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1. Introduction* In a previous paper [3], the author has presented
the basic concepts and definitions for semi-discrete analytic functions.
These functions are defined on two types of semi-lattices (sets of lines
in the #?/-plane, parallel to the #-axis)—one of which leads to a sym-
metric theory. We will concern ourselves here only with the sym-
metric case. These functions satisfy the following defining equation
[3] on a region of the semi-lattice

(1.1) OψL = [f(z + ihl2) - f(z -
uX

where h > 0 is the spacing of the semi-lattice. For convenience, we
will repeat the definition of the symmetric semi-lattice and its as-
sociated odd and even semi-lattices. A grid-line, αm, is the set of
points in the xy-plane such that y = mh where h > 0. The union
G(2k, h) of the am for m = k (k = 0, ± 1 , ±2, •) is called the even
semi-lattice; the union G(2k + 1, h) of the am for m = (2k + l)/2 is
called the odd semi-lattice. The semi-discrete 2-plane is the union of
G(2k,h) and G(2k + l,h). It will be denoted by L(h). Additional
concepts such as domains, paths, path-integrals, etc., are defined in [3].
The following notational conventions will be employed:

(1.2) fk=f(x +

and the abbreviation SD will be used to stand for semi-discrete.

2 Sub and super harmonic semirdiscrete functions* In the
continuous case, it is well-known that if a function u(x, y) is defined
over a region R of the plane and if, further, Δ\u) ^ 0 for all (x, y) e R,
where A2 denotes the two dimensional Laplacian; then u(xf y) cannot
have a maximum on the interior of R. Such a function is said to be
sub-harmonic in R [2]. Similarly, if the function u(x, y) defined on
R satisfies the equation Δ\u) ^ 0 for all (x,y)e R; then u(x, y) cannot
have a minimum on the interior of R. Such a function is said to be
super-harmonic in R [2]. An analogous result holds for semi-discrete
functions which are defined on domains of either the even or odd semi-
lattice. To be specific, we will consider functions u(x, y) defined on
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domains of G(2k, h) and introduce the notation

(2#i) (a) hEu(x, y) = u(x, y + h) - u(x, y) ,

(b) hEu(x, y) = u(x, y) — u(x, y — h) .

The semi-discrete Laplacian operators for G(2k) is then

(2.2) Fu(x, y) = d*u<fl y) + EEu(x, y) .
uX

THEOREM 2.1. Let u(x, y) be a SO-function defined on a semi-
discrete domain R of G(2k, h). If Fu ^ Ofor all {x, y) e R, then on R

(2.3) u(x, y)^M,

where M is the supremum of u(x, y) on C, the boundary of R.

Proof. The proof of this statement is obtained by a suitable
modification of the proof for the "weak maximum theorem" established
by Helmbold [1] for semi-discrete harmonic functions. Let C denote
the boundary of the SD-domain R of G(2k, h), let u(x, y) be a SD-
function on R such that Fu Ξ> 0 for all (x, y) e R, and let M' denote
the supremum of u(x, y) on R. Assume that u takes the value Mf

at a point (t, nh) of the interior R° = R ~ C of R. If the adjacent
points (ί, (n ± l)h) are points of R°, d2ujdx2 — u" will be continuous
at {t, nh) and further u"(t) ^ 0. By assumption Fun(t) ^ 0 which,
together with the previous remarks, implies that

(a) un(t) = un+1(t) = un^(t) = W .

This argument may be repeated for the sequence of points (t, (n ± l)h),
(t, (n ± 2)h), until a point (t, ph) is reached such that one of its
adjacent points is a point of C. If u" is continuous, the proof is
complete. Otherwise, since u" is then at least piecewise continuous,
integration of Fup Ξ> 0 shows that for some range of values of ε > 0

(b) u'p(t + e)- u'p(t) ^ eh~\2uv{θ) - up+1(θ) - up^(θ)} ,

where t ^ θ t=k t + ε. Since up = Mr is a maximum, the left side of
(b) is negative. Hence, the bracketed term is negative. Taking the
limit of this term as ε —> 0, ε > 0 shows that

(c) 2Mf g up+1(t+) + u ^ ) .

Similarly, we obtain

(d) 2ΛΓ g up+1(t~) + up-t(tr) .

Addition of (c) and (d) shows that M' ^ M where M is the maximum
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value of u(x9 y) on C.
In an identical manner, we establish the following result for

super SD-harmonic functions.

THEOREM 2.2. Let u(%, y) be a SD-functίon defined on a semi-
discrete domain R of G{2k, h). If Fu S Ofor all (x, y) e R, then on R

(2.4) u(x, y)^m ,

where m is the infimum of u(x, y) on C, the boundary of R.

3* Limit theorem for semi-discrete analytic functions, A SD-
f unction f(z) of the complex variable z = x + inh which is continuous
and single-valued on a SD-domain R of L(h) is said to be SΏ-analytic
if it satisfies (1.1) for all points zeR [3]. In addition, if we write
/ = u + iv, then Fu = Fv = 0 on R; that is, u and v are SD-harmonic.

Let us suppose that L(h) is superimposed upon the continuous z-
plane, denoted by Lc, with their x and y axes coinciding. Let Rc be
a simply-connected finite domain of Lc whose boundary is a Jordan
curve. A covering set of rectangles, Qk, is defined as follows,

Qk = {(», V):ak^x^ βk; (kh -h)^2y^ (kh + h)} ,

where ak is the least value of x in R taken on the strip kh — h S
2y S kh + h, and βk is the greatest value of x in R on this strip.
By construction, each point of Rc is also a point of Q = (J& $*• The
intersection of Q with L(Λ) forms a SD-domain, JB(&), which approxi-
mates Rc. We consider the sequence of SD-domaίns {R(hj); hx > h2 > •}
obtained by the above procedure upon successive refinements of the
semi-lattice retaining at each step the lines of the previous semi-
lattice. In the limit, R{h3) —> Rc. It is shown in [3] that a SD-
analytic function is completely determined in R(h) by its values on
C(h), the total-boundary of R(h). Therefore, let us assume that an
interpolation scheme is established to provide such boundary values
for a SD-analytic function f{h)(z) on R(h) from the boundary values
of an analytic function ζ(z) on Rc such that these approximate boundary
values tend uniformly to the true boundary values. We consider the
sequence of SD-analytic functions {f{h^](z)} so determined on {R(hj)}
and will prove that as hά -> 0, f{h^(z) -> ζ(z).

THEOREM 3.1. Let R be a domain whose boundary C is a Jordan
curve and let R' be a subdomain of R which is bounded by a Jordan
curve C c R. Consider the set of all possible semi-lattices G(2k, h)
parallel to the real axis of the z-plane. Consider also the set of all
SD-functions u{h)(x,y) which are uniformly bounded, \u\ g M in R,
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and which satisfy in R the equation Vu = 0. Then, for h sufficiently \
small, there exists a constant Mr such that

Θu{h)

dx
M' and \ Fu{h) | g ikΓ

for all (x, y) e JR.

Proof. The proof of this statement follows the proof given by
Fellow [4] for the discrete case. The sub-domain R' can be covered
by a finite number of rectangles contained in R and each of these
rectangles can be inclosed in a larger rectangle also contained in R.
Following the argument of Feller [4], it will be sufficient to consider,
for an arbitrary δ > 0, the two concentric rectangles

R={(x,y):\x\<a-δ,\v\<b]

R' - {{x, y):\x\<a-δ,\y\<b- δ/3} ,

where b is a multiple of the gap h, and h < δ/S.
To prove the assertion, we shall show that the function

ψ(x9 y) = (ζt)2φ(x, y) + C{u\x, y) + u\x, y + h) + u\x, y - A)}
\ uX '

where Φ{x, y) = (x2 — a2f(y2 — b2)2 and C is a large positive constant,
to be determined later, satisfies the inequality P(ψ) ^ 0.

Assume for the moment that this has been established. Then,
by Theorem 2.1, it follows that ψ attains its maximum value on the
boundary. However, by definition, Φ = 0 on the boundary and thus
in the entire rectangle

0 ^ ψ(P) ^ SCM2

where M is the uniform bound on u. Since the second term of ψ is
nonnegative, we may conclude that for all PeR'

Λ , = ^3CM2/(δ/3)8

dx/

[since for small δ, Φ ̂  (<?/2)4(<W ^ (δ/3)8].
Since (S/3)8 > 0, taking the last expression for M' establishes the

theorem, subject to showing that F(ψ) ^ 0. Only the outline of this
calculation will be presented. The complete sequence of steps follows
the argument given by Feller [4] using the differential rather than
the difference operator on x.

Calculation of Vψ using the fact that u is SD-harmonic [as is uf]
gives
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= (u')Ψ(Φ) + Φ[2(u")2 + (Eu')2 + (Eu')2]

+ Φ'ψλ'u") + EΦ[u[Euf + u'Eu'}

+ EΦ[ur_xEu' + u'Eu'] + C[2(u'Y + (Eu)2 + (Eu)2]

+ C[2(u[)2

, v

where u±1 = u(x, y ±h). Since | dΦ/θx | = 41 x(y2 — b2) \ V Φ , a constant
λ exists such that for all points of R\Φ'\< xV~Φ . Similar bounds
exist for EΦ and EΦ. Further, in R, V(Φ) is bounded. Accordingly
we assume that λ is so chosen that on R

\EΦ\V(Φ)\ < λ , \Φ'\ <Xλ/Φ , \EΦ\< Xλ/Φ ,

For an arbitrary ε > 0, we see that

I u'u"Φ' I ^ ( — Y + ε2λ2<Z>(*O2

With such bounds established for the various terms which appear in
(a), the following inequality is obtained.

F(f) ^ [(EufY + (Eu'Y + 2(u"Y]Φ(l - 2ε2λ2)

( b ) + 2(u'Y[C - 3/ε2] + C[(Eu)2 + (Eu)2 + (Eu,)2]

+ C[(EuλY + (Eu^Y + (Eu^)2] + (u[)2[2C - 1/ε2]

+ (uUY[2C - 1/ε2] .

Selecting ε so that ε2λ2 = 1/2, the first term on the right in (b) vanishes.
Finally, choosing C ^ 3/ε2, the remaining terms on the right in (b)
will be positive. That is, F(ψ) ^ 0.

THEOREM 3.2. Let {u{h)(x, y)} be the set of uniformly bounded
SΌ-functions considered in Theorem 3.1. This set is a family of
equi-continuous functions on R.

Proof. In Theorem 3.1 we established the existence of a uniform
bound for the set {du{h)jdx} and also {Eu{h)}. Let M denote this bound.
(1) Given ε > 0, let P, Q be two points on a line of the semi-lattice
such that PQ < ε/M; that is, | xP — xQ \ < ε/Λf, where xP denotes the
α -coordinate of P and xQ denotes the .τ-coordinate of Q. Then

dt
d t

^ [M2(xP - ^ e .

(2) Given ε > 0, let P, Q be two points of R which lie on a vertical
line in R such that | yP — yQ \ < ε/Mh.

I u'h)(P) - u{h)(Q) I = A E u i h )
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Thus,

(3) Given ε > 0, let P, Q be two arbitrary points of R such that
PQ < δ(ε). Let P ' lie on the same vertical line as P and have the
same ^/-coordinate as Q; i.e., P' = (xP, yQ). Then

I uw(P) - ^ } ( Q ) I ̂  I N ( Λ ) ( P ) - ^ ( A )(P') I + I u{h)(P') - u{h)(Q) \ .

Application of the two previous cases completes the proof.
By Theorem 3.2, if {f{h) = u{h) + iv{h)} is a set of uniformly bounded

SDA functions, this set is a family of equicontinuous functions which,
by Kellogg [2], contains a subsequence converging uniformly in R' to
a continuous limit. Since Rf was an arbitrary closed sub-domain of
R, we can choose a sequence of such regions Rf c R" c c J ? whose
sum is -Band find successive subsequences of / ( f t l ) ,/ ( Λ a \ ••• which
converge in each of these regions to a continuous function. The
resultant diagonal subsequence will converge uniformly to a continuous
function in all of R. Since successive differences and derivatives of
SD-harmonic functions are again SD-harmonic, the arguments in Theo-
rems 3.1 and 3.2 can be repeated to show that there is a subsequence
of the final subsequence whose first derivative and first difference ratio
also converge in R. Thus, we can find a final subsequence which will
have an arbitrary number of successive derivatives or differences which
converge in R. Denote this final convergent subsequence by {/*Λ)} and
let ζ(z) be the continuous function in R to which it converges.

Let C be a rectifiable curve in Lc. By the construction of Q,
each point of C is a point of Q. Consider a rectangle Qk of Q which
contains a segment Ck of C. To be explicit, we will assume that Ck

intersects Qk Π L(h) at the three points p1 = (xu h(k — l)/2), p2 =
(a?a, hkl2), and pd = (α?8, h(k + l)/2), and that the positive direction is
from px to p3. The remaining possibilities can be treated by suitable
modifications of the following discussion. On Qk Π L(h), three SD-
paths may be defined. The upper SD-path consists of the points pu

(xlf hk/2), and the line segment from x1 to x3 with y = h(k + l)/2.
The lower SD-path is the line segment from xx to x3 with y = h(k — l)/2,
the points (x3, hkj2), and p3. The mixed SD-path consists of the line
segment from xx to x2 with y = h(k — l)/2, the point p2, and the line
segment from x2 to x3 with y = h(k + l)/2. At least one of these
SD-paths must lie within R(h) and will be chosen to be the SD ap-
proximation of the segment Ck. The SD-Cauchy theorem [3] shows
that it is immaterial which SD-path is chosen if more than one of
these approximating SD-paths lies within R{h). The SD-path on R(h)
which approximates C is the union of the SD-paths chosen to approxi-
mate its segments, Ck.
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THEOREM 3.3. Let ζ(z) be a continuous function on a domain R
and let C be a rectifiable [or Jordan] curve which is contained in
R. If Ch is a SΌ-path contained in Rh which approximates C, then

(3.1) lim ( ζ(z)δz = ( ζ(z)dz .

Proof. By the definition for SD-path integration [3],

( ζδz = Σ 1 \X"+1ζΛt)dt + *Λ Σ? ζp+(1/«(*,+1) ,
JOh P=M Jxp p=M

where Ch is a SD-path joining zM = xM + iM and zN = xN + iN. We
note that as h —* 0, so must | xp — xp+11 —• 0. Since ζ is continuous,
there exists a value Xp where xp ^ λ̂  ̂  xp+1 such that

S N-l N-2

ζδZ = Σ [̂ ί>+l - 0p]ζ(λp) + ^ Σ Cp+(l/2)(»p+l)

As & —> 0 the right side of the above converges to the value of the
path-integral of the continuous function ζ along the path C.

THEOREM 3.4. Let R(hk) denote a sequence of semi-lattices on a
domain R such that hk —* 0, and let f(hk) be semi-discrete analytic on
R(hk). If the collection of these f{hk) is uniformly bounded in R,
then it contains a subsequence that converges everywhere in R to a
function ζ{z) that is analytic in R.

Proof. This subsequence is the final subsequence obtained in the
previous discussion. Let C denote an arbitrary closed rectifiable path
in R and let Ch be a closed SD-path on R(hk) which approximates C.
Then
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(a) lim f /<»*>&! = <f ζ(z)dz ,
&->0 Jθh JO

where {f*k)} is the subsequence which converges to ζ. To establish
(a) we consider

(b) I f fίhk)δz - <f ζ(z)dz ^ I <f (/<**> - ζ)δz + <ί ζδz - <f ζd
I Jϋfe Jo I Jc/j Jo^ Jσ

Since /i**1 —> ζ, given ε > 0 there exists ^(ε) > 0 such that the first
term on the right side of (b) is smaller than ε/2 provided hk < δu

Similarly by Theorem 3.3, there exists δ2(ε) > 0 such that the second
term on the right side of (b) is smaller than ε/2 provided hk < δ2.
Thus, on letting δ — max (δl9 δ2)

(c) <f f^δz - I ζdz <e

provided hk < δ. This establishes (a). However, since fίhk) is SDA
for each hky the left side of (a) is always zero. Thus

(d) f ζ(z)dz =
Jo

0

Since C is an arbitrary closed rectifiable curve of R and ζ is continu-
ous, by Morera's theorem ζ(z) is analytic in R.

To complete the discussion we must show that the limit function
ζ(z) = U(z) + ΐF(^) of the chosen subsequence {f*k)} satisfies the given
boundary condition ζ = ψ(s) on C, the boundary of R. It is sufficient
for this purpose to consider the real-valued function U = i?e{ζ} and
show that U = i?e {^(s)} on C. Let Q be a fixed point of C. By
hypothesis we can construct a circle lying outside C and intersecting
C only at the point Q, see Feller [4], We denote the center of this
circle by A, its radius by p, and let P denote an arbitrary point of
R whose distance from A is r.

For an arbitrary ε > 0, we define the functions [4]

(3.2) U^P) - F(Q) + ε + j

and

U2(P) = F(Q) - e - κ(± - ±) ,

where F=Re{ψ} and K is a positive constant to be determined later.
On any semi-lattice

(3.3) VUλ{P) = -K[r~z + 0(h)] < 0 ,

and
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FU2(P)>0

in R provided that h is sufficiently small. Now if u(P) is a solution
of the differential-difference equation Fu = 0 for the semi-lattice, by
(3.3) the function U^P) - u(P) is SD super-harmonic for PeR.
Accordingly, by Theorem 2.2, it assumes its minimum on C. Similarly,
the function U2(P) — u(P) is SD sub-harmonic and by Theorem 2.1
assumes its maximum on C.

The argument given by Feller [4] now applies directly. We con-
sequently establish that

Πm U(P) ^ F(Q) ,

and

lim U(P) ^ F(Q)
P->Q

which completes the proof.
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