EXTREMAL SPECTRAL FUNCTIONS OF
A SYMMETRIC OPERATOR

RicHARD C. GILBERT

1. Introduction. Let H, be a symmetric operator in a Hilbert
space .. If H is a self-adjoint operator in a Hilbert space  such
that ©,C © and H, C H, then H is called a self-adjoint extension of
H,. If $O 9, is finite-dimensional, then H is called a finite-dimension-
al self-adjoint extension of H,. H is called a minimal self-adjoint
extension if neither $ O , nor any of its subspaces different from
{0} reduces H.

Suppose H is a self-adjoint extension of H,. If E(\) is the spectral
function of H and if P, is the operator in © of orthogonal projection
on 9, then the operator function E,(\) = P,E(\) restricted to 9, is
called a spectral function of H,. We shall say that the spectral
function E,(\) is defined by the self-adjoint extension H.

The family of spectral functions of H,; is a convex set, i.e., if

Y(\) and E/'(\) are spectral functions of H, and if @ and b are non-
negative real numbers such that ¢ + b =1, then aE/(\) + bE/'(\) is
also a spectral function of H,. A spectral function E,(\) of H, is said
to be extremal if it is impossible to find two different spectral func-
tions E/(\), EY(\) and positive real numbers ¢ and b, @ + b = 1, such
that E.(\) = aE/(\) + bE!(\).

For further information we refer the reader to Achieser and
Glasmann [1].

M. A. Naimark [6] has shown that the finite-dimensional extensions
of a symmetric operator define extremal spectral functions of the
operator. Finite-dimensional extensions exist, however, only for sym-
metric operators with equal deficiency indices. In §4 of this paper
it is shown that self-adjoint extensions defined by the addition of
maximal symmetric operators determine extremal spectral functions
for a symmetric operator with unequal deficiency indices. The proof
uses the proposition of M. A. Naimark [6] that if E,(\) is defined by
the minimal self-adjoint extension H, then FE,(\) is extremal if and
only if every bounded self-adjoint operator A which commutes with
H and satisfies the condition (Af, 9) = (f, g) for all f, g€ 9, is reduced
by ©:.. Section 2 is devoted to a description of the self-adjoint ex-
tensions of a symmetric operator, and section 3 identifies some extremal
spectral functions of a symmetric operator with infinite equal deficiency
indices other than the ones defined by finite-dimensional extensions.
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The proof is based on the proposition of M. A. Naimark mentioned
above.

2. Self-adjoint extensions of a symmetric operator. The linear
operator H in the Hilbert space 9 is said to be Hermitian if (Hf, g) =
(f, Hg) for all f,9eD(H). H is symmetric if it is Hermitian and
DH) = 9. If His a closed Hermitian operator and X\ is a nonreal
number, we define the subspaces M(\) and €(\) by the equations €(\) =
R(H — AE) and M(\) = O L(\). (F stands for the identity operator.)
M(\) is called a deficiency subspace of H and has the same dimensions
for all A in the same half-plane (upper or lower.) If m = dim M),
n = dim M(\), then (m, n) are called the deficiency indices of H (with
respect to A). (We add “with respect to N’ because the ordered pair
(m, n) depends on the half-plane ) is in.) The operator U(\) =
(H — \E)(H — ME)™* is an isometry mapping £() onto &X). It is
called the Cayley transform of H. We have that H =
OWUMN) — AE)U(M) — E)™. Since \ is a fixed non-real number in the
following, we shall write U in place of U(N). For fixed A the corre-
spondence between a Hermitian operator and its Cayley transform is a
one-to-one inclusion-preserving correspondence between the set of closed
Hermitian operators H and the set of closed isometric operators U for
which (U — E)™* exists. We note, finally, that a subspace $, reduces
H if and only if , reduces U. In this circumstance, if 9, = 9O 9,
and if H; and U; are H and U respectively restricted to 9;, then U,
is the Cayley transform of H; and H=H,$ H, U= U, P U..

M. A. Naimark [5] has proved the following theorem which de-
scribes all self-adjoint extensions of a symmetric operator.

THEOREM 1. Let N be any fixed nonreal number. Let H, be a
closed symmetric operator with deficiency indices (my n,) (with re-
spect to N). Then every self-adjoint extension H of H, is obtained
as follows:

(1) Let H, be a closed Hermitian operator in 9, with deficiency
indices (m,, my) (with respect to \) satisfying m, + m, = n, + N,
my, = N,

(2) Let Ho=H,DH, in =99, (H, is therefore a closed
Hermitian operator with equal deficiency indices (m, + My, 1, + Ny),
and if U, is the Cayley transform of H;,, 1 = 0,1, 2, then U, = U, U..
Further, M(\) = M\ D DLV, W) = WO B D).

(8) Let V be an arbitrary isometric operator mapping WMy(X)
onto M,(\) satisfying the condition @e M), VoeM(\) implies
P =0,

(4) Let D(H) be defined asall g = f + Vo — @, where fe D(H,),
P € MWy(X).
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B) If geD(H), let Hg = H.f + ANV — Aop.

Then, H is self-adjoint extension in 9 of H, and every self-
adjoint extension of H, is obtained in this way. We have that
D(H,) = DH) N D,

We say that H, and V of Theorem 1 define the self-adjoint ex-
tension H of H,.

We can put the operator V into correspondence with a matrix
(V) of operators such that Vi: M(X)— M(ON), Vi D) — MO,
Va: L) — PLON), Ve M) — M,(\).  Then condition on V in (8)
of theorem 1 then becomes V,.,» = 0 implies @ = 0.

We now give a theorem which gives a more detailed analysis of
the structure of V.

THEOREM 2. Suppose that M, (\), WM(N), W(\), M(N) are Hilbert
spaces and that V is an isometry which maps M) D M,(X) onto
(V) D PL(N). (A here has nothing to do with the theorem and s
retained only as a notational convenience.) If V = (V) in matric
form, suppose that V,p = 0 implies that @ = 0. Then the following
conclusions are true:

Q) If Mr(\) is defined by the equation WM;(\) = [VLYLN)]° (¢
indicates closure of a set) and if N(\) is defined by ,(\) =
W) © M (N), then N(\) ts the null space of V. Thus, Vi s
one-to-one on My (\). Further, M(X) = [ VAT (V)]

(2) V*= V" maps N,(\) onto a subspaces of Wu(x), which we
denote by N.(XN). Thus, N,(X) = V*R(Q), (V) = VR®R).

B) If Mr(\) 1s defined by the equation Mr(Z) = W(X) © N(N),
then V maps Mr(\) @ M,(N) isometrically onto M (\) D M,(N).

Thus, Vo, Mr(x) < M (V).

4) V, is one-to-ome on My (X), and N(X) is the null space of
Vo TH0) = [V (V) )

(5) Vi is one-to-one on WM,(\) and Mr(N) = [ VEDLO)]C.

©) If m, = dimMN), n, = dim W,O), m, = dim MN), 7, =
dim M, (), then m, + m, = n, + N, My, = dim W,(N) = dim Mr(\) < n,,
n, = dim PV,(\) = dim W (X)) = my.

(7) If My = Ny, My = Ny.

Proof. (1) Since (1) is the orthogonal complement of the
closure of the range of Vi, (M) is the null space of Vi, and V} is
one-to-one on W (\).

Suppose g € M,(X) and g is perpendicular to Vi (\). Then 0 =
(9, Vif) = (Vyug, f) for all feM(X\). Therefore, V,0 = 0, and, since
V., is one-to-one, ¢ = 0. Thus, M,(}) = [VEIM (V).
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(2) Since

Vi Vi
V= ,
( Vi Vz’;‘f)

VA0 = ViEd(y) < W4(X). Thus, V* = V! maps N,(\) onto a sub-
space of WM, (N).

(8) Clear, since ®,(\) = VRN

(4) We first show that V, is one-to-one on M (X). Suppose
FfeMr(N), Vaf=0. Then, Vf= Vuf+ Vuf = VufeM(\). Let
g=Vuf=Vf, so that f= V*g= Viig + Vig. Since fe Mr(N),
Vige M (N), Vige My (N), we have that Viig =0. By (1) and the
fact that ge M (\), 9 = 0. Thus, f= V*g =0, and our contention
is proved.

Since N,(\) = VIN), Vouf =0 for all feN(X). On the other
hand, we have just shown that V, is one-to-one on M;(A). It follows
that N,(X) is the null space of V,,.

Because (V,5)* = V,, and the null space of (V;)* is the orthogonal
complement of the closure of the range of V., we see that My (}) =
[ Vi)

We claim finally that M,(\) = [ V.M, (M)]°. Suppose g € M,(\) and
that g is perpendicular to V,, M (}). Therefore, 0 = (V. f, 9) = (f, Vii9)
for all fe M7(A). Since V,ig e M7 (X), it follows that V;*g = 0. Thus,
V*g = VigeM,(\). Let f=V*g. Then, g= Vf= Vyf+ Vuf, where
g e WM\), Vi f e Mr(N), Viof € D&(N). Hence, Vi, f =0and f = 0. Whence,
g = Vf=0. This proves our claim and completes the proof of (4).

(5) We have already shown in (4) that M;(A) = [ VFI,(V)]°.  Since
we also showed in (4) that W,N\) = [V, V)], it follows that the
null space of V. is empty and therefore V. is one-to-one on WL(\).

®6) m,+ m,=mn, +n, follows from the fact that V maps
PL(N) D M,(N) isometrically onto M, (A) B M(N).

We claim now that dim 9,(\) = dim M;(\). Let {®,} be a complete
orthonormal system in 9M,(\). Then {V,®,} is a fundamental set in
Mr(\). (See Nagy [4] for definitions.) Therefore dim M,(\) = P{p,} =
P{V,»,} = dim M7 (\), where P stands for cardinality. Using V. and
an analogous argument, we obtain that dim MM;(\) = dim M,(X). Thus,
dim P,(\) = dim My (A), and m, = dim DL,(X) = dim My (\) < »,.  Simi-
larly, », = dim M,(A) = dim My (X) < m,.

(7) The proof is clear from the inequalities in (6).

Theorem 2 is therefore completely proved.

THEOREM 3. (M. A. Naimark [5]). For each self-adjoint extension
H in © of a symmetric operator H, in 9, there exists a minimal
self-adjoint extension H, in O, such that

1 £ c9;
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(2 H,CH,CH,
() H, and H define the same spectral function of H.

THEOREM 4. Suppose that H, is a closed symmetric operator and
that H, and V define a self-adjoint extension H of H,. Let H, be
a self-adjoint extension of H, having the properties that O, C D, C 9
and H,C H,C H. Then the following statements are true:

(1) If we write '@0: &31@@3, 592590@594: '@1@@3@@47 @z:
9: D 9., then H is reduced by 9, and H = H,P H, where H, is a
sel f-adjoint operator in 9,.

(2) D&M N LMY, MOV D, (V) C 9.

(8) H, is reduced by O, and H, = H,P H,, where H, is a closed
Hermitian operator in O, with the same deficiency subspaces M,(\),
M,(\) as H,.

(4) H, is defined by H, and V.

(6) H and H, define the same spectral function of H,.

Proof. (1) Since H, C H,C H, we have that U, c U,c U. Be-
cause U, maps 9, isometrically onto 9, and U maps O isometrically
onto , we have that U maps 9, isometrically onto ©,. Thus, 9,
reduces U, and hence U= U,Pp U,, H= H,P H, where H, is a self-
adjoint operator in 9, with Cayley transform U,. This proves (1).

(2) We claim first that 9, < 8(\). Let f€9,. Since H,C 9, =
W(N) D &), f=F"+f", where f'e M,(\), f"€L(X). Hence, Uf =
Uf' + Uf" = Vf' + Uf" = Vaf' + Vaf’' + Uf"”, where Uf €9, C 9,
Vif' e M(N) C Oy Vaof € Wu(N) C 9y Uof" € B(N) € .. Thus, Vi f' =
0, and therefore f’=0. It follows that f = f"e&(\) and that
< &0 }

Since D, < D(N), and since U maps O, isometrically onto O, and
2,(\) isometrically onto L,(\), we conclude that $,c 2,(\). Hence,
9. (V) N &), It follows immediately that M,(N) < 9y, M,(N) C D..
(2) is therefore completely proved.

(8) Because U, = U on Z,(\), we see that U, maps 9, isometrically
onto ©,. We know, however, that U, maps 2,(\) isometrically onto
2. It follows that 9, reduces U,. Thus, U, = U, U, where U,
maps 2,(\) © 9, isometrically onto ,(\) @ 9,, and H, = H, P H, where
H, is a closed Hermitian operator in &, with Cayley transform U,.
Noting that 9, = M\ D [0 © D] = THL() D [2.00) © D], we see
that H, has deficiency subspaces W,(}), M,(A). This proves (3).

(4) By Theorem 1, H, and V define a self-adjoint extension H;
of H in $,=9D D:.. If U/ is the Cayley transform of H], then
Uy=U=Uon &), Uy=V=U on MMNDMN), U =U,=TU
on &\ O .. It follows that U/ =U on . P D, =9,. But since
U,c U, U,=U on &, hence, U, = Uj, and therefore H, = H]. This



80 RICHARD C. GILBERT

proves (4).

(5) As we have shown, H = H,@ H,. Thus, E(\) = E,(\) D E),
and therefore E(\)f = E(\)f for all f€9,. If P is the operator of
orthogonal projection of  onto 9, and if P, is the operator of orthogo-
nal projection of 9, onto ©;,, PE(\)f = PE\)f = P,E\)f for all f€9,
so that H and H, define the same spectral function of H,. This proves
(5), and the proof of theorem 4 is completed.

3. Extremal spectral functions of a symmetric operator with equal
deficiency indices.

THEOREM 5. Let H be a self-adjoint extension of the closed
symmetric operator H,. Suppose that H is defined by H, and V.
Then the following statements are equivalent:

L) DH) = {0}.

2) M) = W(\) = Dse

(3) D(H) N, ={0}.

Proof. That (1) implies (2) is clear from the definition of M,(X\)
and M,(\). Suppose, on the other hand, that WM,\) = M(\) = D..
Then, R(H, — \E) = R(H, — XE) ={0}. If feDH,), Hf —rf=0
and H,f — Af =0. Subtracting the first equation from the second,
(A —N)f =0, and therefore f = 0. Thus, D(H,) = {0}, and we have
proved that (2) implies (1).

By Theorem 1, O(H,) = D(H) N ., so that (1) and (3) are clearly
equivalent.

THEOREM 6. Let H, be a closed symmetric operator. Suppose
that H is a self-adjoint extension of H, defined by H, and V. If
D(H,) = {0}, the following statements are true:

1) m, = n, i.e., the deficiency indices of H, are equal.

(2) H is minimal.

(8) The spectral function E,(\) of H, defined by H s extremal.

Proof. (1) By Theorem 5, D(H,) = {0} implies that m, = N,.
By. theorem 2, (7), m;, = n,.

(2) By Theorem 5, D(H,) = {0} implies that WM,(\) = M,(\) = D..
Hence, &) = &) = {0}. It follows from Theorem 3 and Theorem
4, (2), that H is minimal.

(8) Let A be any bounded operator in  having a matrix repre-

sentation,
E B
A~ ,
(B * C)
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where E is the identity in 9,, B maps 9, into $,, C maps 9, into 9,,
and C is self-adjoint. Suppose that A commutes with H. We shall
show that this implies that B =0. By the proposition of M. A.
Naimark [6] mentioned in the introduction, then, it follows that the
spectral function E,(\) defined by H is extremal,

Since A commutes with H, it commutes with the Cayley transform
U of H If we represent U as a matrix, U ~ (U,,), where U;, maps
. into 9;, then the fact that A commutes with U implies that
BU, = U,B*. Taking adjoints, we also have that UjB* = BU}.
We observe, further, that U= ¥V on M,\) D M,(X) and that U* =
U= V= TV* on M(O\) D M,(\).

Using the equation BU}} = U,f B*, the fact that M,(\) = 9,, and Theo-
rem 2, we obtain that BVIMIO\) = BUXMI\) = UB* M) Uik, =
UiM,(\) = Vadl,(\) € M(N). Since by Theorem 2 Vi () is dense
in M,(x) = 9, and since B is bounded, it follows that B9, < M.(X).

Similarly, using the equation BU, = U,B*, we obtain that
BV (N) = BUD (V) = UnB* W (V) € UnD: = Up,M,(R) = ViDL C
M,(\), and therefore BH, = I(\).

Thus, B9, < () N WM,(V). But M%) N M(V) = {0}, because W, (1)
and N, (\) are the deficiency subspaces of a symmetric operator. Hence,
B = 0. This complete the proof of Theorem 6.

By use of a somewhat less general form of Theorem 6, M. A. Nai-
mark [6] has shown that every finite-dimensional extension H of a closed
symmetric operator H, defines an extremal spectral function of H,.

THEOREM 7. If H is a finite-dimensional extension of a closed
symmetric operator H,, then H, must have equal deficiency indices.

Proof. Suppose that H is defined by H, and V. Then H, is a
Hermitian operator in the finite-dimensional space ©,. Since U, maps
2,(X) isometrically onto 2,(\), it follows that dim 2,X) = dim &,).
Hence dim M,(A) = dim M,(\), i.e., my = n,. By Theorem 2, (7), m, =
n,. This proves Theorem 7.

4, Extremal spectral functions of a symmetric operator with
unequal deficiency indices. We first introduce the notion of a partial
isometry and some of the properties thereof. (See Murray and von
Neumann [3].) A bounded linear operator W in a Hilbert space 9 is
called a partial isometry if it maps a subspace € isometrically onto
another subspace %, while it maps $ O € onto {0}. € is called the
initial set of W, and § is called the final set of W, If W is a partial
isometry, then the following statements hold:

(1) If P(€) is the operator of orthogonal projection on € and if
P(g¥) is the operator of orthogonal projection on &, then P(€) = W*W;
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P(®) = WW*.
(2) U* is a partial isometry with initial set § and final set ©.
(3) As a mapping of § onto &, U* is the inverse of U as a
mapping of & onto .

THEOREM 8. Suppose that W is a partial isometry with initial
set M and final set . Let N=9OM. Then, M =W P WM,
where

1) W maps M’ isometrically onto IM";

@2) if feNRBW, lim,... W2f = 0.

Proof. Let M; = (W*)R, 1=0,1,2, ---. Then each M, is a
subspace (i.e., a closed linear manifold), and the following statements
are true:

(@ MM for v=1,2,---. This is clear because W* is a
partial isometry with initial set $ and final set 9%.

(b) If feM,, where n =0, then W*feM,_, for 1 < p < n, and
W*f = 0 for » > n. Proof: If feI,, then f = (W*)"g for some g N.
Since WW* = E, Wof = (W*)*?geM,_, L=<p=sn. If p>n, Wof=
Wer—rg = 0.

() If feM;, ©=0,1,2,-.-, and if n is a positive integer, then
(W*)"f e M;1,. Proof: If FEWM,, f = (W*)ig, where geN. Therefore,
(W9f = (W*)t"g e M.,

(d) M; is perpendicular to M; if ¢+ j. Proof: Suppose i < j,
and let feM,;, gecM,;. Then there exists f1 e N and g, € N such
that f = (W*)fy, ¢ =(W*)g.. Hence, (f,9) = (W*)f, (W*)ig,) =
(f1, (W*)~°g,) = 0, since f,e R, (W*)g,e M;_, < M.

Now let W = X2, M;,. Then M is a subspace of M. Let
M’ =M WM. We shall show that I’ and M” satisfy (1) and (2).

Since M =M PM”’ and H=NP W BM”, and since W maps
M isometrically onto O, in order to prove (1) it is sufficient to show
that W maps I’ onto NP M. Suppose feM’. Then, f= .1
where f;€M;, and Wf = 32, Wf;. Because by (b) Wf,e M, ,, we see
that WfeRPW'. Thus, W maps M into NP M. To show that
the map is onEo, let geNP WM. Then, g=>%,f;, where f;eM,..
If f=W*f= ZO W*f.e W, by (c). Further, Wf = WW*g=g. Hence,
W maps 3 onto NP

: We now prove (2). Let feR@ M. Then, f= 2,f;, where
fieM,.. By (b), Wof =3z, Wof; = 32, W*fi. Hence, || W2f|*=

Lol WP = 2 (| fi]. Thus, lim, .. || W?f|*=0. This proves
(2) and completes the proof of the theorem.,

THEOREM 9. Let )\ be a fixed nonreal number. Suppose that H,
i8 a closed symmetric operator in O, with deficiency indices (m, n)
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(with respect to \), and suppose that m += n. Let H be a self-adjoint
extension of H, defined by H, and V, where H, 18 a closed Hermitian
operator with deficiency indices (0,8), n +s8=m, tf m>mn and
(5,0), m +s=m, if m <n. Then the spectral function defined by
H is extremal.

Proof. Assume that m > n. The case m < then follows by
interchanging the roles of X and A in Theorem 1 and defining H by
H, and V*,

By Theorem 3 there exists a minimal self-adjoint extension H, of
H, such that , Cc $,C 9, H,c H,c H, and H, and H define the same
spectral function of H,. By Theorem 4, H, is defined by V and a
Hermitian operator H, with the same deficiency subspaces as H,.
Since we can always consider H, instead of H, it follows that without
loss of generality we can consider H to be a minimal self-adjoint
extension.

Since M,(X) = {0} and LN) = H,, we have that if fe 9,
Ufe8N) <9, If we represent U as a matrix, U ~ (U;,), where
U;, maps 9, into ;, then it follows that U, =0 on 9,. Further,
Uf = Uyf for all €9, so that U, maps 9, isometrically onto 2,(\).
U,, is thus a partial isometry in ©, with initial set 9, and final set
L,(\), while U, is a partial isometry with initial set ,(\) and final
set 9.. We have that E = P(9,) = U;iU,, while P(8,(\)) = U,U;.

Now let A be any bounded operator in  with matrix representa-

tion
(5 o
A~ :
B* C

where E is the identity in ©,, B maps 9, into ,, C maps 9, into H,,
and C is self-adjoint. Suppose that A commutes with H. We shall
show that this implies B =0. Then by the proposition of M. A.
Naimark [6] mentioned in the introduction, it follows that the spectral
function F,(\) defined by H is extremal.

Since A commutes with H, it commutes with the Cayley trans-
form U of H. This implies that BU, = U,B* and U, + BU, =
U,B + U,C. Sinece U, =0, these equations become BU, =0 and
BU, = U;B. On MMN), U,=V, and therefore BV, QX) =
BU, M, (\) = {0}). Becaese by Theorem 2, V,M.(X) is dense in M,(\),
BM,(\) = {0}, i.e., BP(W,(\)) =0. From the equation BU, = U,B
we have that BP(%(\) = BU,U; = U,BU;. Adding BP(&)) =
U,,BU; with BP(M,(\)) = 0, we obtain that B = U,BU}. By iterat-
ing this equation we see that B = U2ZB(U,)? for every positive integer
p. Since || Unll =1, || Bf|| = || B || (Ui)’f|| for each fe 9, and each
positive integer p.
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By Theorem 8, £,(\) = ' P M, where U, maps M isometrically
onto M”, and if feWN) B W, then lim,.. || (U#)?f]|=0. But if
Uz maps WM’ isometrically onto MM”, then U, and therefore U maps
M’ isometrically onto WM. This means that U and therefore H is
reduced by IMM”, a subspace of ,. Since H is a minimal self-adjoint
extension of H;, M’ = {0}. Hence, , = W,(\) P P, and thus if fe D,
lim, .. [[(U£)’f|| = 0. Since ||Bf| =Bl |[(Us)"f|l for each fe,
and for every positive integer p, it follows that B =0 on $,. This
completes the proof of Theorem 9.

Since the operator H, in Theorem 9 is a Hermitian operator with
deficiency indices (0, s) or (s, 0), it may seem that we are dealing with
a wider class of operators than the maximal symmetric operators.
That this is not so is shown by Theorem 10 below.

THEOREM 10. If H 1is a Hermitian operator with deficiency
wndices (0, s) or (s, 0), then H is ¢ maximal symmetric operator. If
H is a Hermitian operator with deficiency indices (0,0), then H is
a self-adjoint operator.

Proof. If H is a Hermitian operator and B = O [D(H)], then
BNLN) ={0}. (If heBN LX), then h =(H — \E)g, Hence, 0=
(h, 9) = (Hyg, g) — Mg, g9). Since (Hg, g) is real while X is not, g = 0..
This simple argument is due to M. A. Krasnosel’skii [2, Lemma 2].»
If H has deficiency indices (0, s), T(X) = {0} so that B < &(). Thus,
B = {0} and H is symmetric. Similarly, H is symmetric if its de-
ficiency indices are (s, 0). It follows immediately that if H has de-
ficiency indices (0, 0), H is self-adjoint. Theorem 10 is proved.
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