ON THE EXTENSIONS OF LATTICE-ORDERED GROUPS

J. ROGER TELLER

1. Introduction. Throughout this paper A =0,a,b, +++, 4 =26,
a, B, +--and G will be abelian partially ordered groups (p.o. groups). G
is a p.o. extension of A by 4 if there is an order preserving homomorphism
(o-homomorphisn) 7w of G onto 4 with kernel A such that 7 induces an
o-isomorphism of G/A with 4, (i.e. m(g) > ¢ implies g + A contains a
positive element). If A and 4 are lattice ordered groups (l-groups)
then G is an l-extension if G is an l-group, 7 is an l-homomorphism
and 7 induces an l-isomorphism between G/A and 4. In this case A
is an l-ideal of G.

If G is a p.o. extension of A by 4 then for each « € 4 choose (@) € G
such that w(r(a)) = @ and 7(d) = 0. Define

fla, B) = —r(@ + B) + r(a) + r(8) for all a,Re4

and
Qs={acA|r(@) +a=0} for aed"={6ecd|o=6}.

Then the following conditions are satisfied for all a, B8, in 4.

(1) fla, B =18, a)

(i) Sfla, 0) = f(6,@) =0

(iii) fla, B) + fla + B,7) = fla, B + ) + £(8, 7).

Moreover, for «, B8 € 4t we have

(iv) Q. #9

(V) Qu+ Qs+ £, B) S Quis

(vi) Q= A".

Conditions (iv)—~(vi) are due to L. Fuchs and can be derived from the
results in [5].

Now if G=A4 x 4 and we define (a, @)+ (b, B)=(a + b + fla, B), @ + B)
and (a, a) positive if a«e 4* and a€Q,, then the mapping (a, @) —
r(@) + a is an o-isomorphism of G onto G. In what follows we usually
identify G and G.

Conversely, if we are given A, 4, f: 4X 4—A and Q: 4*—{subsets of A}
such that f and @ satisfy (i)~(vi) then G is a p.o. extension of A by
4 and the mapping (a, @) — « is the corresponding o-homomorphism.

Two p.o. extensions G = (4, 4,f,Q) and G = (4, 4,f',Q") are
o-equivalent if there is a function ¢: 4— A such that
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S, B) = fla, B) — Ha + B) + ta) + ¢B)
and
Q; = _t(a) + Qw .

This is equivalent to the fact that there exists an o-isomorphism of
G onto G’ that induces the identity on A and G/A = 4.

In Theorem 1 we give necessary and sufficient conditions that a
p.o. extension G = (4, 4, f, Q) be an l-extension. If G is an l-extension
such that for each a € 4*, Q, is a principal dual ideal, that is, generated
by a single element, then Lemma 2.2 shows G is o-equivalent to the
cardinal sum A B 4. We show in Lemma 2.3, if A is a lexicographic
extension of an l-ideal B (notation: A = {B)) then for each «e 4%,
Qs = A or Q, is a principal dual ideal. Theorem 2 shows that if G
is an l-extension of A = <B) then G contains an l-ideal H= A H J,
JE 4 and G is an l-extension of H by the ordered group (o-group)
A/J. In addition if 4 is an o-group then G = {4 H J).

Theorem 3 gives a method of constructing l-extensions from an
abelian extension G = (4, 4, f) that depends only on the cardinal
summands of A.

In §4 we use the above to investigate those l-extensions of an
l-group A with a finite basis. We show that to an o-equivalence every
l-extension of such an l-group A by an l-group 4 is determined by
a meet-preserving homomorphism of the semigroup 4+ to the semigroup
of all cardinal summands of 4 such that f(«, 8) € H,.p.

2. Extensions of l-groups. A subset @ of A is a dual ideal if
ac@ and b = a implies beq.

LemMA 2.1. If A is an l-group and Q S A is a dual ideal that
satisfies

) QN b+ A*) has a smallest element for all be A,
then Q is a sublattice of A. Thus Q 1is a lattice dual ideal.

Proof. Let a,be@Q, then a \V be@ since Q is a dual ideal. Also,
a,be@n[(@ A b) + A*]so by (*) there is an element x e @ N [(a A b) + A*]
such that « < a and * <b. Hence, t<a Absoa AbeQ and Q is
a sublattice of A as desired.

If E is a subset of A then the dual ideal generated by E (notation:
DI(E)) is {rc A|x = y for some yec E}. If a dual ideal is generated
by a single element we say the dual ideal is principal.

THEOREM 1. Suppose A and 4 are l-groups and G = (A4, 4, f, Q)
18 a p.o.-extension of Aby 4. Then G is an l-extension if and only if
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(1) if a ANB =20 then Q,N[Qs+ b+ fla — B, B)] has a smallest
element for all be A,

and

(2) Qo + Qp + fla, B) = Quup for a, Bed".

Proof. Let G be an l-extension. Suppose be A and a, Se 4" are
such that a A8 =60. Let vy=a — B. For aecA, the mapping of
(¢, @) — «a is an l-homomorphism so (b, v) V (0, ) = (d, &) where d € A.
Now (d, @) = (0, 6) implies de@, and (d,a) = (b,v) implies (0,0) =
d, ) =, =[d—b— f(v,B),8] so d—b— f(v,8)€Q, Hence,
deQaN[Qs+ b+ fla— BB IfceQun|[Qs+ b+ fla—B,A)] then
a similar argument shows (¢, @) = (b,v) and (¢, @) = (0,0). Hence,
(c,a) = (d,®) and ¢ = d. Therefore, d is the smallest element in
Q.N[Qs + b + fla — B, B)] and (1) holds.

To show (2) let a, Be 4+. If either « =6 or 8 =6 then (2) is
trivial, so suppose « > 6 and B > 0. Since G is a p.o.-extension we
have Q, + Qs + f(®, B) & Quip. For the reverse containment, let
erm—i—B’ yeQm b=u— Yy _f(a; 18) and (ar 18) = (b’ B) \% (O’ 0)' Now
(¢, + B) = (0, 0) if and only if ¢ € Q. (¢, @ + B) = (b, B) if and only
if ce@, + b + f(o, B). On the other hand, since (a, 8) = (b, B) V (0, 6),
c€QuisN[Qy + b+ fla, B)] if and only if ceQ, + a + f(a, B). Hence
Qo+ N [Qs + b + fa, B)] = Q. + a + fl(a, B) and by (1) @ is the smallest
element in @z N (Qy + b). Therefore,

[Qw + b +f(a’ B)] ﬂ Qw+l3
- Qw +f(ar:8) + [QBﬂ(Qo+b)] ngﬁ +f(a748) +QB‘

By the choice of b, x€[Q, + b + f(a, B)] N Quip and Q, + Qs + fla, B) =
Qw-i—ﬁ'

For the sufficiency assume (1) and (2) hold and suppose (b, 8) @G
and that (b, 8) is not comparable with (0, #). Let ¢ be the smallest
element in Qp,, N [R-@r,+0+ f(B, —(BAO))]. Then (¢, BV 0)=(0,0)
and (b,8). If (a,a)=(,B),(0,0) then a € Q, N [Qu—ps+ b+ fla— B, B)].
Condition (1) implies (*) s0 Q,—gvey 18 a sublattice of A and from (2)
we can derive the equality,

Qo N [Qup + 0 + fla — B, B)] = [Qu-gve + fla — (B V 0), 8V 0)]
+ {QBV: n [Q—(B/\O) + b +f(/8; “‘(/8 N 0))]} .

Since ¢ was chosen as the smallest element we have a€Q,_pve +
fla— BV 6,8V 0 +c and therefore (a,a) = (¢, 8V 0). Hence,
(¢, BV O =(®,L V(0,0 and G is an l-extension of A by 4. It can
be shown that conditions (1) and (2) are equivalent to those given by
L. Fuchs [5]. The entire proof was given so that this paper will be
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more self-contained.

An l-group G is a cardinal sum of l-ideals A,, 4,, ---, A, (notation:
G=A,@---@A,)if G is the direct sum (notation: G=A4,PA,P---PHA,)
of the A4; and if for a;c 4,0, + +-+ +a, =0 if and only if a,=0
fori=1, -+-,n. It can be shown that a direct sum of l-ideals of an
I-group is actually the cardinal sum. G is a lexico-extenston of an
l-group A (notation: G = {4)) if A is an l-ideal of G, G/A is an o-group,
and every positive element in G but not in A exceeds every element
in A. In this case we note that if a + A <b+ A in G/A then each
element of b + A exceeds every element of a + A.

LEMMA 2.2. Suppose G is an l-extension of A by A.

(@) If Qu= A for all 6 + ae 4" then G = {AD.

) If Q, is a principal dual ideal for each we A™ then G 1is
o-equivalent to the cardinal sum, A B 4, of A and 4.

Proof. Let G be an l-extension of A by 4.

(a) If Q, = A for all 6§ = o e 4, then every positive element of
G\A exceeds every element of A. From (1) it follows that 4 is an
o-group and therefore G = {4).

(b) If Q, is a principal dual ideal for each «a e 4+, let x, be the
generator of Q.. By (2) we have x, + ®5 + f(@, B) = X415 Let H=
AR 4, then H= (4,4, =0,Q = A*) is an l-extension of 4 by 4.
Define t': 4t — A as t'(a) = x,. Then ¢’ induces a function ¢: 4— A
and it follows that for a, Be 4

0 =f'a, B) = fla, 5) — Ha + B) + Ha) + UB)

and
At =Q, = —tla) + Q, for ae g+,

Hence G and H are o-equivalent l-extensions.

LEMMA 2.3. Let A=<{B),A#B and G=(A4,4,f,Q) be an
l-extension. Then for ae 4+ either Q, = A or Q, is a principal dual
ideal.

Proof. If A is an o-group, ¢ c 4+ and @, # A then thereisbe 4
such that b < a for all ¢ €Q,. Hence, (b, @) \ (0, 6) = (¢, @) implies ¢
is the smallest element in @, and therefore @, is a principal dual ideal.

If A is not an o-group then BC A and A/B is an o-group. Suppose
aedt and Q, # A, then there is 0 > be A\B such that b + B= « + B
for all x€@Q,. For suppose for each 0 > bec A\B there is an 2€Q,
such that b + B=« + B, then b + heQ, for some h e B. Now for
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any c€ A there is 0 > ac A\B such that « + B<c¢+ Bsoc>a+h
which implies ¢c€ Q,. Thus @, = A, a contradiction.

Now @, N (b + Q) must have a smallest element so it suffices to
show Q, S b+ Q,. To this end let 2€Q,. If v + B< b+ B then
either x + B < b + B which impliesx < band be @, or x + B=b + B.
Both cases lead to contradictions so « + B > b + B which implies > b
and x€b + @,. The proof is complete.

COROLLARY 2.1. If A =<B) then (1) may be replaced by

1Y If a,Bed* and a N\ B = 0 then either Q, and Qg are principal
dual ideals or Q, is principal and Qs = A.

Proof. If G is an l-extension and «, B€ 4" such that a A 8 =0
then (1) implies @, N Qg must have a smallest element and (1’) follows
from Lemma 2.3. Conversely, if « is the smallest element in Q,, ¥ the
smallest in @z and be A then « VV (¥ + b + fa — B, B) is the smallest
in QN[Qs+ b+ fla—pB,B)]. If Qs= A then x is the smallest and
if Q.=A4,y+ b+ fla — B, L) is the smallest.

From the above it follows that if A =<B) and 4 is an o-group
then (1) may be replaced by

1"y For each a4, Q,= A or Q, is a principal dual ideal.

From (2) of Theorem 1 we have: The only l-extensions of 4 = {B)
by an Archimedean o-group 4 are o-isomorphic to the cardinal extension
or the lexico-extension.

THEOREM 2. Let A = <{B) and 4 be l-groups and G = (4, 4, f, Q)
be an l-extension. Then G contains an l-ideal H which is o-isomorphic
to AB J,J S 4, and G ts an l-extension of H by the o-group 4/J.

Proof. By Lemma 2.3 either @, = A or @, is principal for all
aecdt. Let J+={aecd"|Q,# A}. Then by (2) of Theorem 1, J* is
a convex subsemigroup of 4*. Let J be the l-ideal of 4 generated
by J*and let H= (4, J, f’, Q) where f'=f|(J X J)and Q, = Q,, x € J .
Then H is an l-ideal of G and Q) is a principal dual ideal for all a e J*.
Therefore by Lemma 2.2, we have H o-isomorphic to A @& J.

By way of contradiction, if 4/J is not an o-group then there are
X, Ye(d4/J)" such that X A Y=J. Let X=a+ J, Y =8+ J then
XANY=@+IHDANB+H=@AB)+J=JsoaNnBecd. Now a =
@nB)+7,B8=(@APB)+ 0wherey A d =26 and v,0¢J, hence Q, =
A = @;. This contradicts Corollary 2.1. Thus 4/J is an o-group.

Finally, the natural mappings induce an o-isomorphism of G/H onto
4/J. Hence, G is an l-extension of H by the o-group 4/J.
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We note that if ae4"\J*™ then Q,=A so if 0 < geG\H then
g > a for all acA.

COROLLARY 2.2. If 4 is an o-group and G = (4, 4, f, Q) is an
l-extension then G = (A B J).

Proof. If 4 is an o-group then 4 = <J). The corollary follows
from the results of Conrad [3, p 235] since A @ J contains all the
nonunits of G.

We note that if G is an l-group with two disjoint elements but
not three then G is an l-extension of an o-group by an o-group and
hence we have the structure theorem of Conrad and Clifford [4] for
the abelian case.

3. l-extensions with each @, generated by a coset of an l-ideal.
Throughout this section we will consider those l-extensions G =
(4, 4, f, Q) where, for each a € 4%, Q, = DI(x, + H,), H, an l-ideal of A.

LEMMA 3.1. Suppose G = (A, 4,f, Q) is an l-extension of the
above type. Then there is an l-extension G' = (A, 4, f', Q') o-equivalent
to G with Q, = DI(H,) for each aec d*.

Proof. If G is an l-extension and @, = DI, + H,) for each
a € 4%, then there is a mapping t: 4* — A defined as t'(a) = z,. Since
each a € 4 has a unique representation « = a* — a~ where a* = a V 6,
a- = —(a N\ 0), we can extend ¢’ to a mapping t: 4— A by defining
W) = t'(at) — t'(a).

Let f'(a, B) = fa, B) — t(a + B) + t(a) + t(B) and @, = —t(a) + Qu.
It is easily verified that f’ and @ satisfy conditions (i)-(vi) so G’ =
(4, 4, f', @) is a p.o. extension of A by 4. From Theorem 1 it follows
that G’ is an l-extension. Clearly, G’ is o-equivalent to G and Q' =
DI(H,).

For those l-extensions G of A by 4 with @, as above the question
of o-equivalence leads to an investigation of the l-ideals of 4. To
show this we need the following.

LemMA 3.2. If A is an l-group, H and K l-ideals of A and
DIy + H)=DIz+ K) then y + H=2 + K and H= K,

Proof. Suppose DIy + H) = DIz + K) where H and K are l-ideals
of A. If x =2 —y then DI(H) = DI(x + K). Since H< DI(x + K),
0eDIx+ K). If 0¢x+ K then 0 >x+ k, keK so x + K contains
a negative element. Since DI(H) is a semigroup, 2(x + k) € DI(x + K)



ON THE EXTENSIONS OF LATTICE-ORDERED GROUPS 715

so2x+2k=x+1,1e K. Hence, x + (2k —1) = 0. This is a contra-
diction since ¢ + K can contain no positive elements. Thus Oez + K
and © € K. Moreover, we have DI(H) = DI(K) which implies H = K.
For if H # K then, without loss of generality, there is 0 > he H\K.
But he DI(K)so h > ke K. Hence, 0 > h > k, and by convexity & € K,
a contradiction. Thus, H=¢*+ K=2—y + K and y + H=2 + K,

Now if G = (4, 4, f,Q) and G’ = (4, 4, f', Q") are two l-extensions
with @, and Q. generated by l-ideals H, and H, of A, then G and G’
are o-equivalent if and only if there is a function ¢: 4 — A such that

fa, B) = fla, B) — ta + B) + Ha) + ¢(B)
H!= H, and t(e) e H), .

The question at this point is which l-extensions will have Q, generated
by a coset of an l-ideal. We give a partial answer to this question
in the next section.

We complete this section by giving a method for the construction

of l-extensions of I-groups.

THEOREM 3. Suppose A and 4 are l-groups and G = (4, 4, f) 1is
an abelian extension of A by 4. For each a e 4%, let H, be a cardinal
summand of A such that

1*) ¢f a ANB=20 then H, N Hy =0

(2*) Hw + HB = Hw+B and f(ay /8) € Hw+ﬂ‘

If Q, = DI(H,) then G = (A, 4, f, Q) is an l-extension of A by 4.

Proof. Clearly (iv) is satisfied and for any ae4*, (2*) implies
H, & H,. From (1*) it follows that H, = 0. Thus Q, = A* and (vi) is
satisfied. Moreover, from (2*) we have DI(H, + H, + f(«, B)) = DI(H,.;)
so DI(H,) + DI(Hp) + f(«, B) = DI(H,.z) and (2) of Theorem 1 holds.

If a N8B =20 then H,N Hy =0 so H,,p = H, P Hy and since H,
and H; are l-ideals we have H,,s = H, B Hs. Since H,; is a cardinal
summand we conclude A = H,,z, 8D =H, B H; B D where D is an
l-ideal of A. Suppose be A and b + f(a — B, B) = (a,, a,, a;) where
a,€H, a,ec H, and a,e¢D. We show (a,,0,a,V 0) is the smallest
element in

QN+ fla —B,8) + &) = DI(H,) N DI + fla — B, B) + Hp) .

Now (a,, 0, a;\V0)=(a,, 0, 0) so (a,,0, a;\V0) € DI(H,). Also(a,,0,a;)=
(a5, 0, a;) = (ay, @, as) — (0, a,, 0) so (a,,0,a;)ed + fla — B, B) + Hg and
(@1, 0,a, V 0) e DI(b + fla — B, B) + Hp). 1If

(u, v, w) e DI(H,) N DI(b + fla — B, B) + Hy)

then v =z h,e H,,v=0 and w=0. Also w=a,v=a,+ h; where
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hge Hy and w = a,. Hence, (u, v,w) = (a,, 0, a; \V 0) and (a,, 0, a; \V 0)
is the smallest element in Q, N (b + fla — B, B) + Qp). Thus G is an
l-extension of A by 4.

We note that, since any two representations of an l-group as a
cardinal sum have a common refinement, the cardinal summands of an
l-group form an additive semigroup closed with respect to intersection.
Thatis,if H=AB A" and H=BH B then A=ANB BANDHB),
A=AnNnBBANB)and B=ANB BANB). Thus H=AH
A=A+ B B@ANDPB). Hence, A+ Bisa cardinal summand of G.

4, Extensions of l-groups with a finite basis. An element ¢ of
an l-group G is basic if 0 < g and {xreG|0 <z < g} is ordered. A
subset S of G is a basis for G if S is a maximum set of disjoint
elements and each g € S is basic. Conrad [2] has shown that an l-group
A with a finite basis of % elements is a lexico-sum of % ordered subgroups.
In particular, A is the cardinal sum of two l-groups each with a basis
of fewer than n elements, or A is a lexico-extension of such an l-group.
In this section we are concerned with l-extensions of l-groups with
finite bases.

LEmMmA 4.1. Suppose A has a finite basts and G = (4, 4, f, Q) is
an l-extension of A. Then for acd*, Q, = DI(x, + H,) where H, is
an l-ideal of A.

Proof. Let A have a basis of n elements. The proof is by induction
on n.

It follows from Lemma 2.3 that we need only consider A = BB C
and if n =1 then H, = A or H, = 0.

So suppose the theorem is true for all l-groups with a basis of
fewer than » elements. Let ¢: A — B and 4: A — C be the projections.
Now B has a basis of fewer than n elements and G’ = (B, 4, of, Q)
is an l-extension of B so by induction ®Q, = DI(x + M) where x € B
and M is an l-ideal of B. Similarly, +Q, = DI(y + N) where yeC
and N is an l-ideal of C. Since Q, is a sublattice of A, a straight
forward argument shows @, = DI((x +y) + (M + N)) and M + N is
an l-ideal of A. The proof is complete.

The following theorem shows that for an l-group A with a finite
basis every l-extension G of A by an l-group 4 is o-equivalent to an
l-extension constructed by the method described in Theorem 3. That
is, to an o-equivalence, every such l-extension is determined by a
meet-preserving homomorphism from the semigroup 4* to the semi-
group of all cardinal summands of A such that f(«, 8) € H, 4.

In what follows we may, by Lemmas 3.1 and 4.1, assume for each
a € 4+ that Q, = DI(H,).
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THEOREM 4. If A has a finite basis and G = (4, 4, f, Q) is an
l-extension of A by an l-group 4 then, for «, Be 4+

(@) ifaNB =0 then H,NHy =0

(b) Hw + Hﬂ = Hw+B and f(ay B) € Hw+ﬁ

(¢) H, ts a cardinal summand of A.

Proof. Let A have a finite basis of n elements and G be an
l-extension. By (1) if @ A 8 =0 then Q, N Qs must have a smallest
element w. Since 0€Q, N Qg w =0 and therefore we H, N Hs. If
H, N Hg + 0 then there is h € H, N Hg such that 2 < w and he @, N Qg
a contradiction. Thus (a) holds.

From (2) we have

DI(H.) + DI(Hp) + f(a, 8) = DI(Ha.¢)
S0
DI(H, + Hg + f(a, B)) = DI(H,.y) .

Thus by Lemma 2.3, H, + Hy = H,.p and f(«, B) € H,,s and (b) holds.

Now if A = B) then for each ac 4%, H, =0 or H, = A and (c)
follows in a trivial way. So suppose A = B @ C and (¢) is true for
all I-groups with a basis of fewer then n elements. If ¢: A— B and
4:A— C are the projections then G’ = (B, 4, of, #Q) and G" =
(C, 4, ¥f, v@Q) are l-extensions where @Q, = DI(®H,) and +@Q, =
DI(+H,). Hence, by induction, ¢H, is a cardinal summand of B and
+H, is a cardinal summand of C and we have A =B R C =9H, H
MmByvH, 8B N=9pH,B+vH, B MMBN=H,H M®B N where M is an
l-ideal of B and N is an l-ideal of C.

Using the results of Conrad [3, p. 223] we conclude that the minimal
cardinal summands of an l-group A with a finite basis are those l-ideals
of A that are lexico-extensions and are not bounded in A.

Added in Proof. The results of this paper have been extended
by the author to include central extensions G of an abelian l-group
A by an arbitrary l-group 4. For central extensions, Theorem 1 (1)
reads: if aANB =46 then Q,N[Qs+ b+ f(B,«a — B)] has a smallest
element for all be A. In Theorem 2, G/H is still o-isomorphic to the
o-group 4/J but G need not be a central extension of H by 4/J. The
remaining results are unchanged for central extensions.
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