
REMARKS ON CERTAIN ALMOST PRODUCT SPACES

CHEN-JUNG HSU

An almost product space is a differentiable manifold of class C°°
ivhich has a nontrivial tensor field F( (also of class C°°) satisfying
the conditions

It is known that one can find a positive definite riemannian metric
.such that

<0.2) QijFiFi = ghk .

In the following we denote by Mn an almost product metric space
which satisfies (0.1) and (0.2). The covariant derivative with respect
to the riemannian connection of gi3 is denoted as V.

If condition (0.1) is replaced by FiFf = — δ*, the space is known
as an almost Hermitian space. In this case many subclasses are
considered and their properties are studied by several authors. We
examine in § 1 and § 2 conditions which correspond to ones which
define the subclasses of almost Hermitian space and will study in
particular the following two conditions:

(0.3) FtFj - 0 ,

and

(0.4) PUFjh) = 0 ,

where Fjh = Fjgih which is symmetric in j and h by (0.2).
In addition to these, there are also some special classes of Mn

already known. We studied the relations between all these special
cases and the result can be described in the following diagram:

Most general almost > [0.1] > [0.2]
product metric space FiF} = 0 F(iFjh) = 0

I i i
A _ [ 1 . 0 ] Λ _ > [1.1] > [1.2]

"* I
[2.0] > [2.1] > [2.2]

.Λ7& = 0 FiF? = 0
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In the diagram the conditions given are the ones defining the special
subclasses denoted as [0.1], [1.0] and so on. The arrows are to be
rend "properly contains." Nfc denotes the Nijenhuis tensor of the
tensor Fi. The conditions in the left hand column are independent
of the choice of almost product metric, while going across the top-
row relates the metric to the almost product structure more and more
strongly1. Foliated manifold with bundle-like metric studied by Rein-
hart [6]2 is contained in [1.0], and the case [2.2] is the loccally pro-
duct riemannian space studied by Tachibana [9] and others. It is
shown that [2.0] is a riemannian space having complementary sub-
spaces and such spaces were studied by Wong [12]. Conformally
separable riemannian space studied by Yano [13] is contained in this
case. In § 2 conditions for some classes are also given by the use of
a same tensor M^ for the purpose of comparing them. In § 3 and
§ 4 examples for the situations [1.1], [1.2] and [2.1] are given by almost
contact manifolds and tangent bundle of riemannian space to illustrate
the above diagram. Finally, we prove in § 5 some properties for
classes [0.1] and [0.2] which are analoguous to those for the corre-
sponding cases of an almost complex manifold.

We want to thank Professor S. S. Chern for his kind advices and
suggestions during the preparation of this note.

1. We begin with following:

PROPOSITION

( i )
( " )
(iii)
(iv)

(v)

FjFt =

P,-Fik +

(δ?δl +
VrFn +

1.1. In
0,

Mn •

0,
F?Fl)FmFΐ =
FfFΪ)Vr

ViFlr -
»Fΐ =

VιFri

the f

= 0,
= 0,
• = 0.

REMARK 1.1. An almost Hermitian space satisfying (ii) is called'
i£-space [10] and the one satisfying (iv) is called 0*-space [5]. They
are wider classes than the one defined by (i) which is a Kaehlerian
space. It is also known that in an almost Hermitian space (iii) is
equivalent to the vanishing of Nμ [5],

Proof. It is evident that (i) —> (ii), (iii), (iv), (v). Here arrows
are to be read "implies."

(ii) —> (i): Let Ujih = VάFiKί then Ujίh = Ujhi. From (ii) we have
also Ujih = — Uiίh. Thus we have Ujih = 0.

1 The author thanks the referee for his comments to improve the presentation in a_
few place.

2 Number in bracket refers the reference at the end of the paper.
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(iii) - (i): Let Vjih = FψtFih then Vjih = Vjhί. On the other
hand from (iii) we have Vjih = F\V'όFlh = -Fι

hP' άFH = - Vjhi. Thus
we have Vjih = 0 which implies (i).

(iv) -> (i): Put Wjίh = F]ΔtFih then Wjih = WJhi. We have also
Wjih = ~F!FjFιh = J^FyF,, = - Wjhi. Thus WiA< - 0 implies (i).

(v)—*(i): Permute the indices of (v) cyclically and then add the
so obtained, then we have VrFάι + VjFlr + PtFrj = 0 from which and
<(v) it follows (i).

PROPOSITION 1.2. For a riemannian space to have complementary
subspaces in the sense of Wong [12] it is necessary and sufficient that
it is a Mn with vanishing Nijenhuis tensor N&:

<1.1) K) - Fι

i{VιFΪ - VjFf) - F]{VιFΐ - FtFt) .

Proof. A riemannian space has complementary subspaces xλ =
constant and xa = constant in the sense of Wong if and only if its
line element can be written in a suitable coordinate system as

ds gλμ(x\ xc)dxλdxμ + gab(x\ xc)dxadxb ,

λ, μ, v = 1, , p; α, 6, c = p + 1, , n .

In this case the tangent (n — p)-spaces and tangent p-spaces of these
two families of surfaces give rise to two distributions. In the above
coordinate neighborhood the almost product structure tensor F* corre-
sponding to these distributions has the components:

It is easily seen that the tensors (1.2) and (1.3) satisfy (0.1) and (0.2).
By some easy computation we have Ni3 = 0 and

= 0 , rtFt =

{i} VtFl = 0 .

Conversely, if Mn has vanishing Nijenhuis tensor, then we can find a
neighborhood at each point such that the tangent spaces of xλ —
constant and xa — constant constitute the distributions defined by Fi.
In such coordinate system F* has components given in (1.3) and we
have gλa = 0 from (0.2).

PROPOSITION 1.3. Mn is a locally product riemannian space if and
only if FjF? = 0 (Tachibana [9]).
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Proof. A riemannian space is called locally product if at each
point we can find a coordinate neighborhood such that the line element
can be witten as

(1.5) ds2 = gλ[l(xv)dxλdx» + gab(xΰ)dxadxb .

So it is a special case of the space in Proposition 1.2. If we note the
fact that ViFf = 0 implies JV£ = 0 and that

- ' {ab} = ~ j
then Proposition 1.3 follows from Proposition 1.2 immediately.

REMARK 1.2. From Proposition 1.2 and Proposition 1.3 we see
that Ntj = 0 does not imply F,Ff = 0 .

PROPOSITION 1.4. If Mn satisfies N?ά = 0 and (0.4) that is

(1.7) ViF5k + FjFki + VkFi5 = 0 ,

then F , F ; = 0.

Proof. Since J ^ F * + FiF,F H = 0 follows from FlFn = ftir

we have

Thus, if (1.7) holds we have Nijk = 2{Fι

iVιFάk + F^V.F^}. From Nijk =
0 it follows that (δTδιj + FimFj)FmFlk = 0. Then by Proposition 1.1
we get FwFZfc - 0.

REMARK 1.3. Proposition 1.4 is an analogue of a theorem of
Kaehlerian space.

REMARK 1.4. From Remark 1.2 and Proposition 1.4 we see that
Ntj = 0 does not imply (1.7). An example in § 4 shows that (1.7) does-
not imply JV& = 0.

If a differentiate manifold has a system of completely integrable
distribution, it is called foliated manifold. It is well known that one
can introduce a positive definite riemannian metric gijf another system,
of distribution and consequently an almost product structure tensor
F( such that (0.1) and (0.2) hold. We call a space obtained in this,
way as a foliated metric space for convenience. Yano [14] has proved.
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the following:

PROPOSITION 1.5. For a Mn to be a foliated metric space it is
necessary and sufficient that

(1.8) Ni) - Nι

iάFΐ = 0 or JVft + N^Ft = 0

holds.

REMARK 1.5. If we put

(1.9) Mtj = V,F] + FlFτyxFt + Fl(FιF} - VsFί) ,

then N{) - NijFf = 0 if and only if Mt3 = Λf/,.

2. Put Γiifc - Pyl^A + FfF\VmFlh. Then we have

PROPOSITION 2.1. In ikP the condition (1.7) is equivalent to the
following:

(2.1) Tjih = — Tijh .

Proof. Substitute (1.7) in the expression of Tjih, we have

Tjίh = - ( P M ^ + ΓΛJFV4) - FTFl{VlFhm + VhFml)

- (F,F,, + F]FΓVmFhl) - - Γ ^ ,

because of

(2.2) ΓAFy < + FfF\VhFml - 0 ,

which follows form F\Fχ = δj by covariant differentiation F5 , and
then contracting with F}.

Conversely,

Tjih = P y F < 4 - Ff

that is

(2.3) 2FyFΛ < = Tiih + Γ, H .

From which we have

(2.4) 2(FjFhi + F.Fij + F<FJΛ)
= -Γ/ift *+" •* ift* H" -̂  Aj* + ^ Ati + •* <Ai ~f" -̂  ijh

Substitute (2.1) in (2.4) we have (1.7).

REMARK 2.1. An almost Hermitian space satisfying a condition
corresponding to (1.7) is an almost Kaehlerian space.
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PROPOSITION 2.2. In Mn (1.7) implies (0.3), that is

(2.5) VιF
ι

j = 0 .

Proof. gjiTjih = gjΨάFih + gjiFrFlmFlh

= 2g'ΨjFiκ = 2P,Fί .

Thus from (2.1) we get VάFi = -V SFU that is F, F/ = 0.

REMARK 2.2. An almost Hermitian space satisfying a condition
corresponding to (2.5) was first considered by Apte and is called it-
space [1].

PROPOSITION 2.3. In Mn (2.5) is equivalent to Mi) = 0.

Proof. From Pk(F}F;) = 0 we have F?V kFl = 0. On the other
hand, as Ft = constant, we have PSF} = 0. Thus AT;* = — F}PmFf.
Then, Proposition 2.3 follows from the fact that F) is non-singular.

PROPOSITION 2.4. In Mn, (1.7) is equivalent to FjMk + F\M^ = 0.

Proof. We first note that from FJJPH = 0^ we have

(2.6) F)VkFu + F\VhFn - 0 .

Now, from (1.9) we have

(2.7) ghk(FjMh + F\Ml) = F]{VxFih + Γ4FU) + W , F I 4 + PιFjk).

If FjAΓΛ + JVΛfft = 0, we have from (2.6) and (2.7) the following

(2.8) F]{VιFik + Γ ^ + VkFu) = -Fl{V5Flk + r f F J 4 + VkFn) .

Denote the left hand side of (2.8) as Pjik, then we have Pjik = — P i i f c.
But it is evident that Pjik = Pjki. Thus we have Pjik = 0 from which
(1.7) follows as Fi is nonsingular. The converse is evident.

3 Now we give some examples from contact manifolds. Consider
a (2m + l)-dimensional (n = 2m + 1) differentiate manifold Mn with
contact structure rj, that is a structure defined by a 1-form )? satisfy-
ing η Λ (d#Γ Φ 0, then it is known [7] that there exists a (Φ, ξ, η, g)-
structure with

η = ^ / ^ 9 dη = φ = —φtjdx1 Λ dx>
Li
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Stating more precisely, there exist a vector field ξ\ a tensor field Φ\
and a positive definite metric tensor giά such that

rank \φt\ = 2m, Φ)ξj = 0 , φ% = 0 ,

ξ% = l , Φ)Φi = -di + ξ%,

9ijξj = Vi, QijΦΪΦί = 9kk - VkVk f

Φij = OjkΦΪ = PiVj - PjVi f

where V denotes the covariant derivative with respect to the rieman-
nian connection of g{j. It is evident that

(3.1) (FjV^e = 0 ,

and it is also known that

(3.2) F£* - 0

and

(3.3) (Vhηs)ξk = 0 .

In such space we can define the following almost product struc-

ture [3]:

(3.4) Fΐ = (2ξ% - d{).

It is easily seen that the pair Fί and gi5 defined in this way satisfy
(0.1) and (0.2). Thus we have an almost product metric space Mn

from the given contact manifold Mn. In this section we restrict our
consideration to the Mn thus obtained.

PROPOSITION 3.1. An almost product metric space Mn obtained
from a contact manifold (as above) satisfies (2.5).

Proof. From (3.4) we have

VhFΐ - 2{vhξ
j)Vi + 2ξJ(FkVi)

So, by (3.3) and (3.2) we have

FjFi = 2{V^)ηi + 2ξψjηi) = 0 .

PROPOSITION 3.2. For an almost product metric space Mn obtained
from a contact manifold (as above) to satisfy (1.7), it is necessary
and sufficient that ξ* is a Killing vector field.

Proof. As FiS = 2ηiηj - gij9 we have (H2)VhFiS = (PhVi)Vj + ViPhVa
from which it follows
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(3.5) \ψhFti + V,Fih + F,FM)
LA

= VhiViVό +Vό7]i) + ytffls + Vόηh)

Thus, if (1.7) holds, we have the following by contracting ξh with
the right hand side of (3.5):

(3.6) Vflj + Vfl, + Mξψfl, + ξψflh) + VjiξΨiVk + ξkrfli) = 0 .

Taking account of (3.1) and (3.3) we have from the above relation the
following:

(3.7) PM + Vfl, = 0 ,

that is, ξι is a Killing vector field. The converse is evident from (3.5).

REMARK 3.1. From Proposition 3.2 we see that (2.5) does not
imply (1.7).

Let Jέfζ denotes the Lie derivative with respect to an infinitesimal
transformation ξ\ S. Sasaki and Y. Hatakeyama have proved that
Nj = JZ^Φ) = 0 is equivalent to the condition that ξι is a Killing vector
field, and also proved that the so-called normal contact metric mani-
fold [7] satisfies Nj = 0. Thus we have:

PROPOSITION 3.3. If M2nι+1 is a normal contact metric manifold,
then the almost product metric space Mn obtained from M2m+1 satis-
fies (1.7).

PROPOSITION 3.4. If Mn is an almost product metric space ob-
tained from a normal contact metric manifold, then Fξ does not
satisfy VhFl = 0.

Proof. Suppose VhFl = 2{(FA£0ft + ζψhVi)) = 0> we have by con-
tracting with ξ{ the following:

FΛ£'+ £W*tt) = 0,

from which we have by (3.1), Fhξ
j = 0 which contradict with the

fact that Γhξ* =

REMARK 3.2. From Proposition 3.3 and Proposition 3.4, we see
that (1.7) does not imply FtF} = 0.

REMARK 3.3. All examples in § 3 satisfy also (1.8). Proposition
3.1. gives examples of [1.1], and Proposition 3.3 gives examples of
[1.2].
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REMARK 3.4. The almost product metric space Mn obtained from
a normal contact metric space evidently does not satisfy JV£ = 0.
But if ξ\ r]j be any vector fields satisfying ffy = 1, g^ξ1 = τjj9 then
in the almost product metric space Mn defined by gi3 and Fi of (3.4)
with such ξ\ ηjy it is easily seen that N?s = 0 if and only if Viηj =
Fflί and that V {F} = 0 if and only if V£ = 0. Such Mn gives example
of [2.1].

4» We give in this section another example from tangent bundle
of a riemannian space. Let Rm be an m-dimensional riemannian space
and Mn = T(Rm), n = 2m be the tangent bundle of Rm, then the
local coordinates of an element (a pair consisting a point x* in Rm

and a vector v" at a?") are xι = {x«, x"*) = (#", v"). We assume in this
section that a* = m + a etc. a, β, Ί = 1, , m; α*, /S*, 7* = m + 1, ,
2m; i, 3, k = 1, , 2m = n. Local coordinate transformation of Mn

is given by

/ 0a?"

(4.1)
dxβ

0

dxfcύ

\

\ dxβ/

From this transformation law it is easily seen that if ζ* is a con-
tra variant vector of Rm then (ξ", (dξaldxβ)vβ) is a contra variant vector
of Mn = T(i2m) which is called the extended vector of ξ«.

{ a 1o > of the metric tensor g^ of i2w

gives rise a horizontal distribution in Mn = T(Rm). It is known that
if ξ« is a contravariant vector field, then (0, ζ«) and (ξ», -{βy}^)
are respectively a fundamental vector field and a horizontal vector
field in Mn = Γ(i2m) [2]. The fibres and horizontal distributions give
rise to an almost product structure in M* = T(Rm). Its corresponding
structure tensor Fi is given as follows [4]:

(4.2)
£ = 0 ,

Ft = 2 a
βp.

Let Gn be the riemann metric introduced by S. Sasaki [8] in
T(Rm), that is

(4.3)

Qaβ
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then it is easily shown that Fξ of (4.2) and Giβ satisfy (0.1) and (0.2),

thus Mn = T(Rm) is an almost product metric space. In this section,

let V denote the covariant derivative with respect to the riemannian

connection I ?Λ of Giό:

1/3*7*J - « , \β*7f ~ -g-̂ λftrV ,

(4.4)

where R"βy is the curvature tensor of gaβ in Rm. Then by straight-
forward computation we have the following:

(4.5)

V

PyFf =

Vy,F$, = 0 ,

V , Py,F£ = 0 ,

f = 0 , FrFp = 0

We have also

(4.6)
= 0 ,

VrFa*β = 0 , • ΓyFΛβ = 0 , VτFa*r = 0 .

As Faβ is symmetric in a, β it is the same for FyFaβ9 so we have

(4.7)

Using (4.6), the expression (4.7) and then making use of RK-,ay

— Rλv/a we have finally:

iFj* + F~iFki + ΓhFti = 0 .



REMARKS ON CERTAIN ALMOST PRODUCT SPACES 173

Thus we have

PROPOSITION 4.1. If Mn is an almost product metric space obtained
from the tangent bundle of a riemannian space, then Mn satisfies
(1.7).

REMARK 4.1. As the fibres of T(Rm) evidently constitute a sys-
tem of completely integrable distribution, so Mn — T{Rm) is a foliated
metric manifold.

REMARK 4.2. It is known [8] that the horizontal distribution is
also completely integrable if and only if Rm is flat. In this case
Ni) = 0. Therefore we see that (1.7) does not imply Nfj = 0 .

By the way, we give here one more proposition for Mn obtained
from the tangent bundle of a riemannian space:

PROPOSITION 4.2. Let Vi = (u°, v^d^u") be the extended vector
field of u*. Then SfvFi = 0 if and only if u* is an affine transforma-
tion in Rm.

Proof. By making use of the formula

we have

(4.9)

from which the

1 V λ

proposition

= o ,
= 0,

follows.

S = 0 ,

REMARK 4.3. Proposition 4.2. is an analogue of a theorem of
Tachibana and Okumura [11].

5 In this section we assume that Mn satisfies (2.5). Let JZζ
denote as above the Lie derivative with respect to an infinitesimal
transformation v\ It is well known that

(5.1)

Contract with j , h and then make use of (2.5) we have

(5.2)
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PROPOSITION 5.1. In a compact orientable almost product metric
space satisfying (2.5), if an infinitesimal projective transformation at
the same time leaves Ft invariant, then it is an isometry.

Proof. If an infinitesimal projective transformation v* at the
same time leaves Fί invariant, then we have

(5.3) J ^ } = Sfa + δϋrj

and

(5.4) £?υFΐ = 0 .

Substitute these two relations in (5.2) we have

(5.5) (nFΓ - δTFl)ψm - 0 .

But we have

(5.6) (nFΓ - 8?F})(nFl + δ'mFl) = δ\{n* - (F/)2} Φ 0

as (Flf = (n- 2p)2 < n\ Thus nFΓ ~ SfFί is nonsingular and we
have ψm = 0, from which and (5.3) we have

(5.7) ψm = -l—pmrιV* = o .
n + 1

Thus Vxv
ι — constant and £fλ ••> = 0. Now if the space is compact

and orientable, then by use of Green's theorem we have Ftv
ι = 0 from

which and JtfΛ Λ = 0 follows the proposition.

PROPOSITION 5.2. In an compact orientable almost product metric
space Mn satisfying (2.5), if an infinitesimal conformal transformation
leaves at the same time Fί invariant, then it is an isometry.

Proof. It is known that

(5.8)

Substitute (5.8) and (5.4) in (5.2) we have

(5.9) FΓglnFm^υ gln

From £fυ gln = Fιvn + Fnvt = 2φglnf we have F{£fv gln = 2φtgln. Sub-
stitute this formula into (5.9) we have

(5.10) FTFJX vι - φ<Fl = 0 .
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But as Φ = (lln)Ftv
ι and & = (llrήFiFμ1, the above equation is written

as

(5.11) (FT - -WW*^ - 0 .

From (5.11) we can get the proof of proposition 5.2 just as in the
proof of Proposition 5.1.

PROPOSITION 5.3. In an almost product metric space Mn satisfying
(2.5) we have

(5.12) (F^WJF?) ^H-Ry

where R3l = Rh

hjι, R - g«RJl9 H3i = Rh3iιF
ιh and B= F^H3i.

Proof. Contract with h, k in the following well-known formula

(5.13) VkV,F\ - VsVkFi - RtnF\ - RlSiFΐ ,

and then make use of (2.5) we have

(5.14) VιVjF\ = RόιFl - H3i .

Differentiate FjiFih = δ{ with Fjf then we have

(5.15) F^ΨjFih = 0

by (2.5). From (5.15) we have

{VhF^){VάFt) = -F»(VKVSF})

- -F»(RsιFl - H5i) by (5.14)

= H-R
as FlFji = gιj.

PROPOSITION 5.4. In an almost product metric space Mn satisfying
(1.7) the relation H ^ R holds. The equality holds if and only if the
space satisfies F{F} — 0.

Proof. By (1.7) we have

(5.16) (FhF^)(FjFih) - -(FhFn(?iFhJ + VhFώ .

From which we have

2(FhFji)(FjFih) = -(VhF*ι){FκFH) ^ 0 .

Then Proposition 5.4 follows.

REMARK 5.1. Propositions in this section are analogues of some
theorems of Koto [5].
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