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Introduction* The main aim of this work is to show that certain
conditions are not sufficient for a Boolean algebra to have a strictly
positive measure, where by a measure we mean a finitely additive
measure which assigns 1 to the maximal element, and a strictly posi-
tive measure is one which assigns values >0 to every nonzero element.
The results remain the same if the maximal element is allowed to
have any finite measure >0, or an infinite measure provided that some
nonzero element has a finite measure. We construct a Boolean algebra
whose set of elements is a denumerable union of the form \Jζ^Bn

where in Bn there are at most n pairwise disjoint elements, but which
has no strictly positive measure. This also implies that the countable
chain condition, i.e. the condition that there are only countably many
pairwise disjoint elements in the Boolean algebra, is not sufficient for
the existence of a strictly positive measure. (The existence of sets
B19 •••,!?„, ••• having the above mentioned properties is implied by
the existence of a strictly positive measure and implies the countable
chain condition.)

The problem of the sufficiency of the countable chain condition
was raised by Tarski in the thirties [9 p. 58]; the second stronger con-
dition was formulated by Horn and Tarski in 1948 [3, pp. 481 ff],
where the problem of its sufficiency as well as the sufficiency of other
conditions each of which is implied by it and implies the countable
chain condition, is posed. A condition of a more complicated character
which is both necessary and sufficient for the existence of a strictly
positive measure was given by Kelley in 1959 [4], Note that a charac-
terization of the Boolean algebras which admit a strictly positive
measure amounts to a characterization of those ideals which, for some
measure, are the ideals of all elements of measure 0. This is so since
every measure induces in a natural way a strictly positive measure on
the quotient algebra of the original algebra and the ideal of all ele-
ments of measure 0. The results and proofs can be reformulated in
an obvious way so as to deal with arbitrary measures and the ideals
of all elements of measure 0.

Whether the countable chain condition implies the second stronger
condition, mentioned above, is unknown and seems unlikely as this
would imply Souslin's conjecture, cf. [3 pp. 487 ff.].
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In § 1 there are some preliminary definitions and lemmas, and § 2
includes the proof of the main result and some corollaries. In § 3
the analogous problems for countably additive Boolean algebras and
countably additive measures are pointed out. In § 4 several connections
between certain problems concerning Boolean algebras and Souslin's
conjecture are discussed. The theorem whose proof is outlined there
shows that Souslin's conjecture is equivalent to some relativity simple
statements concerning countably additive Boolean algebras.

NOTATION. A Boolean algebra is conceived here as an algebra of
the form <Ί?; V, Λ, "")> where V and Λ are the join and meet opera-
tions, respectively, and ~ is the complementation operation. All the
well known properties of these operations are assumed. If S3 =
<Ί3; V, Λ, ~y then 1S3 | = B, i.e. the set of all elements of the Boolean
algebra. The partial ordering on |S3| is denoted by " ^ " , and " 1 " and
" 0 " denote the maximal and minimal elements respectively. If {αj ί € / §
|S3| and the least upper bound of {ax)iei exists, then it is referred to
as the join of {α<}ί6I and denoted by "Vίei^*". Similarly "Aiei<x>"
denotes the greatest lower bound of {a^iei, when it exists, and is
referred to as the meet of {a^iei. A Boolean algebra is complete if
the joins and meets of all sets of its elements exist. A set B of
elements of S3 is dense in S3 if for every nonzero b e \ S31 there is a
nonzero ¥ e B such that 6 ^ 6 ' . Every Boolean algebra S3 can be
embedded as a subalgebra in a complete Boolean algebra S3' so that
I S31 is dense in S3'. The Boolean algebra S3' (which is unique up to
an isomorphism) is the completion by cuts of S3. If b e | S3 | then S3 \b

is the Boolean algebra formed by the principal ideal generated by 6,
i.e. S3|6 = <£' , V', Λ', "'>, where B' = {c\c ^ 6}, V' and Λ' are V
and Λ, respectively, restricted to B', and c' = c Λ b for all ceB'.

We will always exclude the trivial Boolean algebra of one element,
that is, we assume that 1 Φ 0.

Section l

DEFINITION. A measure m on a Boolean algebra S3 is a function
from I S3 | into [0,1] such that m(l) = 1 and m(α V b) = m(a) + m(b)
whenever a Λ b = 0. A measure m is strictly positive if m(a) Φ 0
whenever a Φ 0.

We will assume all the well known properties of measures such
as m(0) = 0, m{ax V V an) = Σ?=i m(a>i) if α* Λ aά = 0 whenever
i Φ j , etc.

A set B of elements of a Boolean algebra is a set of pairwise
disjoint elements or, simply, disjoint elements if for all α, b in B
either a Λb = 0 or α = δ. B has at most n disjoint elements if every
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subset of B of disjoint elements is of power ^n.
A Boolean algebra satisfies the C.C.C. (countable chain condition)

if every set of disjoint elements of this algebra is countable (i.e.
finite, or infinite and denumerable).

If m is a strictly positive measure on 33 and if Bx == {0} and Bn ==
{b I m(δ) ^ (1/n)} for n > 1, then we get | S31 = LL=i B* a n ( i , as is easily
seen, Bn has at most n disjoint elements. Consequently a necessary
condition for a Boolean algebra to have a strictly positive measure is:
<*) There are sets Bl9 B21 , Bn, , 0 < n < oo, such that for every
n the set Bn has at most n disjoint elements, and \Jζ^Bn is the set
of all the elements of the Boolean algebra.

(*) is easily seen to imply the C.C.C. since if B is a set of pairwise
disjoint elements and Blf B2 , BnJ are as in (*), then B =
UΓ=i (B Π Bn) and B Π 2?n is at most of power n. Hence 5 is count-
able. Thus we get

LEMMA 1.1. There exists a strictly positive measure =»(*)=> C.C.C.

Our main result is to show that (*) ^> there exists a strictly posi-
tive measure. To show that C.C.C. =̂> (*) is an open problem which

be discussed in §4.

LEMMA 1.2. If there are sets Blf , Bif , 0 < i < <*> such
that | S3 | = UΓ=i Bi and such that in every B{ there are at most nt

disjoint elements where n19 , ni9 is a sequence of natural
numbers, then 33 satisfies (*).

Proof. Given any natural number k if there is no number j such
that k ^ Σl=i ni P u t -Si = Φ; otherwise let j(k) be the largest j for
which k Ξ> 2l=i <̂ and put B'k = U»̂ i(fc)-Bi Obviously i?/J has at most
7c disjoint elements and | S3 | = UΓ=i -B».

DEFINITION, (i) If <6lf , 6Λ> is an n-tuple of elements of a
Boolean algebra. Let N{ζbl9 •••,&»» be the maximal number & for
which there are bil9 * ,biic such that 1 ^ i2 < i2 < < ik ^ ^ and
•^ Λ 6,2 Λ Λ bik Φ 0.

(ii) If B £ 1331 then the intersection number of 5, Int (JB), is
defined as inf {(lln)N(<Ίblf , 6W» | 6lf , bn e £}, where the infinum
is taken over all finite sequences of elements of B.

This definition as well as the following two lemmas are due to
Kelley [4], The lemmas constitute the easier part of his result and
we give here their simple proofs.

LEMMA 1.3. If m is a measure on S3 and B £ 1931 then Int (B) ^
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Inf {m(b) \beB}.

Proof. Assume Inf {m(b)\beJB} = δ. Let b19 •• , 6 w e ΰ . For every

subset K of {1, •••,%} p u t aκ — Akeκ^k Λ Akeκbk, where K is the

complement of K relative to {1, •••, w}. Obviously aκ f\aκ, — ̂  if

KΦKf and bk = ykeκ aκ. Hence m(6ft) = Σ*keκ m(aκ) and Σ*=i m(bh) =
ΆiΣiueκiΦκ) = Σκr(K) m(aκ), where r(K) = 0 if aκ = 0 andr(iΓ) =
the cardinality of K if aκΦ 0. Put r = max {r(K) \ K g {1, ••,%}}.
Then r ^ 2V«δlf , 6W» and nδ ^ ΣίU™@*) = Σ * r(ίΓ) mfc*) g
T-ΣJK w>(a>κ) ^ r (since Σ * m(αsr) = m(Vκ<x>κ) ^ 1) Consequently
(lln)N«b19 , δw» ^ δ. Since this is true for all 6lf , 6Λ in B we
get Int (B) ^ S.

LEMMA 1.4. If S3 λαs a strictly positive measure then there are
sets B19 ---,Bn, , 0 < n < oo such that \ 931 = {0} U U"«i B« and-
Int (J5W) > 0 for all n.

Proof. Put Bn = {b\ m(b) ^ (1/w)}, where m is the strictly posi-
tive measure, and use Lemma 1.3.

We will construct a Boolean algebra which satisfies (*), but which
has no decomposition of the form {0} U U"=i &n where Int (Bn) > 0.
This Boolean algebra will have no strictly positive measure. Kelley's
result is that the existence of a decomposition of that form is also
sufficient for the existence of a strictly positive measure.

Section 2

DEFINITION. A set B of elements of a Boolean algebra is a set
of independent elements or, simply, independent if whenever {blf , bk,
bk+i, , 6.} S B and &< Φ b, for iΦj we have Λ!=A Λ A£=*+i &• Φ 0-

The following are well known properties of independent sets. Let-
B be an independent set, then:
(a) If AUibi A Ai=i % ̂  AT=iCi9 where 6χ, ,bkf b'u , Vn and c l f ,cm.
are all members of B, then either for some i and j bi = δ̂  (in which,
case the meet on the left side is 0), or {b19 , bk} 3 {clf , cm}.
(β) If α l f , am are finite meets of members of B and 6 is a finite?
meet of members of B and complements of members of B, then b ^
V?=i α i o n ly if δ = ai f ° r some ΐ, 1 ^ i ^ m.
(7) If β% is the set of all elements of the form Λί=iδ< Λ AT=k+ibi-
where {6^ •• , ί ) J S ΰ and m ^nf then in i?w there are at most 2n-
nonzero disjoint elements.

In the theorem that follows we use the free Boolean algebra on
continuum many generators. This is the Boolean algebra generated
by continuum many generators in which the set of the generators is.
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independent. The existence of a free Boolean algebra on a given
number of generators is a well known consequence of a general result
concerning free algebras, cf. Birkhoff [2], and [1, p. viii if.]. More-
over, in the case of continuum many generators this Boolean algebra
can be actually given as an algebra of subsets of a denumerable set
(the Boolean operations being the usual set operations). It is known
that there is an independent family of continuum many subsets of a
denumerable set (cf. [8 p. 6] where other references can be found)
and one has to take the Boolean algebra generated by this family.
For instance, take the denumerable set to be the set of all sets of
the form {Tlf , Tn) where n is any natural number and T19 , Tn

are open intervals in (0,1) with rational end points. For every x e (0,1)
let Sx be the subset of all elements {2\, , Γ»} such that x e ϊ\ U U Tn.
Then {Sx\xe (0,1)} is an independent family of continuum many ele-
ments.

THEOREM 2.1. There exists a Boolean algebra which satisfies (*)
(i.e., the set of all its elements can be represented as \Jΐ=iBn9 where
in Bn there are at most n disjoint elements) and which has no strictly
positive measure.

The proof is divided into 3 parts. The first is a construction of
a certain ideal $ in the free Boolean algebra on continuum many
generators, 33. The second part is a proof that 33/$ satisfies (*) and
in the third part we show that 33/$ has no strictly positive measure.

(I) Construction. Let 33 be the free Boolean algebra on continuum
many generators. Let the set of free generators be {bx\xe (0,1)}
where bxψby if x Φ y. Enumerate all nonempty open intervals of
(0,1) with rational end points; it is convenient to start the enumera-
tion from 2; let it be Γ2, Γ3, , Tn, , 2 ̂  n < oo. For every i ^ 2
let Titl, •••, TiΛ2 be a sequence of i% pairwise disjoint nonempty open
subintervals of T{ with rational end points. (The number i2 has no
special significance and is chosen for convenience. The same proof
works if we put % instead of i2 provided that ni^i for i ^ 2 and
that ijUi —> 0 as i —> oo.)

For every i ^ 2 let Hi be the set of all elements of 33 of the
form bXl A Λ bH where x19 •••,#< belong to i different intervals of
the form Tij9 1 ̂  j ^ i2. Put H = L)Γ=2 H{ and let $ be the ideal
generated by H.

During the proof x, x19 •• fy9y19 , z, %ι, range over points
in (0,1) and 0 is the zero element of 33 (thus O/$ is the zero of 33/$)•

(II) 33/$ satisfies (*)



66 HAIM GAIFMAN

Proof. A member δ of 33 is in $ if and only if δ ̂  ax V V am for
some α l f , am in if. Assume that b = bXl A Λ bXJc A δ^ Λ Λ δ %

(w may be 0). Since every member of £Γis a meet of free generators
it follows from (β) that b e $ if and only if for some a in if, δ ̂  α.
Let α = δZl Λ Λ bH, where zlf •••,«* belong to i different intervals
of the form Tu. From (a) it follows that δ ̂  α if and only if either
b = 0 or {a?!, , xk} 2 {̂ i, , s<}. This proves the following:

(i) -If bXl A Λ bXk A bVχ A Λ δ % e 3f, then either this ele-
ment is 0 or there is an i such that k Ξ> ί ^ 2 and among a?!, , xk

there are i points which belong to i different intervals of the form
Tu, (1 ̂  j ^ ΐ2). Obviously, the converse holds as well.

(ii) Let δ' and δ" be meets of complements of the free generators
and let bx = 6βl Λ Λ bXm A V and δ2 = bH A Λ δ % Λ δ" (6' or 6"
may be absent from bλ or 62). Assume that δ i g $ a n ( i that for every
i and i such that 2 ̂  i -^ m + n and 1 ̂  i ^ i2 if there is a & such
that yk e Ti>jf (1 ̂  Jc ̂ n) then there is a kf such that xk, e Titj,
(1 ^ k' ^ m). Under these assumptions δx Λ δ2 e $ only if δx Λ δ2 = 0.

(ii) is implied by (i): if bx A δ2 e $5 and δx Λ δ2 ̂  0 then there is
an i, 2 ̂  i ^ m + n, such that among x19 , a?m, ylf , yn there are
1 points which belong to i different intervals of the form TiJm Since
every yk which belongs to some Tu can be replaced by %k, which
belongs to the same TUf it will follow that bλ e % contradicting our
assumption.

For n ^ 2 let Kn be the set of all ordered pairs </£, f> where
2 ^ i ^ n and 1 ̂  j ^ i\ If K £ Kn let C(ϋΓ, n) be the set of all
members of S3 which are not in $ and are of the form: bXl A Λ bXm A
byλ A Λ bym>, (including the cases m = 0 and m' = 0) where
m + mf f^ n\2 and, for all ί and i such that </£, i> e iΓw, <i, j} e K iί
and only if xr e Titj for some r (1 ̂  r ^ m).

From (ii) it follows that whenever δx and δ2 are members of C(K, n)
such that δx Λ δ2 e $, then δx Λ δ2 = 0. Hence, by (7), every subset
of C{K, n)9 in which the meet of every two different elements is in
3 , is of power ^ 2w/2.

Let C» be the set of all members of 33 which are not in $ and
which are of the form bXχ A Λ bXk A bXJc+l A Λ bKm where m g
n/2. Every member δ of Cn belongs to a unique C(K, n) (namely, if
δ = bXl A Λ bXk A bXk+1 A Λ bXm then δ e C(K, n) if and only if
K is the set of all <i, ;/>, such that 2 ̂  i ^n9 i ^ j < i\ and for
some r xre Titj). Hence {C(K, ri)\K£ Kn} constitutes a partition of Cn.

The power of Kn is Σt=2 i2, hence there are 2Σ^=1*2 different subsets
of Kn. Consequently every subset of Cnf in which the meet of every 2
different elements is in Qf and is of power <£pn, where pΛ = 2(nl2)+Σ^\

Put C: = {δ I δ e 1331 and δ ̂  V for some δ' in Cn}. It is clear
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that every subset of Cf

n in which the meet of every 2 different ele-
ments is in 3 is of power ^>pn.

Every element of 95 is a join of meets of free generators and
complements of free generators, if all the meets are in 3 the element
is in 3 Consequently if b & 3 then 6 ^ 6 ' for some b\ not belonging
to 3> which is a meet of free generators ond complements of free
generators. Hence U~=2 Cή is the set of all elements of 35 which are
not in 3

Put Dn = {6/31 b e Ci} U {0/3}. Then 18/3? | = \JZ^ Dn and in Dn

there are at most pn + 1 disjoint elements. Consequently (II) follows
from Lemma 1.2.

(Ill) There is no strictly positive measure on 35/3-

Proof. By contradiction. If there is a strictly positive measure
on 35/3 then there are sets JBX, *-,Bn, •••, 1 ̂  w < oo, such that
135/3 I = {0/3} U U?=i Bn and, for all w, Int (Bn) > 0. As we have seen
bXl A Λ δXΛ e 3 if and only if for some i we have & Ξ> ΐ ^ 2 and
among xlf •••,»*. there are i points in i different intervals of the
form Titj. In particular bx $ 3 f ° r all a? e (0, 1). Hence if we put
Xn = {̂  I 6* e B J we get (J~=i -X» = (0,1). Consequently some Xw must
be dense in some open non empty interval. Let Xk be dense in the
interval T, (T φ ψ).

Among T2, T3, , Tn, there are infinitely many subintervals
of T, let them be Tn[1), , Tn{j), where n(i) < n(j) if i < j .
Consider Tn{i)tl9 •••, Γft(i)ιft(ί)2, there are points xlf •• ,a?Λ{i)2 in Xfc such
that a;,- € Tn{ίhj for all 1 S j ^ ^(i)2. Consider the w(ί)2-tuple
<6βl/3M , &βj/3f» >î »(i)« T h ί s is a tuple of members of J5Λ. Since
by our definition every meet of n{i) elements among δXl, , bXn{i)2 is
in 3 we get N«bxJ$, . . . » < £ n(i), hence (l/n(i)»).N«6ei> •» ̂  (IMi)) .
Consequently Int (Bfc) ^ (IMi)); letting i —> oo we get Int (Bk) = 0.
Contradiction.

COROLLARY. T/̂ e C.C.C. is not sufficient for the existence of a
strictly positive measure.

THEOREM 2.2. There is a Boolean algebra §1 satisfying (*) and
having the property:

(t) If a is any nonzero member of 21 then §ί |α has no strictly
positive measure.
Theorem 2.2 follows from Theorem 2.1, since, as it is not difficult

Xo show, if SI has no strictly positive measure and satisfies the C.C.C.
then, for some nonzero element 6, 21 |δ satisfies (t). Obviously if 21
satisfies (*) so does 2t |6. Another way (suggested to the author by
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R. S. Pierce) is, given 21, to construct the free product, 2Γ, of ^ α

copies of 2ί. (This corresponds to taking the cartesian product of ^ σ

copies of the Stone representation of. 21 with the product topology)
It can be shown then that if 21 has no strictly positive measure then
2Γ satisfies (t) and if 2ί satisfies (*) so does 21'.

Note that (t) is equivalent to:
(ί) Whenever m is a measure on 2ί then {b \ m(b) — 0} is dense in

2ί. (If 21 satisfies (t), m is a measure on 21, and m(a) > 0 then define
m' on 21 |β by: m'(6) = (l/m(α)) m(δ) for all 6 ^ a. Because of (t) there
is an element b such that a ^ b > 0 and m'(6) = 0, for this b we
have m(b) = 0. The implication (ί) —> (t) is as easy.)

Because of Theorem 2.2 it is easily seen that both Theorem 2.1
and Theorem 2.2 hold if we replace "strictly positive measure" by
"strictly positive measure'" where by a measure' we understand a
finitely additive function into [0, oo] which is finite for some nonzero
element. Property (f) is equivalent to the corresponding property (f'),
obtained by replacing "measure" by "measure'." (ί) is equivalent to
the property that whenever m is a measure' on 21 then {6 | m{b) = 0}
is dense in the set of all elements of finite measure. It should be
noted, however, that (*) is not a necessary condition for the existence
of a measure'.

Section 3 The problems concerning the conditions for the ex-
istence of strictly positive measures arise also for countably additive
Boolean algebras (i.e., where all countable joins and meets exist) and
countably additive measures (i.e., where m(VΓ=i^ΐ) = ΣΓ^wW, when-
ever di Λ dj — 0 for all i Φ j). A characterization of the countably
additive Boolean algebras which have a strictly positive countably
additive measure was given by Maharam [6]. If we take the comple-
tion by cuts of the Boolean algebra whose existence is claimed in
Theorem 2.1 we get a complete, hence countably additive, Boolean
algebra which satisfies (*), and which has no strictly positive measure,,
hence, a fortiori, no strictly positive countably additive measure-
However it turns out that the solution of this problem for the
countably additive case is much easier. The completion by cuts of
the free Boolean algebra on ^o generators is also a Boolean algebra,
which satisfies (*) and has no strictly positive countably additive
measure (although it does have a strictly positive finitely additive
measure). It turns out that the interesting problem for the countably
additive case involves an additional condition, the so-called weak
countable distributivity.

A countably additive Boolean algebra is countably distributive if
for every double sequence of elements a,m,nf 0 < m < oo and 0 < n < oo,
the join V* V ; = i ^ i > where k ranges over all sequences of natural
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numbers, exists and is equal to Λm=i V~=iαm.%- It is weakly countably
distributive if this holds for all double sequences am>n in which am>1 ^
am>2 ^ ^ am>n ^ am>n+1 ^ for all m. As was pointed out by
Maharam [6, pp. 158 if], weak countable distributivity is necessary
for the existence of strictly positive countably additive measures. The
analogous problems for the countably additive case are whether either
condition (*) or the C.C.C. together with weak countable distributivity
is sufficient for the existence of a strictly positive countably additive
measure. No answer to either of these questions is known. The
completion by cuts of the Boolean algebra used in the proof of Theo-
rem 2.1 is, unfortunately, not weakly countably distributive.

Section 4* Connections with Souslin's conjecture* Souslin's con-
jecture (Fund. Math. 1, 1920, p. 223) is that every non empty ordered
set without jumps (i.e. between every two elements there is another
element) and without gaps (i.e. every bounded subset has a least upper
bound) which has neither a first nor a last element and which has at
most countably many pairwise disjoint intervals, is order isomorphic
to the real line.

As was shown by Horn and Tarski [3, pp. 487 f.], if the C.C.C.
implies (*) then Souslin's conjecture is true. Thus, a fortiori, the
sufficiency of the C.C.C. for the existence of a strictly positive measure
would imply Souslin's conjecture, hence the corollary to Theorem 1
could be expected. The problem to show that the C.C.C. does not
imply (*) was stated in [3] and remains open. Also as was proved by
Maharam [6, pp. 164 if.], the sufficienty of the C.C.C. together with
weak countably distributivity for the existence of strictly positive
countably additive measures implies Souslin's conjecture, hence it is
unlikely to be proved.

We will show that Souslin's conjecture is equivalent to some rela-
tively simple statements concerning countably distributive Boolean
algebras. To do this we use a well known formulation of Souslin's
conjecture in terms of trees, originally due to Kurepa [5, pp. 122 if.].

By a tree we mean a system <Γ, ^> where Ξ> is a partial order-
ing of T such that for all ae T the set {b \ b ^ a} is well ordered by
^ . The rank of a is the ordinal which is order isomorphic to {b \ b ^ α}.
The tree can be best visualized by "placing" its elements on different
"levels" according to their rank. Two elements, a and δ, are incompa-
rable if neither a ^ b nor b ^ a. A path is a maximal subset of T
which is totally ordered by ^ . Every path is, of course, well ordered
by ^ and the ordinal which is order isomorphic to it is the length of
the path. (Of course every ordered subset of T can be extended to
a path.) Let o)x be the first uncountable ordinal. Souslin's conjecture
is equivalent to the following statement:
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Every uncountable tree has either a path of length ^ωt or has
^ ! pairwise incomparable elements.

The proof of the following lemma is essentially due to Maharam
[6, p. 166].

LEMMA 4.1. Let <Γ, ^> be a tree which has no ^ pairwise
incomparable elements and in which {b \ b Ξ> a} is countable for every
ae T. Let m be a function from T into [0, oo] such that a^b=>
m(a) ^ m(b), and if m(a) > 0 then, for some b, a > b and m(a) > m(b).
Then {a \ m(a) > 0} is countable.

To prove it put Sr = {a \ m(a) ^ r and for every 6 if b > a then
m(b) > r}, (r is any real number). It follows that if m(a) ^ r then
α' Ξ̂  a for some ar in Sr. Also Sr is a set of incomparable elements
and hence countable. If m(a) > 0 then m(a) > m{b) for some b such
that a > b. If r is a rational number between m(a) and m(b) then
δ' ^ b for some V e Sr and it follows that a > V. Hence {a \ m(a) > 0} =
{a\a > b for some be Sr and some positive rational r}. Since for every
δ {a I α > δ} is countable, {α | m(α) > 0} is countable.

An atom of a Boolean algebra is a nonzero element, α, such that
whenever δ ^ a either δ = O or b = a.

The following theorem establishes the equivalence of Souslin's
conjecture and several statements concerning Boolean algebras.

THEOREM 4.I.1 Souslin's conjecture is equivalent to each one of
the following statements

( i ) Every countably additive and countably distributive Boolean
algebra satisfying the C.C.C. is isomorphic to the Boolean algebra
of all subsets of a countable set.

(ii) Every countably additive and countably distributive Boolean

1 The ideas used in proving this theorem are known and similar results have been
proved. As was pointed out to the author, the implication 'Souslin's conjecture ==> (i)'
can be derived using some results of Horn and Tarski [3, p. 480, Th. 2.3 and p. 487,
Th. 2.11], and the equivalence "Souslin's conjecture <=* (i)" was proved by Maharam,
[7, p. 590]. The construction which is used here to show that (v) implies Souslin's con-
jecture is essentially the same as that used by Maharam [6, pp. 164 ff.] to prove a
weaker implication, the main difference being that "weakly countably distributive" is
used there instead of "countably distributive." This construction was found and used
independently by the author to prove that (iv) implies Souslin's conjecture, the main
argument by which the measure in (iv) can be replaced by a more general function is
due to Maharam [6, p. 166]. Using the original formulation of Souslin's conjecture,
which involves ordered sets instead of trees, Kelley [4, p. 1172] proved an implication
weaker than *(iv) => Souslin's conjecture,' the difference being, again, the use of "weakly
countably distributive" instead of "countably distributive." For other results concerning
the connections between Souslin's conjecture and Boolean algebras see [4], [7], and [3]
where more references are given.
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algebra satisfying the C.C.C. has a strictly positive countably addi-
tive measure.

(iii) Every countable additive and countably distributive Boolean
algebra satisfying the C.C.C. has a strictly positive measure.

(iv) Every countably additive and countably distributive Boolean
algebra satisfying the C.C.C. has a measure m such that the maximal
element, 1, is not a countable join of elements of measure 0.

(v) Like (iv) except that m is required to be only a monotonic
function having nonnegative values, such that whenever m{a) > 0
and a is not an atom then m(a) > m(b) for some nonzero b which is

Since every countably additive Boolean algebra satisfying the C.C.C.
is complete, we can replace in (i)-(v) "countably additive and countably
distributive" by "complete and countably distributive/'

The following is a sketch of the proof. First to show that Souslin's
conjecture implies (i), assume that S3 is a countably additive, countably
distributive Boolean algebra satisfying the C.C.C. By the axiom of
choice it follows that there are two functions f0 and fλ defined for all
nonzero elements a which are not atoms, such that fo(a) V fi(a) = α,
fo(a) Λ /i(α) = 0, and fo(a), fx{a) Φ 0. We now construct a set of
sequences, S, of O's and Γs, whose lengths are countable ordinals, and
a mapping s—>as, defined for all seS, such that α s e |33 | . This is
done as follows:

(1) <0>eS and a0 = 1
(2) If 8 = <s0, « ,sλ, •• X<0> is in S and if as is not an atom

then sO and si, defined respectively as <s0, , sλ, , 0> and
<So, , sλ, , 1>, are in S, αs0 = fQ(as) and asl = Mas). If a8 in an
atom then sOe S and as = αs0.

(3) Let {si I i < ω0} be a subset of S (ωQ = the first infinite
ordinal). Let a4 be the length of s\ If a0 < aτ < a{ < ai+1

and s{ = si for all λ < aif aj9 and if Ai<ω0^ Φ 0, then the sequence
s, whose length is \Ji<ωo aif such that sλ = si for all λ < at (i < o)0),
is in S, and as = Ai«ooasi.

(4) S contains no other sequences.
Let Sa be the set of all members of S of length a. From the

countable distributivity of S3 it follows that 1 = V,esΛa>, whenever a is
countable. {α s | seS} together with the partial ordering of 33 form
a tree. In this tree as ^ as, or as, g as or as A as, = 0. By the C.C.C.
this tree has no path of length >ωl9 and no fc^ pair wise incomparable ele-
ments. By Souslin's conjecture the tree is countable. Hence for some
countable a every αs, where seSΛ, is an atom. From this it easily
follows that 33 is isomorphic to the Boolean algebra of all subsets of the
set of all its atoms. The set of all its atoms is, of course, countable.
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Each of the conditions (i)-(iv) is easily seen to imply its successor.
It remains to show that (v) implies Souslin's conjecture. Assume
Souslin's conjecture is false and let <Γ, ^> be an uncountable tree
with no path of length ωx and no ^ x pairwise incomparable elements.
For every a in T let P(a) be the set of all paths containing α, let P
be the set of all paths and for every ordinal a let P* be the set of
all paths of length ^a. It follows easily that P Φ Pω whenever a
is countable. Let 33 be the countably additive Boolean algebra of
subsest of P generated by {P(a) \aeT}. Let $ = {A | A £ Pa for
some countable a). $ is a countably additive ideal of S3 and 33/$ is
a countably additive, countably distributive Boolean algebra satisfying
the C.C.C.

A proof of this will proceed along the following steps:
If a ^ 6 then P(a) 2 P(b) and if a and b are incomparable then

P(a) Π P(b) = Φ. Consequently if P(a) f] P(b) Φ Φ then P(a) 2 P(b) or
P(b) 2 P(a). If A = U^P^) then for every jel the set of all at%
ίe I, such that a{ ^ α, , is well ordered by ^ and has a first element
α< obviously A = UjeiP{aiό) and {α^|j6/} is a set of pairwise in-
comparable elements. Thus every union of P(α)'s is also a union of
P(α)'s which are pairwise disjoint. Now consider all sets of the form:
(#) A U A', where A is a countable union of pairwise disjoint P(α)'s
and A! Q Pa for some countable a.

The complement of any P(α) is of this form, namely if a is of
rank a then complement of P(a) = A 1J A' where A is the union
of all P(ί>)'s such that b is of rank a and b Φ α, and A' is the subset
of PΛ consisting of all paths not containing a. A countable union of
sets of the form (#) is obviously of this form and this, although
less obvious, is also true for countable intersections. (If Bn —
UieinP(ai) U A ' n , w h e r e In i s c o u n t a b l e a n d A'n^Pan, n = 0,1, •••,
then let a be any countable ordinal bigger than the ranks of all α/s,
ieln, n = 0,l, •••, and all the an's. Taking the intersection of the
Bn's and distributing one gets a set of paths each of length ^a as
well as sets of the form Π"=o P(aίn)> K € /%. It is easily seen that
every set of the last form is either empty or consists of a single path
of length ^α: or is a countable union of P(α)'s where the α's are all of
rank ^ α . Since there are countable many a's of rank ^a the asser-
tion follows.) Hence all members of 33 are of form (#). Consequently
every member of 33/$ is of the form ί7ί€rP(αi)/$, where / is countable,
P{a{)0$ for all iel and P(at) Π P{a5) = Φ if i Φ j ; the member is 0
if and only if 1= Φ. If xm>n = Diβimi.P(α<)/3f, and Λw==0 V «o® . Φ 0
then, for some a such that P(a) g $ and rank α ^ rank a{ for all
ieU:=oU:=o4,,, Λ:=oXm,n^P(a)IS for all m. From the properties
of the P(α)'s it follows that for every m there is an nm such that

hence A m = o ^ M ^ 0 . This is well known to imply
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the countable distributivity of
From the properties of the P(α)'s it follows that {P(a,)/3 I α

together with the partial ordering of 33/$, restricted to this set, form
a tree having the properties required in Lemma 4.1. If m is a func-
tion on 133/$ I satisfying the conditions mentioned in (V) then its
restriction to {P(α)/$ | a g $} will have the properties required in Lemma
4.1 (this is so because no P(α)/$ is an atom in S3/$, and, as was
mentioned before, every member of 33/$ is a join of P(α)'s). By
Lemma 4.1, {a | m(P(α)/$) > 0} is countable. This implies that, for
some countable a, m(P(a)l!^) — 0 for all α's of rank a; but for every
countable a {P(α)/$|α is of rank a} is countable and its join is 1.
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