UNIMODULAR GROUP MATRICES WITH
RATIONAL INTEGERS AS ELEMENTS

R. C. THOMPSON

1. Introduction. Let G be a finite group of order n with elements
gl) gzr c Yy gn- Let

(1) T, 15415 n

be variables in one-to-one correspondence with the elements of G.
The % X n matrix

(2) X = (®g,0; Nsisisn

is called the group matrix for G. If numerical values are substituted
for the variables (1) in X, we say X is a group matrix for G. In
this paper we study group matrices which have rational integers as
elements. Let A’ denote the transpose of the matrix A. A generalized
permutation matrix is a square matrix with only 0, 1, —1 as elements
and having exactly one nonzero element in each row and in each
column. A square matrix A is said to be unimodular if the deter-
minant of A is 1. The result obtained in this paper is the follow-
ing theorem.

THEOREM. Let G be a finite solvable group. Let A be a uni-
modular matric of rational integers such that B = AA’ is a group
matrie for G. Then A= AT where A, is a wunimodular group
matriz of rational integers for G and T is a generalized permuta-
tion matrix.

This theorem has already been proved for cyclic groups in [1]
and for abelian groups in [2]. The present proof is a modification of

the proof in [2].
2. Proof of the theorem. Let
(3) l1=HcHcHc---CcH, ,CH,=G

be an ascending chain of subgroups of G, where each H,;_, is normal
in H, with cyclic factor group H;/H;,_, of order n;, 1<7=<m. We
let m, = 1, so that H; has order nm, +++ n;. In order to simplify the
proof we take the elements of G in a particular order. This will
not affect the theorem as a reordering of the elements of G changes
the group matrix X to PXP’ for P a permutation matrix. Thus let
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H, be generated by the elements of H;_, and an element a; such that
the coset a;H;_, has order n,. By induction we define column vectors
V. of the elements of H;,. We let

(4) Vo=(Q)

be the one row column vector whose only element is the identity of
G. Suppose

( 5) Vi—l = (h/lv hZ’ ct ht),
with
(6) t=mm Ny,

has been defined, where h,, h, -+, h, are the ordered elements of
H, .. For any geG let

9V = (9hy, ghs, = ++, gh,),

Vig = (h1g$ hs9, «++, hg) .

Then define V; to be the column vector

[ Via
a; Vi,
(7) Vi=| aiVi,

¥a§”_1 Vi

For an arbitrary finite group G with ordered elements ¢, ¢,, **+, 9.
we define the left regular representation of G by the matrix equations

(991, 995, *++, 99,) = (94, 9, *++, 9.)PX9) , geG.

Here P*(g) is a permutation matrix depending on the element g e G.
It is straightforward to check that the matrix X of (2) is given by

X = > x,PXg) .
geG
The set of all PXg) for g € G is denoted by L(G).
We define the 7right regular representation of G by

(9.9, 9:9, **+, 9.9) = P(9)(4s, 92, ***, 9.)" geG .

The set of all permutation matrices P(g9) for g € G is denoted by R(G).

The group ring of the left (right) regular representation is the
set of all linear combinations of the PZ*(g) (P(g)) for ge@G, and is
denoted by L*(@) (R*(G)). Thus the matrix (2) is the typical member
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of L*(G). The following two known facts are vital for the proof of
our theorem:

(i) any matrix in L*(@) commutes with any matrix in RB*(G);
(ii) any matrix that commutes with all the matrices in R(G) is
a member of L*(G).

NoTATION. We let diag (X, X,, --+, X,), denote the direct sum
of the square matrices X, X,, ---, X,:
X, 0 0
0 X, 0
diag (le XZ: M) Xk)k =

0o 0 0 --- X,

We set [X),=X,. If k>1and X, X,, --+, X, are square matrices
of the same size, we set

X, 0
0 X2

[
o O

0O 0 0 0 - X,
X, 0 0 0 .-+ 0

We construct certain of the matrices in R(G), where now the
elements of G are ordered according to (4), (5), (6), (7). Let % be
fixed, 1 <4 < m. Since H,_, is normal in H,, V,_.,a;, = a;P;,_(a;)V;_,
where P;_(a;) is a t X t permutation matrix (¢ as in (6)). Then,
since

(8) agieHi—l ’

and because of (7), V,a; = Pi(a,)V;, where Pya;) is permutation
matrix with the structure

(9) Pa;) = [Pi-a)), Piy(a;), -+, Piy(a;), Pi—l(a/i)]ni .

In (9), P,_(a;) is another ¢ X t permutation matrix.
Because of (7), we also have for any g € H;_,, that V.9 = Pi(g)V,,
where the permutation matrix P,(g9) has the structure

(10) Py(g) = diag (Pi-i(9), Pies(9), ++, Pis(9))n, geH;.,.

In (10), P(g) is a block scalar matrix. The diagonal blocks P;_(g)
have dimensions ¢t X ¢. Furthermore, as g runs over the elements of
H;,, P,_,(9) runs over all the matrices of R(H,.,). Since H, is
generated by H;_, and a;, the matrices P,(g9) for gec H;_, and Pia;)
generate R(H,).
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Because of the ordering of the elements of G, the following
block scalar matrices:

(11) Q(g) = diag (P(9), *++, P(9)u , geH,_,org=a,,
(12) u = nftn; ,

are the matrices in R(G) determined by the ge H,_, and by ¢ = a,.
Here Q(g) is n X n.

We now prove our theorem by the following induction argument.
Suppose for a fixed 7, 1 <% < m, that B= AA’ and that

(13) AQ(9) = Q(9)A , for any ge H,_, .

(In particular this is satisfied if ¢ = 1 since then the only such Q(g)
is I,, the m x n identity matrix.) We shall then show that a
generalized permutation matrix 7' exists such that B = (AT)AT)
and such that ATQ(g9) = Q(9)AT for any ge H;_, and for g = a,, and
80, in consequence, for any g€ H;. Thus the induction will eventually
yield a generalized permutation matrix T) such that B = (AT)(AT)
and such that AT\Q(g) = Q(9)AT, for any geG. It will now follow
from (ii) that AT, e L*(G), and the proof will be complete.
Hence assume B = AA’ where A satisfies (13). Partition

(14) A=(AW,B)7 1§a,/8§v=niu!

into blocks of dimensions t x t. As Q(g) for ge H,_, is a block
scalar matrix with the blocks P,_,(9) of R(H;_,) on the main block
diagonal, it follows from (ii) and (13) that each

(15) A,pe L*(H,_y) , l1=sa,B=v.
Since Be L*(G), BQ(a;) = Q(a;)B so that if

(16) M= A7'Q(a)A

then,

17) MM =1,.

As A is unimodular the elements of M are integers. Hence (17)
implies that M is a generalized permutation matrix. Partition A4, A7,
Q(a;), and M into t X ¢ blocks. As each block of A lies in L*(H;-,)
and as A~' is a polynomial in A, each of the ¢t X t blocks of A, of
A7, and of Q(a;) is a linear combination of a finite number of ¢ X ¢
permutation matrices. Therefore each ¢ X ¢t block of M is a linear
combination of a finite number of ¢ X ¢ permutation matrices. A
permutation matrix is doubly stochastic in the sense that the sums
across each row and down each column all have a common value.
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As linear combinations of matrices doubly stochastic in this sense
remain doubly stochastic, each ¢ X t block of M is doubly stochastic.
Let M, be a typical ¢ x ¢ block in M. Since M is a generalized
permutation matrix, M, contains at most one nonzero element in each
of its rows and columns. As M, is doubly stochastic, it now follows
that M,, if it is not the zero matrix, is either a permutation matrix
or the negative of a permutation matrix. Since M is a generalized
permutation matrix, it follows that, after partitioning into ¢ X ¢
blocks, M is a “generalized permutation matrix” in that it has exactly
one nonzero block in each of its block rows and in each of its block
columns. Each nonzero block is + a permutation matrix.

There exists a permutation matrix R consisting of ¢ X t blocks
which are either the ¢ X t zero matrix or I, such that R'MR is a
direct sum of cycles. That is, R'"MR = diag (E,, E,, ---, E,), where

(18) EB = [Es,u E8,2; Tty E«S,es]es ’ 1= 0 =r.

Here each Ej, is + a t X t permutation matrix.
Note that RQ(9) = Q(g9)R for any g € H,_, since each such Q(g) is
block scalar when partitioned into ¢ X ¢ blocks. Thus

ARQ(g9) = Q(@AR, for any ge H,_,,
and
(AR)'Q(a;)AR = R'MR

is a direct sum of E, E,, ---, FE,. Thus if we change notation and
replace AR with A and R'MR with M, we have (13), (14), (15), (16),
(18) and

M= diag (Ely E29 tt Er)r .

Our immediate goal is to prove that each ¢; is n; and that » = w.
Because of (8)

M = A7'Q(ar)A
= A'Q(9)A for some ge H,_, ,
= Q(9) by (13) .
Hence each cycle E; of M has the property that
Eyi

is block scalar. This is not possible if e¢; > n,. Hence each e; = n,.
Counting rows in M we get t(e;,+¢e + --+ +e¢)=mn. If any
e; < n; we would have
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(19) r>u.

Let A, = (A1, Auyzy o0, Asy), 1 =a =v, be the block rows of
A. For each fixed d such that 0 =<d < u it follows from (9), (11),
and Q(a;)A = AM that

(20) Pi—l(ai)Adni+k = Adn,;-l—k—lM , 2=sk=m,.

Let w, =0 and let ws =¢, +¢,+ --+ + ¢ for 1 <6 < r. Then (20)
implies than for 2<k<#n,and 0 o0 =7r — 1,

(Adn¢+k,w5+1y ° Adni+k,wa+1)

(21)

= i—l(ai)l—k(Adni+1,w5+ly . Adni+1 wsr) B .

For each fixed d, 0 such that 0 =<d <u, 06 <7, let F;5; be the
submatrix of A containing the blocks A, withdn;, +1=a = (d + 1)n;
and w; + 1 =< B < wsy,. Since each A, € L*(H;_,), each row of a
given A4, is a permutation of the first row of this A,z Since
P;_(a;) and E;., are generalized permutation matrices, this fact and
(21) imply that each row of F,; is a generalized permutation of the
first row of F,;. Thus if we add all the columns of Fj; after the
first to the first column of F,; we produce a new matrix Fj; in
which the integers in the first column of F,; are all equal, modulo 2.
Next add the first row of F,; to all the other rows of F,; to get a
new matrix F,;. Then all the integers in the first column of F,;
below the top element are zero, modulo 2.

Now partition A = (F;) into its blocks F,;. For each fixed
0,0 =0 <7, add to that column of A that intersects F,; at the
extreme left of Fj;, all the other columns of A that intersect Fl;.
This produces a new matrix A = (F,;). For each fixed d, 0 < d < u,
add the topmost row of A that intersects F,, to all the other rows
of A that intersect F,,. We get a new matrix A = (F,;). The »
columns of A that intersect F); at the extreme left of F,;, 0 <& < 7,
may now be regarded as vectors in a u dimensional vector space over
the field of two elements. As r > u, these vectors are dependent
and so A (and hence A) is singular, modulo 2. This is a contradic-
tion since the determinant of A is +1.

Consequently each e¢s =n;,, 1 <6 <7, and r = u.

Now let E,, = ¢,,E,, where ¢,,= +1 and E,, is a permuta-
tion matrix. Let 0 be fixed, 1 £ 6 < u. Suppose that P;,_(a;) has a
one at position (1, ®) and let E;, have a one at position (1, ). Let
K;,, be the permutation matrix in L(H,_,) with a one at position
(¢, w). (Ks1 is the matrix in L(H,_,) representing h,h."; see (2) and
(5).) Then E;s, = E;,K;, has the same first row as P;_,(a;). Similarly,
by induction, we determine Kj,, in L(H;_,)), 1 < s < n;, such that the
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permutation matrices
EB:S = Ké,s—lE&sKS,s ) 1 < 8 < ni »

each have the same first row as P,_(a;). Then let

S; = diag (Ity Ps.1Ks 1y Ps1Ps,3 K00 * 2, (Jl;[l ¢Syﬂ'>K8’ni—l>ni )
and let S = diag(S,, S;, -+, Su).. Then
S'MS = diag (K, E,, -+, E,),
where

(22) E& - [Es,1, Eﬂ,zr ctty Eya,ni—ly + E‘s’”i]”bi ’ 1 é 5 é U .

In (22) each E‘B,,», 1=5<m, 1=<6=wu, is a permutation matrix
with the same first row as P, ,(a;) and each

ES,ni’ léaéur

is some unknown permutation matrix.

Now SQ(9) = Q(g9)S if ge H,_, since S is block diagonal with its
blocks in L*(H,_,) whereas Q(g9) for ge H,_, is block scalar with its
blocks in R(H;_,). Thus if we change notation again and replace AS
with A and S’MS with M we retain the validity of (13) and (16) and
now

(23) M = diag (E,, E,, -++, E,), .

Since for any ge H,_,, aj'ga; = ge H,_,, it follows that for any
g € H;_, there exists a g € H;_, such that Q(9)Q(a;) = Q(a,)Q(g). Hence,
using (9), (10), and (11), we find

(24) P,_(9)P;_(a;) = P;_(a;)P;_(7) , 9,€eH,_,.

If we let ge H,_, be such that P, ,(g) has a one at position (1, ®)
then (24) says: row @ of P,_(a;) is determined in terms of row one
of P, i(a;).

Now for ge H;_;:

QOM = Q(9)A7'Q(a)A

= A7Q(9)Q(a:)A by (13),

= A7Q(a.)Q(9)A since ga; = a.7 ,
= A7Q(a)AQ(7) by (13) ,

= MQ(9) .

Hence, for fixed 6 and 7, 1 <6=<u, 1<j<mn, it now follows
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(using (10), (11), (22), and (23)) that
(25) Pi—l(g)Es,j = Es.jP¢—1(g) ’ 9,9 H,_,.

As with~(24), (25) determines each row of E‘M in terms of the first
row of Ej;,;. Consequently
(26) Ey,=P_(a), 1<6=zu, 1=j<n,.
We also have (8), hence
M = A7'Q(a)A = Q(a.)"
by (13). Hence, for each 6, 1 =6 = u,
(27 Eyi = Pya,)" .

Each side of (27) is a block diagonal matrix. Equating the topmost
diagonal blocks we get

[.;/E[l Eya,j][iE'S.ni] = P;_y(a;)"" _«t~1(ai) .

Hence, by (26),
iEN’E,ni - _i—-l(ai) ] 1 é 5 é U .
We have now proved that M = Q(a;). Hence Qa,)A = AQ(a)).
As indicated earlier, this is enough to complete the proof.
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