ON THE RELATIVE GROWTH OF DIFFERENCES
OF PARTITION FUNCTIONS

Hwa S. HAun

1. Introduction. Let A be an arbitrary set of positive integers
(finite or infinite) other than the empty set or the set consisting of the
single element unity. Let p(n) = P,(n) denote the number of parti-
tions of the integer n into parts taken from the set A, repetitions
being allowed. Generally, for any integer k& we define p*(n) = pi¥'(n)
by the formal power series relation

oo

(1) fulw) = S pPmX" = (L - X)* 3, pw) X"

n=0

=1 - X)"GI€IA 1—X9".

Thus p*(n) is the kth difference of p(n) if & > 0, p(n) itself if &k = 0,
and the (—k)th order summatory function of p(n) if k< 0. P. T.
Bateman and P. Erdos proved (see [1]) that »*(n) is positive for all
sufficiently large positive integer % if and only if A has the following
property which is denoted by P,: There are more than k elements in
A, and if we remove an arbitrary subset of k elements in A, the
remaining elements have greatest common divisor unity. When k is
negative we agree that any set A has property P,. Further, they
conjectured that if A has property P, then

(2) P[0 = O™
for an arbitrary k.
Since for a finite set A which has property P, we know that

pEP(m)[pF(n) = Ofn)  (see [1])

i.e., this conjecture is true for such a set A we need only to consider
when A is an infinite set.

The purpose of this paper is to study the asymptotic behavior
of the ratio p“*+Y(n)/p*(n) under rather strong restrictions on the
regularity of the sequence a, < a, < a; < -+ formed by writing the
elements of A in increasing order. Our restrictions are those used
by Roth and Szekeres in [7], namely:

. log m(u) _
I lim —=—"2 =«
() pu log u
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where n(u) = 2}41 and 0 < a <1, and

asu

(I (og )~ inf {3 || 6, I} — oo as m— oo,

where ||« || denotes the distance of & from the nearest integer and
the lower bound is taken over those B satisfying (2¢.)* < 8 = 1/2.

The assumption (I) is a smoothness assumption on the growth of
the counting function of the set A, while (II) is an arithmetical con-
dition implying P, for every k. Roth and Szekeres showed that many
frequently occurring sets have these two properties. Under these
conditions we shall show that

(3) p*(n)[p*(n) ~ 0, ,
where o, is defined as the unique solution of

n =3, a(en* — 1),
a€4d
Actually this result follows from the arguments of Roth and
Szekeres [7], but we intend to give a direct proof using Hayman’s
method [4]. By a slight modification in the argument used in our
proof one can obtain

(3% p* N (n)[p* P (n) ~ 0% (see [7, p. 246)),

where p*(n) = p%(n) denotes the number of partitions of » into distinct
parts taken from the set A and p**(n) is defined by

£1X) =5 pPmxr = 1 - X S prmXt =1 - XL+ X9,

and where o} is defined by n = 3 ,c4a(e”* + 1)~*. Probably (3) and (3*)
hold under much weaker conditions than (I) and (II), but we have
been unable to make much progress in this direction.

Furthermore, if we replace (I) by the following more stringent
condition:

I n(w) ~ u”L(u) as 4 — oo,

where 0 < @ =1 and L is a slowly oscillating function in the sense
of Karamata [5], then we shall have

( 4) p<k+1)(,n) /p“"(n) ~ PNt Ll(’n) as N — o,

where L, is a slowly oscillating function related to L. This relation
can be expressed in term of de Bruijn’s concept of conjugate slowly
oscillating function [2].
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In any event we can derive under these conditions the Bateman-
Erdos conjecture from (8) or (4), since g, < m(6n)"2. See the final
section of the paper.

REMARK. An example of a set A of positive integers having prop-
erty P, for every k but not satisfying (II) is the following: Let A
include all even numbers but very few odd numbers, say only odd
numbers of the form 4*" + 1, where » is a positive integer. Then for
% > e the number of odd numbers in A not exceeding « is less than
log log . Hence for m = 3 we have

by

j=1

2
| = one-forth of the number of odd integers
among @, Ay, Az, ***y Ay

e
< 1 log log a,,
4
1
= Y log log 2m ,

so that

(log m)~* inf {é “ —;—aj

2}——»0 as m— + oo,

A similar example could be constructed by taking the multiples of
any prime p and a very thin set of integers not divisible by ».

2. Outline of proof of (3). Let s =0 + 4t, Then our function
fule) = 3 p (e

is analytic in ¢ > 0. Define a function ¢,(s) as that branch of log f.(¢~*)
given by the formula

$:(8) = klog (1 —e™) —aé log (1 —e*),

where each term is defined by the principal branch of the logarithm.
To this function f.(¢~*) we shall apply the following lemma, due to
Hayman [4], which is the main tool of this paper.

LemMMA 1. Suppose that F(s) = S,v_,q.6™"™ converges for Res =
o >0 and F(o) >0 for all sufficiently small positive o. Define
4, =0 for n<0. Suppose F(s) satisfies the following three con-
ditions for some 6(c), 0 < 0(0) < =

(a) ¢"(6)— + aso—0,
where #(o) = log F(o) ,



96 HWA S. HAHN

(b) F(o + it) ~ F(o)ei¢' @-@mé"(@ as 6 —0
uniformly for.|t| < 6(o), and
(c¢) F(o + it) = o(F'(0))/¢" (o)* as ¢ —0

uniformly for é(c) < |t| = .
Then we have uniformly for all n

e F0) _ (@) + 0
T g o {exs] 26"(0) ]+ o}

as d— 0.
We shall prove later that our function f,.(¢~°) satisfies (a), (b) and
(c) for d(0) = ¢'+®®  Thus we will have uniformly for all n

(ye-rn = __Ji(e™") _ (U9 +
@) o = e ] o)

as 0 — 0. Denote by o, the unique root of
(6) $i0) +n=0.

By (11) below this exists because ¢i(0) goes monotonically from 0 to

—o when o goes from +o to 0 through positive values. Then
from (5)

M) 4 _em( $1(0.) \?
s~ G ay)

, @40, — $0))  ($has(0.) — BT,

{exp [ 267(0,) 267 (0.) ]+ "(1)}

(7)

as n— oo,
We shall show in the next section that

(8) $r11(0,) = %(0,)(L + o(1)) as m— o« le., as 0,—0
and

(9) (81(0.) — 84(0))" = o($i(0.)) as m— oo .
Then from (7)

(10) pg()k(:)l()'f:;) =1 —e )1 + o)) = 0,(1 + o(1)) as n— oo .,

3. Proof that ¢,(0)— o as 60— 0 and proof of (8) and (9).
From

5,(0) = log fu(e™) = log {(1 — &) I (1 — &)}
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we have

so) = 2 3

e G4l — e ’

(1) ke %e
" _ a’e~°
P (0) - (1 — 6—0’)2 &Y (1 — e——aa)2 *

Since condition (I) implies that A is infinite, we have

” ke a P
0)= —7
12 #:(0) (1 — ey + a%" ( 14+e 4+ oo g"°““"”> 1 —e )?
S

so that (a) holds. And (8) is immediate since

" _ e 7 "
$i41(0) = —(1 oy + ¢i(0)

and since

e < _ e~ /— et _ . _
A—ey O{ T\ Ft 2" )>} = o(¢i(0)) as 6—0.

Also from (11)

, E . , - kze—m‘r
(91(0) — $i(0))* = _—‘*(1 s
and so by (12)
($4(0) — (@) _ e~ 0
;c’(o-) (—k + 624‘ e—a(a—1)>

as 0 — 0. Hence (9) holds.

4. Proof of (b) for f,(e™*).

4.1. First we obtain a result for [¢| =< 0/4 and then specialize
it to obtain (b). For |z — ¢ | =< /4 and o sufficiently small we have
for some constant B

(13) | 62(2) | < B¢;:(%o) .

For
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" ale*® ke
4 = —_—
H@ =3 T
=| S Sjei — kS je
e€4 j=1 =1
é Z az ije—(ﬂez)aj + Ikl i je—(Rez)J‘
a€Ad J=1 i=1
2| k |e—Re=
é ¢k(Re Z) + m
< B¢} (Re?) for a constant B

and
|9@) | < Bsi(Re2) = Bo(20)

since (3/4)0 < Rez < (5/4)c and ¢;/(c) is monotonically decreasing for
sufficiently small o (by an argument like those of the preceding section).
Thus we have a power series development

H@ =Sez—or, |z—o|Soj,

where by Cauchy’s inequality and (13)

(o/4)

Now we integrate both sides of the above power series and we have

$(e) = 64(0) + 5 —Lere — o)

Since ¢, = ¢;/(0), by integrating again we have

6:2) = $(0) + (2 — 0)BL(0) + %(z — 0)¢!(o)
(14) ) .
n (» — n+2
M2

Now we have for |z —0| = 0/4, n =1,

B¢;°,i B;c"i lz—0o
| e.(z — 0) ]nHé—(o_%%n—o-)—Lz_o-lnH < ¢ (4:-?4z o

We now specialize the above by putting z = s = ¢ + it with || =
o/4. Then (14) gives
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(15) log fi.(e™") = log fi(e™") + it$i(0) — %t%'(tf) + Ry(s),
where

B¢;j<%a>| tp . 2B¢;:(%f)l t[°

B s — R Ty o

4.2. Now we use the condition (I) to estimate ¢;(c) in terms of o.
First

3(0) = log fi(e=) = log 3 (1 — e=m)

(16) oo o o —0U
= Slog (1 — e=oom)=t = 3 aS " _du
m=1 m=1 Ja, 1 — 7
N R i — (" _n@
=0 = (a%,u l)du ago pro ldu .
Let K() = v/(¢® —1). Then we have
(o) = rMn(n)du ,
Jo u
a7 #(0) = | K oupm@an,
o (0) = SmK "(ou)yun(uydu .

Here K(v), —K'(v) and K" (v) have positive limits as v — 0 and are
all O(ve™) as v— o, Now for any positive ¢ we have from (I) that
if u, is sufficiently large, then

nu) < u*tt for w=u,.
Here for suitable constants C and D, depending on &, we have
(o) = SNK”(au)un(u)du
0
< S“K"(ou)uwﬂdu + S“"K"(au)un(u)du
0 0
< gmrete) SwK "(vyvretedy 4 Croun(u)du
(18) 0 ) 0
= o-erer {1+ @ + 9| K'()o=+*du} + D
0

= g—(2+w+e)(1 + o + 5)(“ + G)S“K(’l))v—l+w+sd?) + D
0
=@+ +a+el'(l+a+e)ll+a+eo+ £ D,
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Hence
5(0) = O(o+=+0) |
Since from (11)
¥(0) ~ 47 (o) as 0 =0,
$7(0) = O(g—@+ata) |
Returning to (15) we have now
| Bi(s) | = O(a=+e+=)[ ¢ o,
Finally for |¢] < 6(6) = o*+*® and for e < /5 we have
| Ry(s) | = O(a“/®~%) = o(1) as 0 — 0 ..
Thus (15) yields (b) for f.(e~*) with this value of 0(0).

5. Proof of (c) for fi(¢7*). Let us define m to be such that
(19) a, < 1llo < apit -

In the sequel we shall express the magnitudes of ¢ (o) and f,(e~*)/f.(e™°)
in terms of m and we shall compare them with the help of the con--
dition (II).

Since from (I)

(20) lim 102 @ntr _ ppy log @ _ pp logw 1
m-e  log m moo logm  we= log m(u) o
we have from (19)
1) log 0= ~ % log m as 0—0 .

Thus it follows from (18) that
(22) log (¢%(0))* = O(log m) .

Now consider

(23) log{.l_fk_(e:)_l} — log{ [1—e|* H 1 — o8 } .

e @ — ey aea [1 — ]
Here
[1—eoitfk] _ (1 — e~o-it)(1 — e~o+it)
l°g{ =) } - log{ 1= e }

1 —2¢cost + e
= log{ (1 — e—‘f)ﬂ } -
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Hence for small o

{2 Lo

= |k|log 1_2e_v <2|k|logo.

Thus by (21) we have for any fixed k&

[1—e ¥k _
(24) log =) = O(log m) .

Now

log H 1 — g—°@

a€A jl . e—ua—wta ]

— 1 (1 — e—-—u‘a)z
=1
2 "%“"‘ o8 (1 — e~ooita)(1 — e~ovtita)

_ 1 { 2¢77%1 — cos ta) }
= logl1l —
2, log (L — o) + 2671 — cos ta)

1 2¢~°%
2 aEwm
1 2e7@
2 oGle A + e}

(1 — costa)

(1 — cos ta)

e!
< = m Z(l — cos ta;) .

Write £ =¢/(1 + ¢)* and ¢ = 2r8. Then

—FK i (1 — cos 2nBa;)
k=1

Il

~Eg(1 — cos 27|| Ba ||)
= —Eglz sin’ || Ba; ||
< —88 3 || 6o,
Hence by the condition (II) for (2a,)™ < 8 < 1/2 we have

(25) __L__]og'{H._l___e.—_o_;__}—)—w as m— oo .
logm a€4 Il — g% a,ta[

From (19) m — « if and only if 0 — 0. Therefore from (22), (23),
(24) and (25) we conclude now that for 7ma;' < |t| <7 we have
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LFu@™) [ grriyyie
Fey

— exp {log %;;;' + log (8/(0))"2} — 0 as 0 —0 .

On the other hand, if d(c) < |t| < ma;’, we have
i(0)@2r) = |B] = [t]/@2r) = 2an)™" .
Thus if ¢ is a given positive number less than «/(8a + 40), then by

(20) 07 = apey < mMHR!® for sufficiently small ¢ and so

m m m
jzzl ]] Bag H2 — BZ Jz::'laz g 615(0-)2 jZ:'lJ@/w)(l—E)
o~ @l 1+8)

g 015(0-)25 x(z/w)(l—s)dx g 025(0-)20-—2[(1—5)/(1+e)]—[wl(1+s)]
0

g 620-—(a,/5)+4s[1+(w/5)] g czo-—wllo

for sufficiently small o, where the constants ¢, and ¢, depend on e.
Now from (21)

m
Bl e

log m 2clog o7t

— @ as 0 —0.

As in the previous case this implies that in the case when d(o)/(2x)
< |B| £ (2a,)™* also (c) holds. '

Thus we have completed the proof of (c) for d(¢) = |t| = w. Note
that the uniformity in (b) and (c) is clear from our proofs.

6. Application to the Bateman-Erdos conjecture. In this section
we shall estimate o, in (3) in term of n under each of the conditions

I) and (I*).
6.1. Under (I), for given any positive ¢ we have
u* = n(u) < uott for large u .
Recall that o, was defined by (6):
n + ¢i(0,) = 0.
Now from (17)

$(0,) = S:K (o, u)n(u)dw .

Hence
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—_SNK,(O‘”u)um—Edu =n=— ng'(O'nu)uwwdu .
0 0

Then a computation similar to (18) gives
(@—el'l+a—ell+ a— e, e
sns@+el' 1+ a+e)l(l + a+ o, et |
Thus we have
logn = —(1 + a + o(1))log o, as m— oo ,
Hence

(26) g, = pY+e+o)] .

Furthermore, we have always n(#) =< % and so

n < —SmK’(ann)udu = — 12 rK'(v)vdv
0 g, Jo

rexe - = % (see (18)) .

Hence always o, =< (7/V/ 6)(1/Vn). Since we obtained (3) under the
conditions (I) and (II), under these conditions

1
o

@7 () p® () < <~|/—7%' + 8)1—/1_—%_

for sufficiently large n. Of course this is weaker than (26) when
a < 1. However note that (27) implies the Bateman-Erdos conjecture
under these conditions. In fact it would be reasonable to conjecture
that (27) holds for any set A of positive integers.

6.2. Under (I*) we have
n(w) ~ u®L(u) asu—ow 0<a=sl).
LEMMA 2. The condition (I*) implies
—i(0) ~ al'(l + a)l(1 + a)(1/o)+*L(1/0)

as o — 0.

Proof. Suppose L is defined on [a, ), & > 0. Choose 0 < v < a.
Then by Karamata’s representation theorem for slowly oscillating
function [3] there exists b = a such that

0 < n(u) < 2u”L(u) , u=b
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and
1/z\™ o L) FAY
2<u> <L(u)<2(u> forezu=b.
Now from (17)
o) S:K’(au)n(u)du

{jo)y*L{je)  (1/o)**L(1/o)
UXZK'(au)n(u)du + g: K'(0)n(v]o)dv

(1/o)*L(1/o)
(28) S” i
n(u)du
= O\ —eer———— = __m(lo)L(v/o) N
( (1/0')1+¢L(1/O') ) + Sbo’ (,vlo.)wL(,v/O_)L(l/O_) K ('v)?) d’u,

_ 1 .

B 0<m) + Sog(v, o)dv
where

0 if v<bo,

9(v,0) =1 n(v[o)  L®[0) g a _
{(’0/0)*1&(@/0) L(1/o) K'(v)y if v=bo.

For fixed positive v

lim g(v, 0) = K'(v)v* .

Also if 0 £1/b and v = bo we have

L(v/o) 207 ifv=s1

L(1/o) 207 ifv=1.
And if v = bo,

0< D) __ -y

(v/0)*L(v[o) )
Thus |g(v, 0)| = h(v), where

4 K'(v) [v* ifv=<1

h(v) = {41 K'(v) [v**+ ifv=>1.

Since
rh('v)d'v < o,
0

the Lebesgue dominated convergence theorem gives
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limS:g(v, o)dv = S:K’(v)v“dv = —al'd +a)¢ +a) (see (18)).

a—0

Therefore from (28) we have since

1 — —
Aoz =V w0
$i(0) = —al'(l + &)1+ a).

WLy
Thus we have now
n = —¢yo,) ~al'(l + a)d + a)L(1/o,)1/o,)** as n— o,
Hence
(29) g, ~n M Nal'(1 + a)l(1 + a)L(1/o,)} !+ as n— oo ,

To obtain (4) from (29) we introduce the following result, due to de
Bruijn [2],: If M(x) is a slowly oscillating function, then there exists
a slowly oscillating function M*, called the conjugate of M, such that

M*(@xM (x)) M () — 1 a8 #— oo
M (o M*(x)) M*(x) — 1 a8 T — oo .
Moreover M* is asymptotically uniquely determined.
Put
M(x) = {al’'(Q + a)¢(1 + a)L(x)}/+ |
Then

M*(MQ1/o, )]0, )M(1]0,) — 1 as n— oo,
But since from (29)
M*(MQ1jo,)1]0,) ~ M* (@),
we have
M*(n'**)yM@1/o,) — 1 as m— oo,
Thus we have from (29)
0, ~ M JLx () -1 as n— oo .

Since by the property of a slowly oscillating function M*(n!*+*)* ig
a slowly oscillating function of %, by letting

Ly(n) = M*(w!*+)~
we obtain (4) from (3) and (29).
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Note that
lim sup Ly(x) = {al"(1 + a)¢(1 + @) lim sup L(x)}*+
Lo Zrtoo

and similarly for lim inf. This remark gives (27) from (4), but only
under the present more stringent conditions.
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