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l Introduction* Let A be an arbitrary set of positive integers
(finite or infinite) other than the empty set or the set consisting of the
single element unity. Let p(n) = PΛ(n) denote the number of parti-
tions of the integer n into parts taken from the set A, repetitions
being allowed. Generally, for any integer k we define p{k)(n) = p{2](n)
by the formal power series relation

(1) /*(*) = Σ P{k)(n)X* = (1 - Xf ± p(n)X«

= (l - xy π (i - XT1.
aβΛ

Thus p{k)(n) is the fcth difference of p{n) if k > 0, p(n) itself if k = 0,
and the (—k)th order summatory function of p(n) if k < 0. P. T.
Bateman and P. Erdδs proved (see [1]) that p{k)(n) is positive for all
sufficiently large positive integer n if and only if A has the following
property which is denoted by Pk: There are more than k elements in
A, and if we remove an arbitrary subset of k elements in A, the
remaining elements have greatest common divisor unity. When k is
negative we agree that any set A has property Pk. Further, they
conjectured that if A has property Pk then

(2) p{k+l)(n)lp{k)(n) - O(n~112)

for an arbitrary k.
Since for a finite set A which has property Pk we know that

p<k+1)(n)lp{k)(ri) = O(Xln) (see [1])

i.e., this conjecture is true for such a set A we need only to consider
when A is an infinite set.

The purpose of this paper is to study the asymptotic behavior
of the ratio p{k+1)(n)lp{k)(n) under rather strong restrictions on the
regularity of the sequence ax < a2 < α3 < formed by writing the
elements of A in increasing order. Our restrictions are those used
by Roth and Szekeres in [7], namely:

(I)
log u
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where n(u) = Σ 1 and 0 < a ^ 1, and

(II) (log m)-1 inf | Σ 11 βas 1121 -> oo a s m - o o ,

where | | $ | | denotes the distance of x from the nearest integer and
the lower bound is taken over those β satisfying (2αm)~1 < β ^ 1/2.

The assumption (I) is a smoothness assumption on the growth of
the counting function of the set A, while (II) is an arithmetical con-
dition implying Pk for every k. Roth and Szekeres showed that many
frequently occurring sets have these two properties. Under these
conditions we shall show that

(3) P™(n)lpM(n) ~ σn 9

where σn is defined as the unique solution of

n = Σ α(eσ"α - I ) " 1 .
a6A

Actually this result follows from the arguments of Roth and
Szekeres [7], but we intend to give a direct proof using Hayman's
method [4]. By a slight modification in the argument used in our
proof one can obtain

(3*) p*(*+1)(n)/p*(W(n) ~ σ* (see [7, p. 246]) ,

where p*(ri) — p*(ri) denotes the number of partitions of n into distinct
parts taken from the set A and p*{k)(ri) is defined by

fϊ(X) = Σ P*{k)(n)X« - (1 - Xf Σ P*(n)X« = (1 - Xf Π (1 + Xa) ,
%=0 n=0 aβΛ

and where σ* is defined by n = Σ α e ^ ί ^ +1)""1. Probably (3) and (3*)
hold under much weaker conditions than (I) and (II), but we have
been unable to make much progress in this direction.

Furthermore, if we replace (I) by the following more stringent
condition:

(I*) n(u) ~ u*L(u) as u —> co ,

where 0 < a ^ 1 and L is a slowly oscillating function in the sense
of Karamata [5], then we shall have

(4) p{k+1)(n)lp{k)(n) - ^ ~ 1 / ( 1 + α ) L 1 ( t ι ) asw-«,

where Lx is a slowly oscillating function related to L. This relation
can be expressed in term of de Bruijn's concept of conjugate slowly
oscillating function [2].
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In any event we can derive under these conditions the Bateman-
Erdos conjecture from (3) or (4), since σn g 7r(6w)~~1/2. See the final
section of the paper.

REMARK. An example of a set A of positive integers having prop-
erty Pk for every k but not satisfying (II) is the following: Let A
include all even numbers but very few odd numbers, say only odd
numbers of the form 44ίl + 1, where n is a positive integer. Then for
x > e the number of odd numbers in A not exceeding x is less than
log log x. Hence for m ^ 3 we have

m || i ||2

Σ —a3 — one-forth of the number of odd integers
among al9 α2, α3, , αw.

g — log log am4

^ -i- log log 2m ,
4

so that

(log m)-1 inf J Σ II — aX\ -> 0 asm-^+ω,
U = i II 2 IIJ

A similar example could be constructed by taking the multiples of
any prime p and a very thin set of integers not divisible by p.

2. Outline of proof of (3), Let s = σ + it. Then our function

is analytic in σ > 0. Define a function ^(s) as that branch of \ogfk(e~s)
given by the formula

φk(s) = k log (1 - e-°) - Σ log (1 - β- ) ,

where each term is defined by the principal branch of the logarithm.
To this function fk(e~~s) we shall apply the following lemma, due to
Hayman [4], which is the main tool of this paper.

LEMMA 1. Suppose that F(s) — Σ~=o(L0~8?ι converges for Res —
σ > 0 and F(σ) > 0 for all sufficiently small positive σ. Define
<ln — 0 for n < 0. Suppose F(s) satisfies the following three con-
ditions for some δ(σ), 0 < d(σ) < π:

(a) Φ"{σ) -> + cχ5 as σ — 0 ,

where φ(σ) = log F(σ) ,
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(b) F(σ + it) ~ F(σ)B**Φ'i<r)-<*ι*)Φ"to as σ-*0

uniformly for \ t | ^ d(σ), and
( c ) F(σ + it) = o(ί»)/^"(σ) 1 / 2 as σ—• 0

uniformly for δ(σ) ^\t\ ^π.
Then we have uniformly for all n

{2πφ"(σ)y

as σ —> 0.
We shall prove later that our function fk(e~8) satisfies (a), (b) and

(c) for δ(σ) = σ1+{2alδ). Thus we will have uniformly for all n

as σ —> 0. Denote by σn the unique root of

( 6 ) φ'Q(σ) + n = 0 .

By (11) below this exists because φ[(σ) goes monotonically from 0 to
— oo when σ goes from +oo to 0 through positive values. Then
from (5)

^/(gj Y/2

I P L 2^'(^J 2#ί'+1(σJ J

as ^ —> oo.
We shall show in the next section that

( 8 ) Φϊ+i(σn) = Λ'(σΛ)(l + o(l)) as tι - co i.e., as σn — 0

and

( 9 ) (φ'k(σn) - Φ[{σ)f - o(Φ'ί(σn)) as n - oo .

Then from (7)

V = (1 - β~σw)(l + o(D) - σ.(l + o(l)) as n - oo .
)

3. Proof that ^"(σ) ~> oo as σ —> 0 and proof of (8) and (9).
From

= log {(l - e-*y π (i - e—)-1
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we have

L Λ—c no—**""

φ'k(σ) = fce Σ _ ,
(11)

(1 - e-σα)2

Since condition (I) implies that A is infinite, we have

aφ»(σ\ = _ fcβ-0" y / y
(1 - β-) 2 β-ll V 1 + e - + . . . + e-^'V ) (1 -

> iΛ

 e~~* -ττf-fe + Σ β-° (α-1)N) — + co as (7 — 0 ,
( I — e"^) 2 V aβA /

so that (a) holds. And (8) is immediate since

and since

ίΛ ^ ^ - o\ *~* J - k + Σ β " ' ^ ) \ = o(ΦΪ(σ)) as σ -> 0
(1 — β ) I (1 — e~°j2 V αei

Also from (11)

(Φu(σ) - ΦΌ(σ)Y = —'-

and so by (12)

(Φ'k(σ) - Φ[{σ)f , Ve-

as σ —> 0. Hence (9) holds.

4. Proof of (b) for

4.1. Firs t we obtain a result for j ί ( ^ σ/4 and then specialize
it to obtain (b). For | z — σ \ ̂  σjA and tr sufficiently small we have
for some constant B

(13) I Φ'i(z) I < B

For
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a2e'za kerz

(1 - e~za)2 (1 - e~zY

aβA j=l

Σ «2 Σ ie- ( Λ " ) o i + I k I Σ iβ
«€Λ 3=1 3=1

2|

for a constant

and

I Φ'ί{z) I ̂  Bφ'HRe z) ^ Bφ'l(hj) ,

since (3/4)σ ^ i?e 2 ίS (5/4)σ and ί̂ "(σ) is monotonically decreasing for
sufficiently small σ (by an argument like those of the preceding section).

Thus we have a power series development

Φ'ί(z) = Σ °Λz - σy ,

where by Cauchy's inequality and (13)

z — σ I ^

Now we integrate both sides of the above power series and we have

Φ'M = Φ'k(σ) + 4Σ 4τ(»=o n +1

Since c0 = 95"(σ), by integrating again we have

(14)
Φk{z) = φk(σ) + (z- σ)Φ'k(σ) + Mz - σ)ψk'(σ)

+ % + l)(n + 2)

Now we have for \z — σ\ ^ σ/4, n^l,

{z - σ)

cn(z - σ) |«+2 ^ - σ |κ + 3

σ/4

We now specialize the above by putting z = s = σ + it with 111 g
σ/4. Then (14) gives
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losr/»(β-) = \ogfk(e-") + itφ'k(σ) - —tψ^σ) + Rk(β) ,

where

β ) l ^
σ/4 s=i (» + l)(n + 2)

4.2. Now we use the condition (I) to estimate Φ"(σ) in terms of σ.
First

*0(<7) == log/0(e-) = log Σ (1 - e-™™)-1

Jαx 1 - β~σ
Σ

Let J ί^) = v/(βfl — 1). Then we have

J

oV) = \~K'(σu)n(u)du ,
Jo

Here K(v), —K'(v) and UL"(^) have positive limits as v->0 and are
all O(ve~v) as v —-> oo, Now for any positive ε we have from (I) that
if u0 is sufficiently large, then

n(u) ^ ^Q>+ε for % ̂  ^ 0 .

Here for suitable constants C and D, depending on ε, we have

φ»(σ) = [~K"(σu)un(u)du
Jo

[U°K"(σu)un{u)du
Jo

+ ^ ί ; + c\U°un(u)du

_ (7_(2+«+s)^1 + α + ε^a + ε)\°°κ{v)v-ι+a+*dv + D

Jo
= (α + ε)(l + a + ε)Γ(l + α + ε)ζ(l + a + ε)σ-(2+a+e) + D.
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Hence

φ»{σ) = O(σ-(2+*+2)) .

Since from (11)

Φ"(σ)~ΦΌ'(σ) as σ->0 r

φ'ζ{σ) = O(σ-»+*+ >) .

Returning to (15) we have now

I -B*(β) I = 0(<7-(3+"+ε))l ί I 3 .

Finally for | i | ^ d(σ) - σ1+(2^5) and for e < a/5 we have

I Bk(s) I = O(^(-/«-.) = o(l) as (7 > 0 ..

Thus (15) yields (b) for fk(e~s) with this value of δ(σ).

5. Proof of (c) for Λ(β—)• Let us define m to be such that

(19) am < 1/σ ^ α m + 1 .

In the sequel we shall express the magnitudes of φ'i(&) and fk{e~8)lfk{^~σY
in terms of m and we shall compare them with the help of the con-
dition (II).

Since from (I)

(20) l g f f i M ^ i2£« 1= lim H m ,
log m w-*°° log m ««-« log ^ w α

we have from (19)

(21) log CΓ"1 — — log m as σ —> 0 -

Thus it follows from (18) that

(22) log(Λ'(σ))1/a = O(logm).

Now consider

(23) w f IΛ(«~) 11 = l o g f U - β - Ί * π l - -̂° g I .
{ ' l Λ(β-) i t (l - β-o» άL 11 - β— I i

Here

log fli-^^in = 1 log

fc , „ f 1 - 2e- r cosί + e- 2 oΊ
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Hence for small a

I A; I log — - ^ 2 I A; I log
1 e~σ

Thus by (21) we have for any fixed k

<24) log 1 ) " β " ^ J * = O(log m)
(1 — e )

Now

log Π

~~2

2 αel I (1 - e-™)2 + 2e-<ra(l - cos to).
1 O/y—o-a

< - —Σ, — (1 - cos to)
2 »τ» (l + <rσay

< - JL 2 — — (1 - cos to)

- COB tαy) .
(1 + β-1)

Write ,& = e/(l + ef and ί = 2πβ. Then

- co&2πβaj)

Hence by the condition (II) for (2αw)"1 < /9 <; 1/2 we have

(25) — - — l o g i n , 1 " " β " < W } — - c o a s m - > o o .
r 7 log w lαΛ 11 - «-«-*'" I 1

From (19) m -> oo if and only if σ -> 0. Therefore from (22), (23),
(24) and (25) we conclude now that for πa~τ < 11 \ <£ TΓ we have
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= exp {log \fk( e~°JJ + log ( f t W ' 1 } ^ 0 as σ — 0

On the other hand, if δ(σ) 5Ξ | ί | g TTO"1, we have

1 = 11 \l(2π) ^ (2α m )- 1 .

Thus if ε is a given positive number less than α/(8α + 40), then by
(20) σ-1 ^ am+1 < mil+e)l» for sufficiently small σ and so

3=1 3=1 ° ' 3=1

^ ^ ( ( 7 ) 2 ( °
Jo

for sufficiently small σ, where the constants c± and c2 depend on ε.
Now from (21)

Σ I I / ^ 1 1 α/10
^ΞI > _ £ £ _> oo as σ -> 0 .

log m 2a log σ"1

As in the previous case this implies that in the case when δ(σ)l(2π)
^ I β I ̂  (2αm)-χ also (c) holds.

Thus we have completed the proof of (c) for δ(σ) ^ 11 \ ̂  π. Note
that the uniformity in (b) and (c) is clear from our proofs.

6» Application to the BatemanΈrdos conjecture* In this section
we shall estimate σn in (3) in term of n under each of the conditions.
(I) and (I*).

6.1. Under (I), for given any positive ε we have

u«-s ^ n(u) ^ u«+s for large u .

Recall that σn was defined by (6):

n + ΦΌ(σn) = 0 .

Now from (17)

ΦΌ(σ*) = \ K'{σnu)n{u)du .
Jo

Hence
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-\°°K'(σnu)u«-*du ^ n ^ -[°K'(σnu)u«+ζdu .

Jo Jo

Then a computation similar to (18) gives

(a - ε)Γ(l + a - ε)ζ(l + a - ε)cr~(1+«-ε)

g n ύ (a + ε)Γ(l + a +e)ζ(l + a + ε)<7-(1+«+ε) .

Thus we have

logn = — (1 + a + 0(1))log0*w as tι —> oo .

Hence

(26) σn = ^- 1 / [ 1 + α > + 0 ( 1 ) ] .

Furthermore, we have always n(u) S u and so

n ^ -.("ίΓ'ίσ^wdw -=• -—[°°K'(v)vdv
Jo σ ^ Jo

Hence always σn ^ (7r/i/"6")(l/τ/"w). Since we obtained (3) under the
conditions (I) and (II), under these conditions

(27)

for sufficiently large n. Of course this is weaker than (26) when
a < 1. However note that (27) implies the Bateman-Erdδs conjecture
under these conditions. In fact it would be reasonable to conjecture
that (27) holds for any set A of positive integers.

6.2. Under (I*) we have

n(u) — uaL{u) as u —> co (0 < a ^ 1) .

LEMMA 2. The condition (I*) implies

-Φ'o(σ) ~ αΓ(l + α)ζ(l + α)(l/<7)1+*L(l/σ)

as σ —* 0.

Proof. Suppose L is defined on [a, co), a > 0. Choose 0 < 7 < a.
Then by Karamata's representation theorem for slowly oscillating
function [3] there exists b ^ a such that

0 < n(u) < 2u«L(u) , u ^ b
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and

λ(±y < IΆ < 2( *Y far 0 2 « 2 6
2 Vw/ L(u) \uJ

Now from (17)

ΦΌ(σ) „

σ\b K\σu)n(u)du
_ JO

(28)

(vlσ)«L(vlσ)L(llσ)

= θ( 1 — ) + [g(v, σ)dv
\(llσ)1+«L(llσ)J J r v

where

(0 if v <bσ ,

g(v, σ) - n(t;/a) L(t;/σ) g , ( ^ if

l(/) 2L(^) L(l/) W

For fixed positive v

lim g{v, σ) = iί'^z?* .
σ--»0

Also if σ ^ 1/δ and v^zbσ we have

L(ljσ) [2V* if v ^ 1

And if v ^ 6(7,

0 < , n(Vίσ),\ < 2 .

Thus I g(v, σ) \ S h(v), where

(4| ϋΓ'(t ) |t;Λ-y if i; ^
( V ) '4 |E: '( i ;) |^ + Y if v ^ 1

Since

S oo

h(v)dv < co ,
0

the Lebesgue dominated convergence theorem gives
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lim[°g(v, σ)dv = [~K'(v)vadv = -aΓ(l + α)ζ(l + a) (see (18)) .
σ-*Q JO JO

Therefore from (28) we have since

S? aioΆiM = " aΓ(ί + a m + a) •
Thus we have now

n = -Φί(σ%) - aΓ(l + α)ζ(l + α)L(l/σJ(lK) 1 +^ as n

Hence

(29) <x. - w-1/(1+α){αΓ(l + α)ζ(l + α)L(lK)} i / ( 1 + α ) as w

To obtain (4) from (29) we introduce the following result, due to de
Bruijn [2],: If M(x) is a slowly oscillating function, then there exists
a slowly oscillating function Λf*, called the conjugate of M, such that

M*(xM(x))M(x) — 1 as a? -> co ,

M(xM*(x))M*(x) — 1 as a? — co .

Moreover Λf* is asymptotically uniquely determined.
Put

M(x) = {aΓ(l

Then

M*(M(llσn)llσn)M(llσn) -> 1 as n — co .

But since from (29)

M*(M(llσn)llσn) - M*(^1/(1+α)) ,

we have

M*(^1/(1+Ωί))M(l/σJ — 1 as n — co .

Thus we have from (29)

σn - ^-i/α+^M*^^^)" 1 as ^ — co .

Since by the property of a slowly oscillating function M*(nini+a))"1 is
a slowly oscillating function of n, by letting

we obtain (4) from (3) and (29).
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Note that

lim sup Lx(x) = {aΓ(l + α)ζ(l + a) lim sup L(x)}ll{1+a)

and similarly for lim inf. This remark gives (27) from (4), but only
under the present more stringent conditions.
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