SUPERADDITIVITY INEQUALITIES

E. F. BECKENBACH

1. Introduction. In the theory of analytic inequalities, a principal
tool is the notion of convex function [6, 1]. A hierarchy of convexity
conditions, useful in this theory, can be expressed as follows: Let
K*(a, b) denote the class of functions p that are positive and continuous
on an interval ¢ < x < b and such that sign (x) [p(x)]* is convex on
[e, b] if a 0, and log p(x) is convex on [a, b] if a = 0; then for all
real a and B with 8 > a we have K%a, b) C K*(a, b) [8].

A (different sort of hierarchy has been established by Bruckner
and Ostrow [3]. In the present paper we are concerned with an
illustration and some applications of this latter hierarchy. To describe
it, we need a few definitions.

2. Definitions. Let K(b) be the class of real-valued functions f
that are continuous and nonnegative on a given closed interval
0 <2 <0b and vanish at the origin, f(0) = 0.

The average function F of a function fe K(b) is the funection
Fe K(b) defined by

F(x) = %S:f(t)dt , 0<uw

FO)=0.

A

b,

The function fe K(b), with average function F, will be said to be of
class

K,(b) if and only if f is convex on [0, b], i.e., if and only if for
every « and y €]0, b], and for every «,0 < a <1, we have

(1) Sflaw + (1 — a)y] = af(@) + (1 — &) f(y) ;

K,(b) if and only if Fe K,(b);

K,(b) if and only if f is starshaped (with respect to the origin)
on [0, b], i.e.,, if and only if for every x€]0,b], and for every
a,0=a =<1, we have

(2) flax) = af(x) ;
K,(b) if and only if f is superadditive on [0, b], i.e., if and only
if for every x and y [0, b] such that also (x + %) €[0, b] we have
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(3) fl@+y)=7@+ 1) ;

K(b) if and only if F'e K,(b);

Kb) if and only if F'e K (b).

If fe K,b), Kyb), or Kyb), then f is said [3] to be, respectively,
convex, starshaped, or superadditive on the average on [0, b].

If fe K,(b,), then clearly fe K;(b) for all positive b < b,.

3. The hierarchy. The following class-inclusion implications have
been established by Bruckner and Ostrow [3]:

K,(b) C Ky(b) C Ky(b) C K (b) < Ky(b) < Kq(D) .

They have further given examples to show that none of the
reverse implications are valid; i.e., they have given examples showing
that

(4) K(b)ZKyb), Ki(b)Z K(b), K(b)Z Ky(b), Ki(b)Z K,(b), Ky(b)Z K(b) .

Thus they have pointed out that the function f defined on [0, 1]
by

f@) = 2" — o

is convex on the average on [0, 4/9] but convex only on [0, 1/3], that
the function g defined on [0, «) by

¥?, 0=rx=1,

g(x)z{x’ x>1,

is starshaped on [0, b] for an arbitrarily large value of b but convex
on the average only on [0, 1], that the function A defined on [0, )
by

x) =n + (x — n)?, nzx<n+1, n=20,1,2 .-,

is superadditive on [0,b] for an arbitrarily larger value of b but
starshaped only on [0, 1], etec.

It is our purpose first to use a single illustrative function f and
its average function F' to establish the fact that none of the fore-
going reverse implications hold, and secondly to derive some general
inequalities for convex, starshaped, and superadditive functions and
to apply them to our particular illustrative functions.

4, Example. From

F(a) = %—S:f(t)dt , 0<aw<b,
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we obtain
Fi@) = Lf@) - LI 70dt = Lis@) - Fa,
X x°Jo X
whence
(5) f@) = F(a) + aF'@)

‘We might call f the inverse average function of F.
Let us consider the function F' defined on [0, ) by

F(x) = e, 0<2< oo,

€6) F@0)=0.

Then (5) gives
f@ =1+ D)o, 0<w <o,
T/

f(0)=0.

In the following Sections 5-9 we establish the maximum values
b; such that the function f defined by (7) is of class K;(b,), % =
1,2, ---, 6.

(7)

5. Convexity. A function f of class C” is convex on an interval
if and only if we have f”(x) = 0 throughout the interval.
For the function f given by (7), a computation yields
F@) = L — sa)ete.
x
Accordingly, fe€ K,(b) for
(8) b=b= 3,

but for no larger value of b. The function is concave on the interval
[1/8, ).
Similarly, for the function F' given by (6), we have

Fr(a) = %;(1 — 2m)etle

Thus the maximum interval of convexity of F'is [0,1/2], and F is
concave on the interval [1/2, ). Therefore f ¢ K,(b) for

(9) b=b=—,
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but for no larger value of b.

A function that is convex on a left-hand portion of its interval
of definition, and concave on the complementary right-hand portion,
is said to be convexo-concave [1]. Thus both the function f given by
(7) and the function F' given by (6) are convexo-concave on the
interval [0, ).

6. Starshapedness. A function f of class C’, fe K(b), is starshaped
on the interval [0, b], i.e., fe K;(b), if and only if [3]

(@) = %”_) for all e (0, b] .
For the function f given by (7), we have

Fay = L8 = La — o — e,

wS
whence it follows that fe K,(b) for

(10) b=b, =1/_3§;1 ,

but for no larger value of b.
Similarly, for the function F' given by (6) we obtain

Fr(w) — Eg—) - %5(1 — z)e e,

so that fe K(b) for
(11) b=b,=1,

but for no larger value of b.

Thus it happens that the maximum interval of starshapedness of
the function f forms a golden section [7] of the maximum interval
of starshapedness of the function F.

7. Superadditivity. Tests for superadditivity appear to be difficult
to establish, and more difficult to apply. None are given, for
example, in the treatments [5] and [9] of superadditive functions. A
few tests, however, have been advanced by Bruckner [2]; see also
§ 14, below. One of Bruckner’s tests, which we shall use in order
somewhat to shorten our determination of the maximum interval of
superadditivity of the function f given by (7), and of the function
F given by (6), can be stated as follows:

BRUCKNER’S TEST. Let the function fe K(b) be convexo-concave.
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Then f s superadditive on [0, d], i.e., f€ K (b), if and only if

f(%+ x> +f<%— x) =< () for all we[O,—g—] .

In §§ 8 and 9, below, we shall prove the following results:
THEOREM 1. The function f, defined by
f(x)z(1+i)e—1/z, 0<z< oo,
x
f0)=0,
18 superadditive on [0, b] for
0<b=0b",
where b* s the unique positive solution of the tramscendental equation

_ 1 —deh
T Qe — 1

(approx. b* = 0.8955), but for mo larger value of b.
That is, the function fe K(b) for

(12) b=1>b,=b*=0.8955,

but for no larger value of b.

THEOREM 2. The function F, defined by

F)yse', 0<ax< oo,
F0)=0,

ts superadditive on [0, b] for

1
0<b=s )
log 2

but for no larger value of b.
That is, the function f e K(b) for

1
13 b=b, = ,
(13) "= Tog 2

but for no larger value of b.

8. Proof of Theorem 2. The method of proof we shall use is
largely the same for both theorems. Since the formulas are simpler
and the details shorter for Theorem 2, we shall treat it first and
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then follow substantially the same pattern for Theorem 1.
Relative to the function F' given by (6), consider the function G
defined for b€ (0, ) and x<[0, b/2] by

’

G(x; b) = g MO | g0l _ g gy %

G(—bz—; b) =0.

(14)

In accordance with Bruckner’s test, we shall establish the maximum
interval [0, ] of superadditivity of the function F' by determining
the maximum value b such that

G(w;b) < 0 for all @ e[O, %] .

In particular, for F' to be superadditive on [0, b], it is necessary
that we have

(15) G(0;b) = 2¢7%0 — 7P <0,

or

whence

Hence the function F' is not superadditive on [0,b] for any
b> b,. We shall show, however, that F' is superadditive on [0, b]
(and therefore, of course, on [0, ] for every positive b < by). That
is, we show that

(16) G(w; ) < 0 for all ze [o, %] .
By (14), we have

a 6(:0) =0,
and by the choice of b, we have also
(18) G(0; by) = 2~ — g=ib = () .

We shall prove somewhat more than is needed for what is claimed
in Theorem 2; namely, we shall show that we have not merely (16)
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but actually the strict inequality
(19) G(a; by) < 0 for all we (0, %) .

In §11, below, we shall make essential use of the fact that this is a
strict inequality.

If (19) did not hold, then, by (17) and (18), G(x; b;) would attain
a nonnegative maximum value at some interior point x, of (0, b,/2).
At x, we would have

dG(x: by = 1 g1l (be/2+2) _ 1 g~V bel2—x) — ()
dx (be/2 + ) (bo/2 — ) ’

and therefore we would have
(20) G(xo; be) = Qj(xo) =0,

in which the function @ is defined by

o0 = [1+ (22 oo — e, ae(L).,

The function @ is more tractable than the function G, in that it
permits us rigorously to establish the transcendental inequality (19)
by investigating only a quadratic function. We shall show that we
have

(1) D) < 0 for all we (0, %) ,

thus contradicting (20) and establishing the theorem.
A computation yields

Ao _ 26710

iR Y s

(22)

where @ is the quadratic polynomial function defined by
b 2

(23) Q(x) = (1 + log 2)a* — (1 — log 2)(56) .

Since

QO = —(t —log2)( %) <0,
Q(%) = 2]og 2(%) >0,

and the coefficient of x* in (23) is positive, it follows that Q(x) has
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precisely one zero on (0, b,/2), actually at

_ b /T —Tog2
2V1+TIog2’

0

being negative on (0, z,) and positive on (x,, b/2). Accordingly, by
(22), O(x) is strictly decreasing on (0, x,) and strictly increasing on
(%o, bs/2), Wwhence the desired inequality (21) follows from

0(0) = @(%) —0.

9, Proof of Theorem. 1. In place of the function G of §8,
relative to the function F' given by (6), we now consider, relative to
the function f given by (7), the function g defined for be (0, ) and
x €0, b/2] by

g(x; b) = <1 + 1 >e—'(b/2+z)

(24) + (1 41 )6-—1/(b12-x) _ (1 + _ll)_)e_m, ’ w;é_g_ ,

To prove the theorem, we shall show that the maximum value b
such that

b
. < —_
g(x; b) =< 0 for all xe[O, 2]
is given by (12).

In particular, for f to be superadditive on [0, b], it is necessary
that we have

90;b) = 2(1 + 2)o-un (1+ %)e_l,,,

- e_zli[b@e“”’ —D)—(1—4e)]=0.

(25)

Now, as we see through differentiation, on [0, o) the function «,.
defined by

a®) = b(2e™* - 1), 0<b< ™,

(26) a(0) =0,

is convex; a(b) is strictly decreasing from the value 0 at b =0 to a.
negative value at the root b, (approx. b, = 0.60) of the transcendental
equation
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2
e —2

which expresses the relation da/db =0, and then «(b) is strictly
increasing on [b,, ).
On the other hand, the function G, defined on [0, =) by

Bb) =1 — 4e'? | 0<b< oo,

@) BO) =1,

is strictly decreasing on its entire interval of definition.
Since

CW0<0mdﬂ®=%i%>0,

it therefore follows from (25), (26), and (27) that the equation
9(0;0) = 0
has a single root b€ (0, ), namely, at the solution
b=b,=b* = 0.8955
of the transcendental equation
a(b) = B0) ,
and that further g(0; b) satisfies the inequalities

9(0;0) <0, 0<b<d,,

28
) 9(0;0) >0, b>b,.

By (28), the function f is not superadditive on [0, b] for any
b > b,; it remains for us to show that f is superadditive on [0, b,].
For this, it is sufficient that we establish the inequality
(29) g(@;b) = 0 for all xe [0, %] :
By (24), we have
bi. 1\ —
30) o(25b.) =0,
2
and by the choice of b, we have also

G g8 = S — 1) — (L~ 4] = 0.
4

‘We shall prove that
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. b,
(32) 9(w;b) < 0 for all we <o, E) ,

thus establishing (29) and with it the validity of the theorem.

If (32) did not hold, then, by (30) and (381), g(x;d,) would attain
a nonnegative maximum value at some interior point x, of (0, b,/2).
At x, we would have

dg(x; b,) = 1 o1 bal2ta) _ 1 g1 ba/2—2) — ()
da (/2 + »)’ (/2 — @)’ ’

and therefore
(33) 9(a,; b4) =@x) =0,
in which the function @ is defined by

Plo) =[1+ b,,/21+ (e b4/21— J@E 7 7 Jereons

— <1 + %.)e—”h , xe <0, —bz—‘i> .

4

We shall show that we have

(34) P(z) < 0 tor all we (0, %) ,

thus contradicting (33) and establishing the theorem.
A computation yields

do 91 (bel2+2)
35 dop _ 2671000
(85) i ot

’

where ¢ is the cubic polynomial function defined by
oo = [-(8) -+ [ + o) 1]
Do) - (& [ -+ ]

(36)

Since
q(0) = [—3(%)2 — 2(%) + 1](924_)2 - —0.497(%)2 <0,
)=o) >

and the coefficient of 2°® in (36) is negative, it follows that g(x) has
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precisely one zero on (0, b,/2), say at & = «,. Then ¢(x) is negative
on (0,x,) and positive on (&, b,/2). Accordingly, by (35), @(x) is
strictly decreasing on (0, x,) and strictly increasing on (x,, b,/2), whence
the desired inequality (34) follows from

(0) = qn(%) ~0.

10. The reverse implications. The numbers b,;,, 1=1,2, ---, 6, as
given by (8)-(13), satisfy

bi—1<bty ’i:2v3;"'761

in accordance with the following table of approximations:

) by

0.3333
0.5000
0.6180
0.8955
1.0000
1.4428

SO W N

Accordingly, since b; is the maximum of all numbers b such that
the function f given by (7) is of class K,(b), it follows that fe K;(b;)
but f¢ K,_,(b;), whence

Kz(b@)¢K—1(bz)7 1= 2v 3: cty 6.

This establishes (4).
11. The sign of equality. In determining maximum intervals
of superadditivity, we have established the following results, except

for the specification of the conditions under which the sign of
equality holds.

THEOREM 3. With the notation of Theorem 1, we have
(37) f@+y) = f)+ f)
for all nonnegative x and y satisfying
r+y=b*.

The sign of equality holds in (37) if and only if either at most one
of x and y s different from 0 or else

*
w=y=E.
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THEOREM 4. With the notation of Theorem 2, we have

(38) F+y) =z F(x)+ F(y)
for all nonnegative x and y satisfying
1
= .
rrY= log 2

The sign of equality holds in (38) if and only if either at most one
of x and y s different from 0 or else
_ 1
2log2 °

Proof. We have only to discuss the conditions under which the
sign of equality holds in (37) and (38).

To establish the validity of Bruckner’s test, which we have used

in the proof of Theorems 1 and 2, we observe that if fe K(b) is
convexo-concave, then the difference

(39) [f@) + )] — f@+v)

is either nonincreasing, or nondecreasing, or first nonincreasing and
then nondecreasing, in each of its variables, in the triangular region

x:y:

r=0, y=0, r+y=>b,

and hence attains its maximum value either on the line * +y =10
or at the origin. For the functions with which we are dealing,
however, the above difference is either strictly decreasing, or strictly
increasing, or first strictly decreasing and then strictly increasing,
in each of its variables, except when the other is 0.

Hence, in applying Bruckner’s test, the only points we have
bypassed at which the sign of equality might hold lie along the axes,
and thus the difference attains it maximum value only on the tri-
angular boundary.

The boundary consists of the segments 0 <2 <05, 0=y <b,
and the portion of the line x« + y = b, in the first quadrant, where
b, =b,= b* and b, = b, = 1/(log 2) for Theorems 3 and 4, respectively.
The difference (39), for the functions of Theorems 3 and 4, vanishes
identically on the axes, whereas on the interior of the remaining side,
by (18) and (19), and by (31) and (32), it vanishes at the midpoint and
otherwise is negative, as specified in the statement of the two theorem.

We note, in passing, that to establish Theorems 2 and 4 without
recourse to Bruckner’s test, we might adjust the foregoing proofs as
follows. For any &', 0 < b’ < b, by (14) we have

(40) G(%; b') —0;
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further, by (15), we have
(41) GO; ) <0,

with equality if and only if & = b;. The proof of (19) can now be
extended to give

(42) G(z; ') < 0 for all we (0, E> )

The conclusion of Theorems 2 and 4, including the condition for
equality, follows from (40), (41), and (42). Analogous remarks hold
for Theorems 1 and 3.

12. Superadditivity inequalities. Let fe K(b). An immediate
induction on (3) yields

) Brf@=f(Ze), 0=w=b, Zesb.

Since, by definition, any funection fe K.(b) is nonnegative, it
follows from (3) that f is nondecreasing. Therefore, by (43), we have

(44) SF@) =SB, 0swmsb, Nm=b.

Thus, for example, for positive numbers «;, 1 =1,2, «+-,n,n =1,
such that

n

(45) 2% =T

=1

A

b*,
by Theorem 3 we have

i(l + l)e‘”“ = (1 + —1—>e“l’”‘0 ,
=1 & Lo

with equality if and only if either (a) n =1, or (b) » =2 and
x, = x, = b*/2.

Also, for positive numbers x; satisfying (45), we have the weaker
inequality

3 LY gras <( _1_> 1y
;:j{(l—k x)e =(1+ )¢
with equality if and only if either (a) # = 1 and z, = b*, or (b) » =2
and x, = ®, = b*/2.

Similarly, for positive numbers «;, © =1, 2, ---, n, such that
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k2

n
T =L =
=1

we have
i e—llm,’ é, 6~—~1/x0 é e—logz ,
=1
with analogous conditions for the sign of equality to hold.

13. Whittaker’s inequality. If, for any number @ > 1, in the
foregoing discussions we substitute «/log @ for 2, then we obtain the
following results:

The function f,, defined by

So(@) = a“”"(l + %loga> , <2< oo,

Sfa(0) =0,

is convex on the interval [0, (1/3)log @], starshaped on the interval
[0, (1/2)(v' 5 — 1) log a], and superadditive on the interval [0, b* log a].
The function F,, defined by

F(x) =a™V", 0<ae < oo,
F.(0)=0,

is convex on the interval [0, (1/2) log a], starshaped on the interval
[0, log @], and superadditive on the interval [0, log a/log 2].

In particular, the function F, is superadditive on the interval
[0,1]. Therefore, for positive numbers x, ¢=1,2,-+,1n, n=1,
such that

(46) Se=a <1,
we have the inequality
z"v‘ 91z < 9%
and the weaker inequality
(47) §=;1 o-ilzi < 91
Substituting 1/(y; + 1) for x; in (46) and (47), we obtain the
following result:

If the nonnegative mumbers y;, 1 =1,2,+++,m, n =1, are such
that
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n S 1 ’
;::{ 14+y:
then we have
(48) Sevsl,
1=1

with equality if and only if either (a) n=1 and y, =0, or (b)
n=2and y, = Y, = 1.
The relation (48) is Whittaker’s inequality [10, 4].

14. The method of Boas. The following sufficient condition for
superadditivity was suggested to the author by R. P. Boas in personal
correspondence:

Boag’s TrST. If the function f< K(b) is of class C', and there
are numbers a = b/2 and ¢ < a such that

(i) f s starshaped on [0, 2a],

(ii) f vs concave and satisfies f(x[2) < (1/2)f(x) on [c, b],

(i) f'(0) < f'(d),

@iv) f'(x) — f'(b — x) has at most one zero in (0, a),
then f is superadditive on [0, b].

The validity of the test can be established by considering sepa-
rately the following three cases:

(i) 0=2zrx=aq, 0=y=a,

(ii) 2=za, y=a, v+y=Dh,

(iii) e <a<y<hb, x+y=h

Boas has observed that his test applies to such convexo-concave
functions, or functions having ogive-shaped graphs, as e¢** for
0<a=1, log(l+ 2", and arc tan x*, yielding intervals of super-
additivity and consequent inequalities typified by the inequality of
Whittaker given in § 13, above.

A systematic tabulation of maximum intervals of superadditivity
of such functions, of their average functions, and of their inverse
average functions, might well be desirable.

15. Combination inequalities. If the function f is convex for
z € [a, b], then, by Jensen’s inequality [6, 1], for any numbers

xie[a’rb]’ i:]-’z"",n’

and any weights

n
aiyai>074$_|‘lai:1’
i=
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we have
(49) f(Saw) < Saf@) .

This inequality is an extension of the defining inequality (1).
Analogues of the inequality (49), for functions of the sort treated
in this paper, are given in the two theorems that follow.

THEOREM 5. If the function fe K(b) is convex for x<|0, a] and
starshaped for xl[0,b], b > a, then for any numbers

xie[ovb]’ 7;_1’29"',%,
and any weights
aiyai>0’ia£:1 )
i=1

we hawve

1=1

(50) F(ESam) =L S ar@).

Proof. Since the numbers «x; satisfy 0 =2, <b, we have 0 =
ax;/b < a, so that Jensen’s inequality (49) can be applied for the
numbers ax;/b, yielding

(51) f@l ai—‘;—xi> < z;i a f<%— x> .

Now since 0 <2, <b, and a/b <1, the defining inequality (2)
for starshapedness gives

(52) F(a) = Lf@), i=1,2mn,

and (50) follows from (51) and (52).
For example, for the function f defined by (7) we have a = 1/2,
b =1, so that for positive numbers x; < 1 and weights «; we have

—2

n
> o
=1

exp

A

l i a.e e
2 ="

THEOREM 6. If the function feK(c) is convex for x¢<|0, al,
starshaped for x¢€[0,b], and superadditive for xec[0,¢c], ¢ > b > a,
then for any numbers

x;€[0,0], 1=1,2 -, m,
satisfying
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(53) Zx —e=c,
we have
acy\ _ a a < a n
(54) f(b—n) = f(—bz Sia) = L5 fw) = 2 f (3 )
=5l (e) = £-f(0) .

Proof. By (50), we have

(55) (L 3e)=s L3 f@),

and from (43) and (563) we obtain
(56) S @) =f(3e),

whence (54) follows from (55), (56), and the fact that f is a non-
decreasing function.
By way of illustration, for positive numbers x; < 1 satisfying
L 1
g‘ log2 ’

ll
li/\

we have both lower and upper bounds for

n
Z —I/zz

given by

el = exp —21 < _21_2”: e < L exp —1

2n 2
&

M

1=1

Il

= _1._6“1/00 < _1_3—1082 = 1 .

2n  2n 4
For a function having a relatively longer interval of superadditivity,
a more useful inequality would result.
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