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If L is a finite dimensional linear topological space (l.t.s.) over the
reals, then it is easy to introduce a partial order into L in such a
way that convergence with respect to the topology is equivalent to
order convergence (see definition below). This remark raises the follow-
ing question: when can a locally convex l.t.s. L over the reals be made
into a partially ordered linear space in such a way that convergence
with respect to the topology is equivalent to order convergence? In
this paper we show that the answer to this question is: if and only
if L is a normed linear space. We emphasize, however, that we are
referring to convergence of arbitrary nets. For convergence of sequences
the above answer is not true; i.e., we will give an example of a partially
ordered, locally convex l.t.s. L having the property that convergence
of sequences with respect to the topology is equivalent to order con-
vergence.

In this paper we consider only real linear spaces with Hausdorff
topologies. The reader will find a detailed discussion of partially ordered
linear spaces and cones in such spaces in Chapter 1, § 1, of Namioka's
memoir [2]. A general discussion of nets may be found in Chapter 2
of Kelley's book [1].

DEFINITION 1. Let L be a partially ordered linear space. A net
{xn, n e D} of elements from L is said to order converge to 0 if and
only if there exists a nonempty set McL which is directed to 0 such
that for each y e M there exists ke D such that —y^xn^y for all
n> k. A set MczL is said to be directed to 0 if for each y,zeM
there exists ueM such that u ^ y and u ^ z, and if inf M = 0. We
say that inf M = 0 if and only if 0 ^ x for all xeM and u < x for
all xe M implies that u ^ 0. More generally, inf M = y if and only
if inf {x — y: x e M} = 0 and sup M = y if and only if inf {y — x: x e M} = 0.
A net {xn, ne D} of elements from L order converges to xeL if and
only if the net {xn — x,ne D} order converges to 0.

DEFINITION 2. A partially ordered, locally convex l.t.s. L is called
an O-space if convergence with respect to the topology is equivalent
to order convergence. This refers, of course, to convergence of arbitrary
nets.

Received April 15, 1963.

17



18 RALPH E. DEMARR

DEFINITION 3. A partially ordered, locally convex l.t.s. L is called
an OS-space if convergence of sequences with respect to the topology
is equivalent to order convergence. (It is clear that every O-space is
also an OS-space.)

THEOREM 1. If L is a normed linear space, then L can be
partially ordered so that it becomes an O-space.

Proof. Let ueL be a fixed element such that \\u\\ = 4. Define
the cone K = {λ(u + x): λ ^ 0, || x || g 1} and then partially order L as
follows: x ^ y if and only if y — xeK.

Now if zeL and z Φ 0, then z + \\z\\ u = \\z\\ (u + s/||z||)eJBΓ; i.e.,
—z ^\\z\\u. Using —z in place of z we get z^\\z\\u. Hence,
— \\z\\u ^z ^\\z\\ut which is valid even if z = 0. These latter in-
equalities state that norm convergence implies order convergence.

Now if y = \(u + x) e K, then 3λ ^ || j/1| ^ 5λ. If we now take
yx — \(u + Xj) e K and y2 = λ2(% + α?a) e K, then

| u + xx || - λ21

Thus, we see that if 0 ^ y ^ 2:, then

(1) lly|| + i / 5 | l « - » l l ^ l l « l l .

This shows that the norm is monotone on the cone K.

In order to show that order convergence implies norm convergence,
we must first show that if the set McL is directed to 0, then
infjll^/ II : yeM} — 0. We do this by contradiction. Suppose M is
directed to 0 and inf {|| y \\ :ye M) = 5a > 0. Let us select ze M such
that II£II ^ 26a15 and then define Λf0 = {y:yeM and y ^ z}. Since
we assume inf ikf = 0, we must have inf Mo = 0. From inequality (1)
above, we see that if y e MOf then 1/5 || s — 1/1| ^ || £ || — II!/1| ^ cc/5;
i.e. II £ — j/ II ^ a. Thus, if we define w = z — α^, then for every yeM0

we have y — w = α[% + (2/ — 2)/α] e iΓ, which means w ^ y for all
yeM0. Since inf Λf0 = 0, we have ^ ^ 0 ; i.e., 0 ^ — ^ . However,
an = z — w and z ^ 0 implies that 4α = || α u || = || z + ( — w) \\^\\z ||,
which is a contradiction since || 3-|| ^ 5a. Hence, inf {|| y \\ :ye M} = 0.

Now let {xn,neD} be a net which order converges to 0. Thus,
there must exist a set MczL which is directed to 0 and which has
the property that for each yeM there exists ke D such that — y ^
Xn^V for all n> k. Since inf M = 0, we may find for each ε > 0 an
element yeM such that \\y\\ < ε/3. Hence, there exists A GZ) such
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that -y^xn^y for all n > k. Thus, 0^y-χn^2y and, hence,
l l»»l l-l lvl l^l l l/-α? H | |^2 | | i/ | | ; i.e., \\xn\\ ̂ Z\\y\\ < ε. Thus, the
given net norm converges to 0.

It is interesting to note (without proof) two properties of L when
it is partially ordered as above, First, it is easy to show that the
cone JKMS a closed subset of L. Second, if L is a Banach space, then
it is conditionally Dedekind complete; i.e., if MczL is directed by the
partial ordering and is bounded above, then sup M exists.

THEOREM 2. Every O-spαce L is normαble.

Proof. If the O-space L is not normable, then it can have no
bounded convex neighborhood of 0. We will show that this leads to
a contradiction.

We first construct a directed set D as follows: for each positive
integer X and each convex neighborhood U of 0 the triple (λ, U, V) is
formed, where V is a convex neighborhood of 0 such that Vd U, V
does not absorb U, and V depends uniquely on U. We may always
find such a V for each U since we are assuming that there is no
bounded convex neighborhood of 0. The directed set D is the collection
of all such triples with the partial ordering defined as follows:
(λi, Ulf Vx) < (λ2, U2, V2) if and only if U2 c XJX and Ux Φ U2 or Ux = U2

and X1 < λ2.
We now construct a net {Xxn,nzD} as follows: for each n =

(λ, U,V)eD select xn so that xn e V, Xxn e U. This selection is possible
because V does not absorb U. It is clear that the above net converges
to 0 with respect to the topology. Since L is an O-space, the net
must also order converge to 0. This in turn implies that there exists
yeL such that 0 ^ y and that there exists k = (λ0, Z70, Vo) e D such
that -y ^X%n ^y for all n > k. Now if we let DoczD consist of
elements of the form (λ, Uo, VQ), where λ > λ0, then the inequalities
-y/X ^ xn ^ yjx imply that the net {xn,neD0} order converges to 0.
This follows from the fact that the sequence {yjx : λ > λ0} converges
to 0 with respect to the topology and, hence, order converges to 0.
Since y ^ 0, we must have inf {y/X : λ > λ0} = 0. However, for neD0

we see that xn e Vo and, therefore, the net {xnf n e Do} does not converge
to 0 with respect to the topology. Thus, we have a contradiction to
our original assumption that there is no bounded convex neighborhood
of 0. Hence, L is normable.

The contradiction obtained in the proof of Theorem 2 depended on
the construction of an arbitrary net. The following example shows,
however, that if we consider convergence of sequences only, then order
convergence can in certain cases be equivalent to topological convergence
in non-normable spaces. Let Ω be an arbitrary infinite set and let L
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be the set of all real-valued functions defined on Ω. If addition,
multiplication by scalars, the partial order, and convergence are all
defined pointwise, then it is easy to show that L is an OS-space (see
Definition 3). The essential thing here is that a convergent sequence
must be bounded by some element in L. Since Ω is infinite, L is not
normable.

The above example leads to the following question: when is it
possible to partially order a locally convex l.t s. so that it becomes an
OS-space? The answer (which the author is unable to supply) should
provide an interesting classification of locally convex linear topological
spaces.
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