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1Φ Introduction* Let H1 be a symmetric operator in a Hubert
space ξ>i If H is a self-adjoint operator in a Hubert space ξ> such
that φi c ξ> and ifi c if, then i ϊ is called a self-adjoint extension of
.Hi. If ξ> θ £>i is finite-dimensional, then if is called a finite-dimension-
al self-adjoint extension of Hx. H is called a minimal self-adjoint
extension if neither ξ> θ Φi n°r any of its subspaces different from
{0} reduces H.

Suppose H is a self-adjoint extension of J5ΓX. If l£(λ) is the spectral
function of H and if Pλ is the operator in ξ> of orthogonal projection
on &, then the operator function ^(λ) = P^iX) restricted to ξ)x is
called a spectral function of i?i. We shall say that the spectral
function 23i(λ) is defined by the self-adjoint extension iϊ.

The family of spectral functions of Hλ is a cowvea? set, i.e., if
jEΊ'(λ) and E"(X) are spectral functions of Hx and if α and b are non-
negative real numbers such that a + b = 1, then aE((X) + bE"{X) is
also a spectral function oί Hx. A spectral function .EΊ(λ) of JEZi. is said
to be extremal if it is impossible to find two different spectral func-
tions .Eϊ(λ), E"(X) and positive real numbers a and 6, α + b = 1, such
that £i(λ) = αJKftλ) + 6JSΪ'(λ).

For further information we refer the reader to Achieser and
Glasmann [1].

M. A. Naimark [6] has shown that the finite-dimensional extensions
of a symmetric operator define extremal spectral functions of the
operator. Finite-dimensional extensions exist, however, only for sym-
metric operators with equal deficiency indices. In §4 of this paper
it is shown that self-adjoint extensions defined by the addition of
maximal symmetric operators determine extremal spectral functions
for a symmetric operator with unequal deficiency indices. The proof
uses the proposition of M. A. Naimark [6] that if E^X) is defined by
the minimal self-adjoint extension H, then E±(X) is extremal if and
only if every bounded self-adjoint operator A which commutes with
H and satisfies the condition {Af, g) = (/, g) for all /, g e φx is reduced
by ξ>i. Section 2 is devoted to a description of the self-adjoint ex-
tensions of a symmetric operator, and section 3 identifies some extremal
spectral functions of a symmetric operator with infinite equal deficiency
indices other than the ones defined by finite-dimensional extensions.
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The proof is based on the proposition of M. A. Naimark mentioned
above.

2» Self-adjoint extensions of a symmetric operator* The linear
operator H in the Hubert space φ is said to be Hermitian if (Hf, g) —
(/, Hg) for all /, g e ®(iϊ). H is symmetric if it is Hermitian and

ξ>. If if is a closed Hermitian operator and λ is a nonreal
number, we define the subspaces 9K(λ) and S(λ) by the equations 8(λ) =
ίft(H - λLE) and 2ft(λ) = ξ> θ S(λ). ( # stands for the identity operator.)
2JΪ(λ) is called a deficiency subspace of if and has the same dimensions
for all X in the same half-plane (upper or lower.) If m = dim 3Jl(λ),
w = dim 2Dt(λ), then (m, w) are called the deficiency indices of if (with
respect to λ). (We add "with respect to λ" because the ordered pair
(m, n) depends on the half-plane λ is in.) The operator J7(λ) =
(H — XE)(H — XE)'1 is an isometry mapping S(λ) onto S(λ). It is
called the Cayley transform of H. We have that H —
(\U(X) — XE)(U(X) — E)~\ Since X is a fixed non-real number in the
following, we shall write U in place of Z7(λ). For fixed X the corre-
spondence between a Hermitian operator and its Cayley transform is a
one-to-one inclusion-preserving correspondence between the set of closed
Hermitian operators H and the set of closed isometric operators U for
which (U — E)-1 exists. We note, finally, that a subspace §χ reduces
H if and only if ξ)x reduces U. In this circumstance, if ξ>2 = ξ> θ Φn
and if Hi and 27; are if and U respectively restricted to lgi9 then £7*
is the Cayley transform of Hi and H = fZi © jffa, Z7 = ϋί © ί7a

M. A. Naimark [5] has proved the following theorem which de-
scribes all self-adjoint extensions of a symmetric operator.

THEOREM 1. Let X be any fixed nonreal number. Let Hx be a
closed symmetric operator with deficiency indices {mlf n±) (with re-
spect to λ). Then every self-adjoint extension H of Hλ is obtained
as follows:

(1) Let H2 be a closed Hermitian operator in ξ>2 with deficiency
indices (m2, n2) (with respect to X) satisfying m1 + m2 = nx + n29

m2 ^ nλ.
(2) Let Ho = ί?ί © ίf2 in ξ) = ξ>x © § 2 . (Ho is therefore a closed

Hermitian operator with equal deficiency indices (mx + m2, nλ + n2),
and if Ui is the Cayley transform of Hi9 i — 0,1, 2, then Uo= Uλ φ t/i
Further, mo(X) = ^ ( λ ) φ 3Jί2(λ), 5Πlo(λ) = ^ ( λ ) © 2Jΐ2(λ)).

(3) Let V be an arbitrary isometric operator mapping 3Jio(λ)
onto 3Jlo(X) satisfying the condition <pe5Dΐ2(λ), VφeWl^X) implies

(4) Let ®(ff) be defined as all g = / + F?> — ?>, ^ e r β / e ®(J3"0),
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(5) If ge ®(i7), let Hg = HJ + Wφ - Xφ.
Then, H is self-adjoint extension in ξ> of Hlf and every self-

adjoint extension of Hλ is obtained in this way. We have that
®(H2) = ®(iί) n &.

We say that H2 and V of Theorem 1 define the self-adjoint ex-
tension H of Hx.

We can put the operator V into correspondence with a matrix
(Vik) of operators such that F n : Sΰlfa)->Sΰφ), F1 2: 2ft2(λ)->Sΰφ>),
F2 1: ^ ( λ ) - > 2Ji2(λ), F2 2: aJi2(λ)->2ίi2(λ). Then condition on F in (3)
of theorem 1 then becomes V12φ — 0 implies ψ = 0.

We now give a theorem which gives a more detailed analysis of
the structure of V.

THEOREM 2. Suppose that Wlfa), ^ ( λ ) , 2Jl2(λ), 9K2(λ) are Hilbert
spaces and that V is an isometry which maps SUli(λ) 0 2Ji2(λ) o^ίo
SDΊi(λ) φ 3OΪ2(λ). (λ here has nothing to do with the theorem and is
retained only as a notational convenience.) If V = {Vίk) in matrix
form, suppose that Vnφ = 0 implies that ψ = 0. jΓΛew the following
conclusions are true:

(1) If 3Jlr(λ) ί« defined by the equation 2ftr(λ) = [ ΐ Ά ( λ ) ] c (c
indicates closure of a set) and if -^(λ) is defined by ^ ( λ ) =
aKi(λ) θ aKτ(λ)f ίΛe^ 9ϊχ(λ) is the null space of V£. Thus, V1Ϊ is
one-to-one on 3Jir(λ). Further, 9Ji2(λ) = [F52Wr(λ)]β.

(2) F * = F " 1 maps 9ii(λ) o^ίo α subspaces of ίfft^X), which we
denote by ^ ( λ ) . ΓAw, %(λ) - F*9?1(λ), ^ ( λ ) - V%(X).

(3) / / 3Λr(λ) is cίe^^ecί 6y ίfeβ equation mτ(X) = ^ ( λ ) θ ^i(λ),
ίfce^ F mα^s 3Dΐr(λ) 0 9OΪ2(λ) isometrically onto 3Jϊf(λ) 0 aJi2(λ).

Ttos, VuSDlr^) c 3Kr(λ)
(4) F2 1 is one-to-one on Wlr(X)f and ^ ( λ ) is the null space of

F2 1. 2Ji2(λ)-[F215Πlr(λ)]c.
(5) F2ΐ is one-to-one on 2Jl2(λ) and a»f(λ) - [F2ί2Ji2(λ)]\
(6) 7/ mx = dim Wl^X), nx = dim SDl̂ X), m2 = dim 2Ji2(λ), n2 =

dim Sffla(λ), t&ew mx + m2 — nx + n%, m2 = dim 3Jl2(λ) = dim 9ϊt(λ) ^ tι l f

^ 2 = dim 9K2(λ) = dim 5Dlτ(λ) ^ mt.
(7) 7/ m2 = n2, mx = ^ .

Proof. (1) Since SRi(λ) is the orthogonal complement of the
closure of the range of F1 2, ^ ( λ ) is the null space of V£, and V£ is
one-to-one on ϊΰlr(X).

Suppose g e 2Ji2(λ) and sf is perpendicular to FίSD^™(λ). Then 0 =
(fff F:*/) = (F12fir,/) for all /e2Λr(λ). Therefore, F12gr = 0, and, since
F 1 2 is one-to-one, g = 0. Thus, M2(λ) - [ F^aJ
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(2) Since
'V*

V*%(\) = V£%(\) c ^ ( λ ) . Thus, F * = F - 1 maps ^ ( λ ) onto a sub-
space of SKxίλ).

(3) Clear, since %(X) = V%(X).
(4) We first show that F 2 1 is one-to-one on 9Kf(λ). Suppose

/ 6 2Rr(λ), ^21/ - 0. Then, F / = F n / + F 2 1 / = F n / 6 3Kr(λ). Let
9 = Vuf =_ Vf, so that f=V*g= V£g + Vίg. Since fe SDΐr(λ),
V£g e aKr(λ), F^gr e 2Jί2(λ), we have that F ^ = 0. By (1) and the
fact that g e 3ftr(λ), g = 0. Thus, / = F * # = 0, and our contention
is proved.

Since ^ ( λ ) = F3^(λ), F 2 1 / - 0 for all fe%(X). On the other
hand, we have just shown that F 2 1 is one-to-one on 3ftr(λ). It follows
that 9Zi(λ) is the null space of F2 1.

Because (F2ΐ)* = F 2 1 and the null space of (F2ΐ)* is the orthogonal
complement of the closure of the range of F2ΐ, we see that 50lr(λ) =

We claim finally that 5K2(λ) = [F2 1Mr(λ)]c. Suppose ge<m2(X) and
that g is perpendicular to V2Mifa). Therefore, 0 = (F 2 1 / , g) = (/, F2ί#)
for all /€5Uϊr(λ). Since Va?flr e 2Jlf(λ), it follows that F2ί# - 0. Thus,
V*g = V*g e SDΐ2(λ). Let / = F * ^ . Then, g = Vf = V12f + F 2 2 /, where
geWl2(X), V12femϊ(X), V22fem2(X). Hence, F 1 2 / - 0 a n d / = 0 . Whence,
g = Vf = 0. This proves our claim and completes the proof of (4).

(5) We have already shown in (4) that 2ftr(λ) = [ F2ί2Ji2(λ)]c. Since
we also showed in (4) that 9K2(λ) = [ F219Kr(λ)]c, it follows that the
null space of F2ί is empty and therefore F2ί is one-to-one on W12(X).

(6) m1 + m2 = nx + n2 follows from the fact that F maps
5Wi(λ) 0 2Ji2(λ) isometrically onto ^ ( λ ) 0 2Jϊ2(λ).

We claim now that dim 2JΪ2(λ) = dim 3Jir(λ). Let {φa} be a complete
orthonormal system in 2Jϊ2(λ). Then {V12φa} is a fundamental set in
WϊiX). (See Nagy [4] for definitions.) Therefore dim 5Uΐ2(λ) = P{φa} =
•P{ F12<^α} ^ dim 5ϋlr(λ), where P stands for cardinality. Using V£ and
an analogous argument, we obtain that dim SWf(λ) ^ dim 5Ka(λ). Thus,
dim 5K2(λ) = dim 2Kr(λ), and m2 = dim 2Ji2(λ) = dim 9Wr(λ) ^ wlβ Simi-
larly, ^ 2 = dim 3Ji2(λ) = dim 50lf(λ) ^ m1#

(7) The proof is clear from the inequalities in (6).
Theorem 2 is therefore completely proved.

THEOREM 3. (M. A. Naimark [5]). For each self-adjoint extension
H in ξ> of a symmetric operator H± in ξ>χ there exists a minimal
self-adjoint extension Ho in ξ>0 such that

(1) feC&Gfe
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(Δ) nx C ±1Q C ±1;

(3) Ho and H define the same spectral function of H±.

THEOREM 4. Suppose that Hx is a closed symmetric operator and
that H2 and V define a self-adjoint extension H of Hλ. Let Ho be
a self-adjoint extension of Hτ having the properties that fe c § 0 c ξ)
and Hj^c. ί f o c H. Then the following statements are true:

(1) If we write ξ>0 = fo 0 ξ>3, ξ> = ξ)0 0 ξ>4 = φ x 0 ξ>3 0 ξ>4, ξ>2 =
£>3 Θ §4> *^ β^ Ή" is reduced by ξ>4 αwcί H = Ho 0 ϋΓ4, where iί 4 is α
self-adjoint operator in ξ>4.

(2) ξ>4 c S2(λ) n 82(λ), SDΪ2(λ) c ξ>3, 2Ji2(λ) c ξ>3.
(3) H2 is reduced by ξ>4 and H2 = iί$ 0 iJ4, where H3 is a closed

Hermitian operator in ξ>3 m£/& ί/tβ same deficiency subspaces M2(λ),
3DΪ2(λ) a s i ϊ 2 .

(4) Ho is defined by H3 and V.
(5) H and Ho define the same spectral function of Hx.

Proof. (1) Since ^cH.ci H, we have that Z7X c 270 c ί7. Be-
cause 270 maps ξ>0 isometrically onto ξ)0 and 27 maps ξ> isometrically
onto £>, we have that 27 maps ξ>4 isometrically onto ξ)4. Thus, ξ>4

reduces 27, and hence U = 27O 0 Z74, H = H0Q) Hi9 where fl"4 is a self-
adjoint operator in ξ>4 with Cayley transform Z74. This proves (l)

(2) We claim first that ξ>4 c Sa(λ). Let fe § 4 . Since H4cz&2 =
5Bΐ2(λ) 0 82(λ), f = f'+ f", where / ' 6 3OΪ2(λ), / " e 82(λ). Hence, C7/ -
27/' + 27/" = Vf + 272/" - F 1 2 / ' + V22f + UJ", where 27/e ξ)4 c &,
F 1 2 / ' e SflWλ) c φ l f F 2 2 / ' G SDΪ2(λ) c ξ)2, i72/" G 82(λ) c ξ)2. Thus, F 1 2 / ' =
0, and therefore / ' = 0. It follows that / = / " G 8a(λ) and that
φ 4 c Sa(λ).

Since φ4 c ξ>2(λ), and since 27 maps ξ>4 isometrically onto § 4 and
S2(λ) isometrically onto S2(λ), we conclude that ξ>4 c Sa(λ). Hence,
φ 4 c Sa(λ) Π Sa(λ). It follows immediately that 2Ji2(λ) c ©8, 3Jί2(λ) c φ 3 .
(2) is therefore completely proved.

(3) Because !72 = 27 on S2(λ), we see that i72 maps ξ>4 isometrically
onto ξ)4. We know, however, that !72 maps S2(λ) isometrically onto
•Sa(λ). It follows that ξ>4 reduces 272. Thus, 272 = 273 0 U4, where 273

maps Sa(λ) θ £>4 isometrically onto Sa(λ) θ &*> a n ( i H2 = H3ξ& H4, where
H3 is a closed Hermitian operator in ©8 with Cayley transform 273.
Noting that ξ>3 = 5»ί2(λ) 0 [82(λ) Q φ j = 9Ji2(λ) 0 [82(λ) θ ©J, we see
that H3 has deficiency subspaces 2Jl2(λ), 3K2(λ). This proves (3).

(4) By Theorem 1, H3 and V define a self-ad joint extension H{
of ί/i in φ0 = Φi ® Φs If C/Q' is the Cayley transform of HZ, then
J7O' = UΊ = 27 on Si(X), 27O' = F = 27 on 2Jϊi(λ) 0 5Πί2(λ), 27O' = 273 = 27

.on 8a(λ) θ Φ4. It follows that Ui = 27 on & 0 § 3 = ξ>0. But since
.Z70 c 27, 27O = U on ξ)0, hence, 270 = 270', and therefore Ho = iϊ0'. This
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proves (4).
(5) As we have shown, H= i ϊ 0 Θ H,. Thus, E(X) = E0(X) © E4(X),

and therefore E(X)f = £Ό(λ)/ for all / e & . If P is the operator of
orthogonal projection of £> onto φ x and if Po is the operator of orthogo-
nal projection of ξ>0 onto &, P # ( λ ) / = PE0(X)f = P0EQ(X)f for all / e &,
so that £Γ and JBΓ0 define the same spectral function of JHi. This proves
(5), and the proof of theorem 4 is completed.

3» Extremal spectral functions of a symmetric operator with equal
deficiency indices*

THEOREM 5. Let H be a self-adjoint extension of the closed
symmetric operator Hx. Suppose that H is defined by H2 and V.
Then the following statements are equivalent:

(1) ®(iT2)-{0}.
(2) 3Ji2(λ) = 2JΪ2(λ) - &.
(3) ®(#) Π £ 2 - {0}.

Proof. That (1) implies (2) is clear from the definition of 2Ji2(λ)
and 3JΪ2(λ). Suppose, on the other hand, that 2tt2(λ) = 2ft2(λ) = ξ>2.
Then, $Ϊ(H2- XE) = 3t(iϊ2 - XE) = {0}. If / e ®(iϊ2), H2f - λ/ = 0
and JBΓa/ — λ/ = 0. Subtracting the first equation from the second,
(λ - X)f = 0, and therefore / = 0. Thus, ®(H2) = {0}, and we have
proved that (2) implies (1).

By Theorem 1, ®(iϊ2) = ®(if) Π €>2, so that (1) and (3) are clearly
equivalent.

THEOREM 6. Let Hx be a closed symmetric operator. Suppose
that H is a self-adjoint extension of Hx defined by H2 and V. If
S)(Jϊ2) = {0}, the following statements are true:

(1) mx — nlf i.e., the deficiency indices of Hx are equal.
(2) H is minimal.
(3) The spectral function E^X) of Hλ defined by H is extremal*

Proof. (1) By Theorem 5, ®(iϊ2) = {0} implies that m2 = n%.
By theorem 2, (7), m1 = nx.

(2) By Theorem 5, ®(ίf2) = {0} implies that 3Ji2(λ) = 2Jί2(λ) = ξ)2.
Hence, S2(λ) = Sa(λ) = {0}. It follows from Theorem 3 and Theorem
4, (2), that H is minimal.

(3) Let A be any bounded operator in φ having a matrix repre-
sentation,

E B

J5* C
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where E is the identity in &, B maps ξ>2 into $u C maps ξ>2 into ξ>2,
and C is self-ad joint. Suppose that A commutes with H. We shall
show that this implies that B = 0. By the proposition of M. A.
Naimark [6] mentioned in the introduction, then, it follows that the
spectral function E2(X) defined by H is extremal.

Since A commutes with H, it commutes with the Cayley transform
U of H. If we represent Z7asa matrix, U~ (Ujk), where Ujk maps
ίgfc into §>,•, then the fact that A commutes with U implies that
BU21 = C/12JB*. Taking adjoints, we also_have that U£B* = BUS.
We observe, further, that U= V on ^ ( λ ) © 5K2(λ) and that *7* =
C/-1 = F - 1 = F * on SD ί̂λ) φ 90ΐ2(λ).

Using the equation SϋiJ = tfa?£*, the fact that 5Bΐ2(λ) = ξ>2, and Theo-
rem 2, we obtain that B V#Dlr(λ) = BE723Rr(λ) = O2B*aKτ(λ)c O2& ==
t/ΪSWjiίλ) - F2ίaJί2(λ) c ^ ( λ ) . Since by Theorem 2 F^2Kr(λ) is dense
in M2(λ) = ξ)2 and since B is bounded, it follows that B&2 c SJί^λ).

Similarly, using the equation BU2l = U12B*, we obtain that
BV2Mϊ&) = 5C/215Kr(λ) = C/125*90ΐr(λ) c Z712€>2 = ?7122K2(λ) = F122Jί2(λ) c
SΛxίλ), and therefore B&2 c ^ ( λ ) .

Thus, B%2 c ^ ( λ ) Π ̂ ( λ ) . But mjλ) Π SD ί̂λ) - {0}, because 3Kx(λ)
and ^ ( λ ) are the deficiency subspaces of a symmetric operator. Hence,
B = 0. This complete the proof of Theorem 6.

By use of a somewhat less general form of Theorem 6, M. A. Nai-
mark [6] has shown that every finite-dimensional extension H of a closed
symmetric operator Ήx defines an extremal spectral function of H1#

THEOREM 7. If H is a finite-dimensional extension of a closed
symmetric operator Hly then Hλ must have equal deficiency indices.

Proof. Suppose that H is defined by ί£> and W Then H% is a
Hermitian operator in the finite-dimensional space ξ>2. Since U2 maps
S2(λ) isometrically onto S2(λ), it follows that dim Sa(λ) = dim Sa(λ).
Hence dim5Bΐ2(λ) = dim2Dΐ2(λ), i.e., m2 = n2. By Theorem 2, (7), mλ =
^ l β This proves Theorem 7.

4* Extremal spectral functions of a symmetric operator with
unequal deficiency indices. We first introduce the notion of a partial
isometry and some of the properties thereof. (See Murray and von
Neumann [3].) A bounded linear operator W in a Hubert space ξ> is
called a partial isometry if it maps a subspace G? isometrically onto
another subspace %, while it maps ξ > θ ? o n t o {0}. © is called the
initial set of TF, and % is called the ./m#£ set of TF. If TF is a partial
isometry, then the following statements hold:

(1) If P(Gr) is the operator of orthogonal projection on © and if
is the operator of orthogonal projection on g, then P(©) = W*W;
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= WW*.

(2) U* is a partial isometry with initial set g and final set @.
(3) As a mapping of % onto @, 17* is the inverse of U as a

mapping of <ϊ onto %.

THEOREM 8. Suppose that W is a partial isometry with initial
set 50ϊ and final set φ. Let 5ft = £> © 8Λ TΛβΛ, 50ί = 50Ϊ' 0 501",

re
(1) W maps 501" ίsometrically onto 50i";
(2) */ / e 5ft 0 SW, l im^. IF*/ = 0.

Proof. Let 50Ϊ* = (TF*)^, i = 0,1, 2, . Then each 50ί{ is a
subspace (i.e., a closed linear manifold), and the following statements
are true:

(a) 2Jl,c3R for i = l , 2, ••-. This is clear because W* is a
partial isometry with initial set φ and final set 50Ϊ.

(b) If / e 50ίB, where Λ ̂  0, then Wfe m^9 for 1 g p ^ », and
TΓ'/ = 0 for p > n. Proof: If / e 50iM, then / - (W*)ng for some g e 91.
Since WW* = E, W'f = (W*)-*g e 2»._Pf U ? § « . If p > n, W'f =
Wp~ng = 0.

(c) If / e 50li, i = 0,1, 2, , and if n is a positive integer, then
(W*)nfemi+n. Proof: If/fe50i {,/=(TF*)^, where ge5ft. Therefore,

(d) 50ii is perpendicular to 501,- if ΐ =̂ j. Proof: Suppose i < j,
and let / e 50lt , g e 501,-. Then there exists Λ e Sit and flrx e 9Ϊ such
that / = (TΓ*)'/!, g = (TF*) J Λ. Hence, (/, fir) = ((TF*)^, (ΪΓ*)^) =
(fu (ϊΓ y-'ffi) = 0, since / , e % (W*y~tg1 e SWy-, c SW.

Now let 50i' = Σ.~=i SPΐί Then 501' is a subspace of 50i. Let
50i" = 50i θ 2Ji' We shall show that W and 501" satisfy (1) and (2).

Since 50i = 501' 0 501" and φ = 5ft 0 501' 0 50i", and since W maps
50Ϊ isometrically onto ξ>, in order to prove (1) it is sufficient to show
that W maps 50ϊ' onto 5ft050i\ Suppose feWl'. Then, / = ΣΓ-iΛ
where / , e 501,, and Wf = ΣΓ=X Wft. Because by (b) Wft e 501^^ we see
that T7/6 5ft050i'. Thus, W maps 501' into 5ftφ50i'. To show that
the map is onto, let g e 5ft 0 W. Then, g = ΣΓ=o/i, where / , e 50ϊ{.
If / = W *f = Σ T̂ */< e 50i', by (c). Further, Wf = WW *g = g. Hence,
W maps 2tt' onto 5ft φ 2ft'.

We now prove (2). Let /e5ft©50i'. Then, /=ΣΓ-βΛ, where
/, 6 50i{. By (b), W / = ΣΓ=o TF'Λ = ΣΓ-, W'fi. Hence, || TΓ'/1|2 =
ZT.,\\W>ftW = JZ-,\\ft\\\ Thus, lim^.| |TΓ'/| |* = 0. This proves
(2) and completes the proof of the theorem.

THEOREM 9. Let x be a fixed nonreal number. Suppose that Hx

is a closed symmetric operator in ξ>x with deficiency indices (m, n)
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(with respect to λ), and suppose that m Φ n. Let H be a self-adjoint
extension of Hλ defined by H2 and V, where H2 is a closed Hermitian
operator with deficiency indices (0, s), n + s = m, if m > n and
(s, 0), m + s = n, if m < n. Then the spectral function defined by
H is extremal.

Proof. Assume that m > n. The case m < n then follows by
interchanging the roles of λ and λ in Theorem 1 and defining H by
H2 and V*.

By Theorem 3 there exists a minimal self-adjoint extension Ho of
JHi such that fecfec ©, ^ d Hoa H, and Ho and i ϊ define the same
spectral function of Hx. By Theorem 4, iJ0 is defined by V and a
Hermitian operator H3 with the same deficiency subspaces as H2.
Since we can always consider Ho instead of H, it follows that without
loss of generality we can consider H to be a minimal self-adjoint
extension.

Since 2Ji2(λ) = {0} and S2(λ) = ξ>2, we have that if / e ξ>2,
Ufe22(X) c £>2. If we represent U as a matrix, U ~ (Ujk), where
Ujk maps φΛ into § i f then it follows that E712 = 0 on ξ)2. Further,
Uf — U22f for all /eξ) 2 , so that Ϊ722 maps ξ)2 isometrically onto S2(λ).
Z722 is thus a partial isometry in ξ>2 with initial set ξ)2 and final set
S2(λ), while U2t is a partial isometry with initial set S2(λ) and final
set ξ>2. We have that # = P(ξ)2) - C72*t722, while P(82(λ)) - ?722?72*.

Now let A be any bounded operator in ξ> with matrix representa-
tion

where E is the identity in fQu B maps ξ)2 into ίQu C maps ξ>2 into ξ)2,
and C is self-ad joint. Suppose that A commutes with H. We shall
show that this implies B = 0. Then by the proposition of M. A.
Naimark [6] mentioned in the introduction, it follows that the spectral
function jEΊ(λ) defined by H is extremal.

Since A commutes with JET, it commutes with the Cayley trans-
form U of H. This implies that BU21 = Z712J5* and U12 + BU22 =
UnB + U12C. Since Z712 = 0, these equations become BU21 = 0 and

U J B # On aJϊjXλ), ί7ai = F 2 1 and therefore BF^aJί^λ) =
= {0}. Becaese by Theorem 2, V.ffi^X) is dense in 2Jϊ2(λ),

= {0}, i.e., 5P(33l2(λ)) = 0. From the equation BU22 = UnB
we have that BP(22(X)) ^ BU22m = UnBU*. Adding £P(£2(λ)) -
UnBU£ with J5P(3Ji2(λ)) = 0, we obtain that B = UnBU£. By iterat-
ing this equation we see that B = U&B(U2t)

p for every positive integer
p. Since || C7n|| ̂  1, | | β / | | g \\B\\ ||(?72f)p/|| for each/eξ) 2 and each
positive integer p.
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By Theorem 8, S2(λ) = W 0 SJΪ", where U£ maps 2JΪ" isometrically
onto W, and if /e3Ji2(λ) Θ 2Λ', then l im^JKEβ)'/! ! = 0. B ^ t if
Z725 maps 2)ΐ" isometrically onto 2JΪ", then Z722 and therefore U maps
9JI" isometrically onto W. This means that 17 and therefore if is
reduced by W, a subspace of ξ>2. Since i ϊ is a minimal self-adjoint
extension of Hlf W = {0}. Hence, φ2 = 9JΪ2(λ) 0 2Ji', and thus if fe ξ>2,
limp_||(E72)*/|l = O. Since | | B / | | ^ | | B | | \\(U£)*f\\ for each / e &
and for every positive integer p, it follows that B = 0 on ξ>2. This
completes the proof of Theorem 9.

Since the operator H2 in Theorem 9 is a Hermitian operator with
deficiency indices (0, s) or (s, 0), it may seem that we are dealing with
a wider class of operators than the maximal symmetric operators.
That this is not so is shown by Theorem 10 below.

THEOREM 10. If H is a Hermitian operator with deficiency
indices (0, s) or (s, 0), then His a maximal symmetric operator. If
H is a Hermitian operator with deficiency indices (0, 0), then H is
a self-ad joint operator.

Proof. If H is a Hermitian operator and S3 = φ θ [®(#)]σ, then
sβ n S(λ) = {0}. (If heS3 Π S(λ), then h =\H- \E)g, Hence, 0 -
(fe, #) = (Hg, g) — X(g, g). Since (Hg, g) is real while λ is not, # = 0.,
This simple argument is due to M. A. KrasnoseΓskii [2, Lemma 2].>
If H has deficiency indices (0, β), 2Ji(λ) = {0} so that S3 c S(λ). Thus,
85 = {0} and i ϊ is symmetric. Similarly, H is symmetric if its de-
ficiency indices are (s, 0). It follows immediately that if H has de-
ficiency indices (0, 0), H is self-adjoint. Theorem 10 is proved.
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