient to consider, for an arbitrary $\delta>0$, the two concentric rectangles

$$
\begin{aligned}
R & =\{(x, y):|x|<a-\delta,|y|<b\} \\
R^{\prime} & =\{(x, y):|x|<a-\delta,|y|<b-\delta / 3\},
\end{aligned}
$$

where b is a multiple of the gap h, and $h<\delta / 3$.
To prove the assertion, we shall show that the function

$$
\psi(x, y)=\left(\frac{\partial u}{\partial x}\right)^{2} \Phi(x, y)+C\left\{u^{2}(x, y)+u^{2}(x, y+h)+u^{2}(x, y-h)\right\}
$$

where $\Phi(x, y)=\left(x^{2}-a^{2}\right)^{2}\left(y^{2}-b^{2}\right)^{2}$ and C is a large positive constant, to be determined later, satisfies the inequality $\nabla(\psi) \geqq 0$.

Assume for the moment that this has been established. Then, by Theorem 2.1, it follows that ψ attains its maximum value on the boundary. However, by definition, $\Phi=0$ on the boundary and thus in the entire rectangle

$$
0 \leqq \psi(P) \leqq 3 C M^{2}
$$

where M is the uniform bound on u. Since the second term of ψ is nonnegative, we may conclude that for all $P \in R^{\prime}$

$$
\left(\frac{\partial u}{\partial x}\right)^{2} \leqq 3 C M^{2} / \Phi \leqq 3 C M^{2} /(\delta / 3)^{8}
$$

[since for small $\left.\delta, \Phi \geqq(\delta / 2)^{4}(\delta / 3)^{4} \geqq(\delta / 3)^{8}\right]$.
Since $(\delta / 3)^{8}>0$, taking the last expression for M^{\prime} establishes the theorem, subject to showing that $\nabla(\psi) \geqq 0$. Only the outline of this calculation will be presented. The complete sequence of steps follows the argument given by Feller [4] using the differential rather than the difference operator on x.

Calculation of $\nabla \psi$ using the fact that u is SD-harmonic [as is u^{\prime}] gives

$$
\begin{aligned}
\nabla(\psi)= & \left(u^{\prime}\right)^{2} \nabla(\Phi)+\Phi\left[2\left(u^{\prime \prime}\right)^{2}+\left(E u^{\prime}\right)^{2}+\left(\bar{E} u^{\prime}\right)^{2}\right] \\
& +\Phi^{\prime}\left(4 u^{\prime} u^{\prime \prime}\right)+E \Phi\left[u_{1}^{\prime} E u^{\prime}+u^{\prime} E u^{\prime}\right] \\
& +\bar{E} \Phi\left[u_{-1}^{\prime} \bar{E} u^{\prime}+u^{\prime} \bar{E} u^{\prime}\right]+C\left[2\left(u^{\prime}\right)^{2}+(E u)^{2}+(\bar{E} u)^{2}\right] \\
& +C\left[2\left(u_{1}^{\prime}\right)^{2}+\left(E u_{1}\right)^{2}+\left(\bar{E} u_{1}\right)^{2}+2\left(u_{-1}^{\prime}\right)^{2}+\left(E u_{-1}\right)^{2}+\left(\bar{E} u_{-1}\right)^{2}\right]
\end{aligned}
$$

where $u_{ \pm 1}=u(x, y \pm h)$. Since $|\partial \Phi / \partial x|=4\left|x\left(y^{2}-b^{2}\right)\right| \sqrt{\Phi}$, a constant λ exists such that for all points of $R\left|\Phi^{\prime}\right|<\lambda \sqrt{\bar{\Phi}}$. Similar bounds exist for $E \Phi$ and $\bar{E} \Phi$. Further, in $R, \nabla(\Phi)$ is bounded. Accordingly we assume that λ is so chosen that on R

$$
|\nabla(\Phi)|<\lambda, \quad\left|\Phi^{\prime}\right|<\lambda \sqrt{\Phi}, \quad|E \Phi|<\lambda \sqrt{\Phi}, \quad|\bar{E} \Phi|<\lambda \sqrt{\Phi} .
$$

For an arbitrary $\varepsilon>0$, we see that

$$
\left|u^{\prime} u^{\prime \prime} \Phi^{\prime}\right| \leqq\left(\frac{u^{\prime}}{\varepsilon}\right)^{2}+\varepsilon^{2} \lambda^{2} \Phi\left(u^{\prime \prime}\right)^{2}
$$

With such bounds established for the various terms which appear in (a), the following inequality is obtained.
(b)

$$
\begin{aligned}
\nabla(\psi) \geqq & {\left[\left(E u^{\prime}\right)^{2}+\left(\bar{E} u^{\prime}\right)^{2}+2\left(u^{\prime \prime}\right)^{2}\right] \Phi\left(1-2 \varepsilon^{2} \lambda^{2}\right) } \\
& +2\left(u^{\prime}\right)^{2}\left[C-3 / \varepsilon^{2}\right]+C\left[(E u)^{2}+(\bar{E} u)^{2}+\left(E u_{1}\right)^{2}\right] \\
& +C\left[\left(\bar{E} u_{1}\right)^{2}+\left(E u_{-1}\right)^{2}+\left(\bar{E} u_{-1}\right)^{2}\right]+\left(u_{1}^{\prime}\right)^{2}\left[2 C-1 / \varepsilon^{2}\right] \\
& +\left(u_{-1}^{\prime}\right)^{2}\left[2 C-1 / \varepsilon^{2}\right] .
\end{aligned}
$$

Selecting ε so that $\varepsilon^{2} \lambda^{2}=1 / 2$, the first term on the right in (b) vanishes. Finally, choosing $C \geqq 3 / \varepsilon^{2}$, the remaining terms on the right in (b) will be positive. That is, $\nabla(\psi) \geqq 0$.

Theorem 3.2. Let $\left\{u^{(h)}(x, y)\right\}$ be the set of uniformly bounded SD-functions considered in Theorem 3.1. This set is a family of equi-continuous functions on R.

Proof. In Theorem 3.1 we established the existence of a uniform bound for the set $\left\{\partial u^{(h)} \mid \partial x\right\}$ and also $\left\{E u^{(h)}\right\}$. Let M denote this bound. (1) Given $\varepsilon>0$, let P, Q be two points on a line of the semi-lattice such that $\overline{P Q}<\varepsilon / M$; that is, $\left|x_{P}-x_{Q}\right|<\varepsilon / M$, where x_{P} denotes the x-coordinate of P and x_{Q} denotes the x-coordinate of Q. Then

$$
\left|u^{(h)}(P)-u^{(h)}(Q)\right|=\left|\int_{x_{Q}}^{x_{P}} \frac{\partial u^{(h)}}{\partial t} d t\right| \leqq\left[M^{2}\left(x_{P}-x_{Q}\right)^{2}\right]^{1 / 2} \leqq \varepsilon
$$

(2) Given $\varepsilon>0$, let P, Q be two points of R which lie on a vertical line in R such that $\left|y_{P}-y_{Q}\right|<\varepsilon / M h$.

$$
\left|u^{(h)}(P)-u^{(h)}(Q)\right|=h\left|\sum_{y=y_{Q}}^{y=y_{P}} E u^{(h)}\right| .
$$

Thus,

$$
\left|u^{(h)}(P)-u^{(h)}(Q)\right| \leqq\left|y_{P}-y_{Q}\right| M h \leqq \varepsilon .
$$

(3) Given $\varepsilon>0$, let P, Q be two arbitrary points of R such that $\overline{P Q}<\delta(\varepsilon)$. Let P^{\prime} lie on the same vertical line as P and have the same y-coordinate as Q; i.e., $P^{\prime}=\left(x_{P}, y_{Q}\right)$. Then

$$
\left|u^{(h)}(P)-u^{(h)}(Q)\right| \leqq\left|u^{(h)}(P)-u^{(h)}\left(P^{\prime}\right)\right|+\left|u^{(h)}\left(P^{\prime}\right)-u^{(h)}(Q)\right|
$$

Application of the two previous cases completes the proof.
By Theorem 3.2, if $\left\{f^{(h)}=u^{(h)}+i v^{(h)}\right\}$ is a set of uniformly bounded SDA functions, this set is a family of equicontinuous functions which, by Kellogg [2], contains a subsequence converging uniformly in R^{\prime} to a continuous limit. Since R^{\prime} was an arbitrary closed sub-domain of R, we can choose a sequence of such regions $R^{\prime} \subset R^{\prime \prime} \subset \cdots \subset R$ whose sum is R and find successive subsequences of $f^{\left(h_{1}\right)}, f^{\left(h_{2}\right)}, \cdots$ which converge in each of these regions to a continuous function. The resultant diagonal subsequence will converge uniformly to a continuous function in all of R. Since successive differences and derivatives of SD-harmonic functions are again SD-harmonic, the arguments in Theorems 3.1 and 3.2 can be repeated to show that there is a subsequence of the final subsequence whose first derivative and first difference ratio also converge in R. Thus, we can find a final subsequence which will have an arbitrary number of successive derivatives or differences which converge in R. Denote this final convergent subsequence by $\left\{f_{*}^{(h)}\right\}$ and let $\zeta(z)$ be the continuous function in R to which it converges.

Let C be a rectifiable curve in L_{c}. By the construction of Q, each point of C is a point of Q. Consider a rectangle Q_{k} of Q which contains a segment C_{k} of C. To be explicit, we will assume that C_{k} intersects $Q_{k} \cap L(h)$ at the three points $p_{1}=\left(x_{1}, h(k-1) / 2\right), \quad p_{2}=$ $\left(x_{2}, h k / 2\right)$, and $p_{3}=\left(x_{3}, h(k+1) / 2\right)$, and that the positive direction is from p_{1} to p_{3}. The remaining possibilities can be treated by suitable modifications of the following discussion. On $Q_{k} \cap L(h)$, three SDpaths may be defined. The upper SD-path consists of the points p_{1}, $\left(x_{1}, h k / 2\right)$, and the line segment from x_{1} to x_{3} with $y=h(k+1) / 2$. The lower SD-path is the line segment from x_{1} to x_{3} with $y=h(k-1) / 2$, the points ($x_{3}, h k / 2$), and p_{3}. The mixed SD-path consists of the line segment from x_{1} to x_{2} with $y=h(k-1) / 2$, the point p_{2}, and the line segment from x_{2} to x_{3} with $y=h(k+1) / 2$. At least one of these SD-paths must lie within $R(h)$ and will be chosen to be the SD approximation of the segment C_{k}. The SD-Cauchy theorem [3] shows that it is immaterial which SD-path is chosen if more than one of these approximating SD-paths lies within $R(h)$. The SD-path on $R(h)$ which approximates C is the union of the SD-paths chosen to approximate its segments, C_{k}.

Theorem 3.3. Let $\zeta(z)$ be a continuous function on a domain R and let C be a rectifiable [or Jordan] curve which is contained in R. If C_{h} is a SD-path contained in R_{h} which approximates C, then

$$
\begin{equation*}
\lim _{h \rightarrow 0} \int_{\sigma_{h}} \zeta(z) \delta z=\int_{\sigma} \zeta(z) d z \tag{3.1}
\end{equation*}
$$

Proof. By the definition for SD-path integration [3],

$$
\int_{\sigma_{h}} \zeta \delta z=\sum_{p=M}^{N-1} \int_{x_{p}}^{x_{p+1}} \zeta_{p}(t) d t+i h \sum_{p=M}^{N-2} \zeta_{p+(1 / 2)}\left(x_{p+1}\right),
$$

where C_{h} is a SD-path joining $z_{M}=x_{M}+i M$ and $z_{N}=x_{N}+i N$. We note that as $h \rightarrow 0$, so must $\left|x_{p}-x_{p+1}\right| \rightarrow 0$. Since ζ is continuous, there exists a value λ_{p} where $x_{p} \leqq \lambda_{p} \leqq x_{p+1}$ such that

$$
\int_{\sigma_{h}} \zeta \delta z=\sum_{p=\mu}^{N-1}\left[x_{p+1}-x_{p}\right] \zeta\left(\lambda_{p}\right)+i h \sum_{p=\mu}^{N-2} \zeta_{p+(1 / 2)}\left(x_{p+1}\right) .
$$

As $h \rightarrow 0$ the right side of the above converges to the value of the path-integral of the continuous function ζ along the path C.

Theorem 3.4. Let $R\left(h_{k}\right)$ denote a sequence of semi-lattices on a domain R such that $h_{k} \rightarrow 0$, and let $f^{\left(h_{k}\right)}$ be semi-discrete analytic on $R\left(h_{k}\right)$. If the collection of these $f^{\left(h_{k}\right)}$ is uniformly bounded in R, then it contains a subsequence that converges everywhere in R to a function $\zeta(z)$ that is analytic in R.

Proof. This subsequence is the final subsequence obtained in the previous discussion. Let C denote an arbitrary closed rectifiable path in R and let C_{h} be a closed SD-path on $R\left(h_{k}\right)$ which approximates C. Then
(a)

$$
\lim _{h \rightarrow 0} \oint_{\sigma_{h}} f_{*}^{\left(h_{k}\right)} \delta z=\oint_{\sigma} \zeta(z) d z,
$$

where $\left\{f_{*}^{\left(h_{k}\right)}\right\}$ is the subsequence which converges to ζ. To establish (a) we consider
(b) $\quad\left|\oint_{\sigma_{h}} f_{*}^{\left(h_{h}\right)} \delta z-\oint_{\sigma} \zeta(z) d z\right| \leqq\left|\oint_{\sigma_{h}}\left(f_{*}^{\left(h_{k}\right)}-\zeta\right) \delta z\right|+\left|\oint_{\sigma_{h}} \zeta \delta z-\oint_{\sigma} \zeta d z\right|$.

Since $f_{*}^{\left(h_{k}\right)} \rightarrow \zeta$, given $\varepsilon>0$ there exists $\delta_{1}(\varepsilon)>0$ such that the first term on the right side of (b) is smaller than $\varepsilon / 2$ provided $h_{k}<\delta_{1}$. Similarly by Theorem 3.3, there exists $\delta_{2}(\varepsilon)>0$ such that the second term on the right side of (b) is smaller than $\varepsilon / 2$ provided $h_{k}<\delta_{2}$. Thus, on letting $\delta=\max \left(\delta_{1}, \delta_{2}\right)$
(c)

$$
\left|\oint_{\sigma_{h}} f_{*}^{\left(h_{k}\right)} \delta z-\oint_{0} \zeta d z\right|<\varepsilon,
$$

provided $h_{k}<\delta$. This establishes (a). However, since $f_{*}^{\left(h_{k}\right)}$ is SDA for each h_{k}, the left side of (a) is always zero. Thus

$$
\begin{equation*}
\oint_{\sigma} \zeta(z) d z=0 \tag{d}
\end{equation*}
$$

Since C is an arbitrary closed rectifiable curve of R and ζ is continuous, by Morera's theorem $\zeta(z)$ is analytic in R.

To complete the discussion we must show that the limit function $\zeta(z)=U(z)+i V(z)$ of the chosen subsequence $\left\{f_{*}^{\left(h_{k}\right)}\right\}$ satisfies the given boundary condition $\zeta=\psi(s)$ on C, the boundary of R. It is sufficient for this purpose to consider the real-valued function $U=R e\{\zeta\}$ and show that $U=R e\{\psi(s)\}$ on C. Let Q be a fixed point of C. By hypothesis we can construct a circle lying outside C and intersecting C only at the point Q, see Feller [4]. We denote the center of this circle by A, its radius by ρ, and let P denote an arbitrary point of R whose distance from A is r.

For an arbitrary $\varepsilon>0$, we define the functions [4]

$$
\begin{equation*}
U_{1}(P)=F(Q)+\varepsilon+K\left(\frac{1}{\rho}-\frac{1}{r}\right), \tag{3.2}
\end{equation*}
$$

and

$$
U_{2}(P)=F(Q)-\varepsilon-K\left(\frac{1}{\rho}-\frac{1}{r}\right)
$$

where $F=R e\{\psi\}$ and K is a positive constant to be determined later. On any semi-lattice

$$
\begin{equation*}
\nabla U_{1}(P)=-K\left[r^{-3}+0(h)\right]<0 \tag{3.3}
\end{equation*}
$$

and

$$
\nabla U_{2}(P)>0
$$

in R provided that h is sufficiently small. Now if $u(P)$ is a solution of the differential-difference equation $\nabla u=0$ for the semi-lattice, by (3.3) the function $U_{1}(P)-u(P)$ is SD super-harmonic for $P \in R$. Accordingly, by Theorem 2.2, it assumes its minimum on C. Similarly, the function $U_{2}(P)-u(P)$ is SD sub-harmonic and by Theorem 2.1 assumes its maximum on C.

The argument given by Feller [4] now applies directly. We consequently establish that

$$
\varlimsup_{P \rightarrow Q} U(P) \leqq F(Q)
$$

and

$$
\lim _{p \rightarrow Q} U(P) \geqq F(Q)
$$

which completes the proof.

Bibliography

1. R. L. Helmbold, Semi-discrete potential theory, Carnegie Institute of Technology, Technical Report No. 34, Contract No. DA-36-061-ORD-490, Office of Ordnance Research, U. S. Army.
2. O. D. Kellogg, Foundations of Potential Theory, Dover Publications, Inc., New York (1953).
3. G. J. Kurowski, Semi-discrete analytic functions, Trans. Soc., 106, No. 1 (1963), 1-18. 4. J. D. Tamarkin and W. Feller, Partial Differential Equations, Brown University Notes, Providence, R.I., (1941).

[^0]: Received April 17, 1963. Duke University Research Associate, "Special Research in Numerical Analysis," sponsored by the Army Research Office (Durham), U.S. Army, Contract DA-31-124-AROD-13.

