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l Introduction. Let F be a commutative field of characteristic
not 2, complete under a discrete, non-archimedean valuation | |, with
finite residue class field—such a field is often called local—for example,
the field of ordinary p-adic numbers. For nonzero elements α, β of
F, the Hubert symbol (a, β) is defined to be + 1 or — 1 according as
the equation ax2 + βy2 = 1 is or is not solvable in F. It has such
obvious properties as (β, a) = (α, β), {a, βy2) — (a, β), (a, —aβ) = (or, β);
and if at least one of (oc, β), (<x,y) is + 1 , then

(1) (a, β)(a, 7) - (α, βy) ,

as is easily seen by observing (whether or not a e F2)

(2) (a, β) = +1 if and only if β e NEίFE , where E - F(a112) .

These properties are true even without the assumption that F is
local; under that assumption, however, the multiplicative property (1)
is always true, i.e., (a, β) = (a, y) = — 1 => (α, /9τ) = + 1 . In [3],
Example 63:12, O'Meara derives this result from the study of local
quaternion algebras by applying Wedderburn structure theory to tensor
products of such algebras. The point of the present paper is to give
a direct proof, using only the most elementary facts about non-archi-
medean valuations (such as found in [3], Chap, I). Specifically, we
shall prove the so-called "second inequality of local class field theory"
for quadratic extensions, i.e., (F* : NEfFE*) ^ 2, where E is an arbitrary
quadratic extension of F, and F* and E* denote, respectively, the
nonzero elements of F and E) the required property (1) will then
follow immediately, because of (2).

2. Proof of the second inequality* Since the ramification number
of E/F is at most 2([3], Proposition 13:6), an obvious computation
shows that it suffices to prove the

PROPOSITION.

(u : NE/FVL) = 1 if E\F is unramified

(u : NE!FVi) ^ 2 if EjF is ramified ,

where u = {ε e F\ \ ε \ = 1} and U = {a e E\ \ a \ — 1}, the units of F
and E, respectively.
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The proof of the Proposition will be broken up into several steps.
First, let π denote a generic prime element (to be specified later) for F,
and for each positive rational integer n, define nn = {ε e u | ε = 1 (mod πn)},
a subgroup of u. Also define the nonnegative integer e by | π \e = \ 2 \;
thus e = 0 in the non-dyadic case (| 21 = 1), e > 0 in the dyadic case
(I 2 I < 1). We obviously have u 2 ux 2 u2 2 . . . 3 u 2 e 3 u2e+1 3
Furthermore, by HenseΓs lemma ([3], Theorem 63:1), u2e+1 S u 2 S NU
(notation: iSΓ = NE!F), thus we can write u 2 u ^ l l 2 n2NU 2 2
u2eNU 2 u2e+1j\ni = NU; since group-indices multiply, we therefore have

LEMMA 1. (u : NU) =

(u : u1NU)(u1NU : n2NU) . . . (u^t fU : u2eNU)(u2eNU : n2e+1NU) .

We next refer to [2], § 5, for a classification of the several types
of extensions E/F, namely:

Non-dyadic: Unramified if E = F(θ112) with | θ\ = 1
Ramified if E = F(π1/2)

Dyadic: Unramified if E = F((l + 4?)1/2) with | 5 | = 1
Ramified ("R-P") if E = F(π^)
Ramified ("Br U") if E = F(( l + ττ2fc+1<5)1/2) with

| δ | = 1 and 0 ^ fc ^ e - 1.

Here TΓ, of course, denotes some particular prime element for .P. In
the case we are calling "R-U"> recall from [2], p. 454, that p =
[1 + (1 + πu+1δ)ll2]lπk satisfies Np = - π S and hence can (and shall)
serve as prime element for E; and in "R-P", we shall take p = τr1/2

as prime element for £7. Let us also write o — {ae F\\a\ ^ 1 } , the
"integers" of F.

LEMMA 2.

(u : uJSfU) = 1 in the unramified non-dyadic, and

the three dyadic cases;

(u : ^NU) S2 in the ramified non-dyadic case .

Proof. The composite map u — g* - ^ ^ g*/g*2, g denoting the
residue class field of F, is a multiplicative epimorphism with kernel
uLu

2, so (u: UxJSni) g (u: uxu
2) = order of g*δ*2; since g is finite, this

order is 1 in the dyadic case, 2 in the non-dyadic. This proves the
Lemma except in the unramified non-dyadic case, where we need a
sharper estimate; however, in that case, we can apply Proposition
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62:1 of [3] (which shows that for any unit ε of F, the congruence
εx2 + θy2 = 1 (mod π) can be solved in o) and HenseΓs lemma to conclude
that the Hubert symbol (ε, θ) is equal to + 1 for all ε in u, hence
u = NVL.

LEMMA 3. Suppose E/F is dyadic. Then (unNU : un+1NU) = 1
in the following cases: Unramified: 1 ̂  n ^ 2e

R-P: 1 ύ n ^ 2e - 1
R-U: l^n^2(e - k) -2 and 2{e-k)Sn^ 2e.

Proof. Our procedure will be, given e = 1 + πna in nn (thus with
a e o), to construct a in U with ε = Na (mod πn+1), thus ε/iSΓα e uw+lf

thus ε e un+ιNU; this will show nn £ uw+1iVU, hence uΛiVU = lί^iSm.
We consider five cases (note that II and V overlap, which simply means
that either construction will work).

( I ) Unramified. Take a = 1 + πna(l + (1 + 4δ)1/2)/2.

(II) R-P or R-U, n = 2r even, 1 ̂  r ^ β - 1. Recalling that
g is finite of characteristic 2, find /3 e o with β2 = a (mod π), and take
α = 1 + πrβ.

(III) i?-P, n = 2r + 1 odd, 0 ̂  r ^ e - 1. Find /S e o with
/32 = — α(modττ), and take a = 1 + pττr/9.

(IV) i?-?7, w = 2r + 1 odd, Q^r^e-k-2. Find /Seo with
β2 = —alδ(modπ), and take a = 1 +

(V) R-U, n ^ 2(e - k). Take α = 1 + pπn+kal2. We check in
each case that α belongs to tt and ε == iVα(modπ%+1).

For the remaining two indices, we have

LEMMA 4. In R-P, (u2eNU : u2e+1NU) g 2; m i2-Σ7,
: u 2 ( e_ f c )iVU) ^ 2 .

Proof. The first of the two inequalities is easily disposed of by
Proposition 63:4 of [3], which essentially states that (u2e: u2e+1) = 2,
so we turn to the second. Note that (for β in o) iVXl + pπe~k~λβ) =
1 + π2{e-k)-\2π-eβ - δβ2), and set Sβ = {iV(l + pπ^^β) \βeo}. Now
we may assume u2(e-&)_i is not a subset of u2(β_fc)jNTI, and so can fix
ε0 = 1 + π*{β~~k)~~1a0 in u^^)^ but not in u2{e-k)NU, hence with εog 31,
hence with α0 not of the form 2π~eβ — δβ2; then for any ε =
1 + TΓ 2^"^^ 1^ in Uafc-j.,..! but not in Uacβ-̂ -WTI, we also have <x not of
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the form 2π~eβ — δβ2

f and since, reading modulo π, elements of the
form 2π~eβ — δβ2 determine an additive subgroup of o of index 2, we
can find A in o with a + a0 = 2π~eβx — δβ\ (mod π)f so that εε0 Ξ
N(l + ^ e-^A)(modπ 2 ( e- f c )), i.e., ε e ε0u2(e_fe)iVU; thus the index
(ualβ-fc)-iΛΓU : ua(β_fc)JVtt) is at most 2. q.e.d.

The proof of the Proposition, and thus the multiplicative property
(1), now follows by combining the four Lemmas.

3* Concluding remarks* The "first inequality of local class field
theory" states (F* : NE*) ^ 2, and can also be proven directly—cf.
[3], Propositions 63:13 and 63:13a. Its significance for us is that each
of our index-inequalities in the Proposition and Lemmas 2 and 4 is
now seen to be an equality.

As Durfee has shown in [1], the local isometry invariants for
quadratic forms can easily be derived once our multiplicative property
is known. Similarly, in the more modern, "geometric" treatment
given in [3], § 58, § 63, it is not difficult to reinterpret O'Meara's
quaternion algebra (a, β) as a Hubert symbol, tensor product 0 as
ordinary multiplication, and algebra-similarity ~ as equality; most of
the arithmetic results of [3] then follow readily from the multiplica-
tive property (1) and the Hasse theorem that any form in five varia-
bles is locally isotropic.
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